
The Linux Development Platform

Configuring, Using, and Maintaining a
Complete Programming Environment

9 780130 091154

99949
ISBN 013009115-4

SERIES PAGE INSERTS HERE

The Linux Development Platform

Configuring, Using, and Maintaining a
Complete Programming Environment

Rafeeq Ur Rehman
Christopher Paul

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

www.phptr.com

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Editorial/production supervision: Mary Sudul
Cover design director: Jerry Votta
Cover design: DesignSource
Manufacturing manager: Alexis Heydt-Long
Acquisitions editor: Jill Harry
Editorial assistant: Kate Wolf
Marketing manager: Dan DePasquale

© 2003 Pearson Education, Inc.
Publishing as Prentice Hall PTR
Upper Saddle River, New Jersey 07458

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
<http://www.opencontent.org/openpub/>).

Prentice Hall books are widely used by corporations and government agencies for training, marketing,
and resale.
The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact Corporate Sales Department, Phone: 800-382-3419; FAX: 201-236-7141;
E-mail: corpsales@prenhall.com
Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

Other product or company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-009115-4

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education — Japan
Pearson Education Malaysia, Pte. Ltd.

To Asia, Afnan, and Faris for their love and support.
—Rafeeq Ur Rehman

To Cheryl, Rachel, and Sarah for the moral support and unending
encouragement to complete this project. I’d be lost without you.

—Christopher Paul

C O N T E N T S
Acknowledgments xvii

 Chapter 1 Introduction to Software Development 1

1.1 Life Cycle of a Software Development Project 2
1.1.1 Requirement Gathering 2
1.1.2 Writing Functional Specifications 4
1.1.3 Creating Architecture and Design Documents 4
1.1.4 Implementation and Coding 5
1.1.5 Testing 6
1.1.6 Software Releases 8
1.1.7 Documentation 8
1.1.8 Support and New Features 9

1.2 Components of a Development System 10
1.2.1 Hardware Platform 10
1.2.2 Operating System 11
1.2.3 Editors 11
1.2.4 Compilers and Assemblers 12
1.2.5 Debuggers 12
1.2.6 Version Control Systems 12
1.2.7 E-mail and Collaboration 13
vii

viii Contents
1.2.8 X-Windows 13
1.3 Selection Criteria for Hardware Platform 13
1.4 Selection Criteria for Software Development Tools 14
1.5 Managing Development Process 14

1.5.1 Creating Deadlines 14
1.5.2 Managing the Development Team 15
1.5.3 Resolving Dependencies 15

1.6 Linux Development Platform Specifications (LDPS) and Linux
Standard Base (LSB) 15

1.6.1 Libraries 15
1.6.2 Current Contributors to LSB 16

1.7 References 16

 Chapter 2 Working With Editors 17

2.1 What to Look for in an Editor 17
2.1.1 Extensibility 17
2.1.2 Understanding Syntax 18
2.1.3 Tag Support 18
2.1.4 Folding Code 18

2.2 Emacs 18
2.2.1 Using Emacs 19
2.2.2 Basic Emacs Concepts 20
2.2.3 Using Buffers and Windows 24
2.2.4 Language Modes 26
2.2.5 Using Tags 27
2.2.6 Compiling 30
2.2.7 Xemacs 32

2.3 Jed 32
2.3.1 Configuring Jed 33
2.3.2 Using Jed 34
2.3.3 Folding Code 35

2.4 VIM 37
2.4.1 VIM Concepts 38
2.4.2 Basic Editing 38
2.4.3 Using Tags with VIM 41
2.4.4 Folding Code 42

2.5 References and Resources 42

Contents ix
 Chapter 3 Compilers and Assemblers 43

3.1 Introduction to GNU C and C++ Compilers 44
3.1.1 Languages Supported by GCC 44
3.1.2 New Features in GCC 3.x 46

3.2 Installing GNU Compiler 48
3.2.1 Downloading 48
3.2.2 Building and Installing GCC 48
3.2.3 Environment Variables 54
3.2.4 Post-Installation Tasks 56
3.2.5 What Not to Do when Installing Development Tools 58

3.3 Compiling a Program 58
3.3.1 Simple Compilation 59
3.3.2 Default File Types 60
3.3.3 Compiling to Intermediate Levels 61
3.3.4 Compilation with Debug Support 63
3.3.5 Compilation with Optimization 64
3.3.6 Static and Dynamic Linking 65
3.3.7 Compiling Source Code for Other Languages 66
3.3.8 Summary of gcc Options 70

3.4 Linking a program 91
3.5 Assembling a Program 91
3.6 Handling Warning and Error messages 92
3.7 Include files 92
3.8 Creating Libraries 92
3.9 Standard Libraries 93

3.10 Compiling Pascal Programs 94
3.10.1 Using Free Pascal (fpc) 95
3.10.2 Using GNU Pascal 96

3.11 Compiling Fortran Programs 96
3.12 Other Compilers 98

3.12.1 Smalltalk 98
3.12.2 Oberon 98
3.12.3 Ruby 98

3.13 References and Resources 98

 Chapter 4 Using GNU make 101

4.1 Introduction to GNU make 102
4.1.1 Basic Terminology 103

x Contents
4.1.2 Input Files 105
4.1.3 Typical Contents of a Makefile 106
4.1.4 Running make 108
4.1.5 Shell to Execute Commands 109
4.1.6 Include Files 109

4.2 The make Rules 110
4.2.1 Anatomy of a Rule 110
4.2.2 A Basic Makefile 111
4.2.3 Another Example of Makefile 113
4.2.4 Explicit Rules 118
4.2.5 Implicit Rules 118

4.3 Using Variables 119
4.3.1 Defining Variables 120
4.3.2 Types of Variables 120
4.3.3 Pre-Defined Variables 121
4.3.4 Automatic Variables 121

4.4 Working with Multiple Makefiles and Directories 122
4.4.1 Makefile in The Top Directory 123
4.4.2 Makefile in common-dir Directory 125
4.4.3 Makefile in the ftp-dir Directory 126
4.4.4 Makefile in the tftp-dir Directory 127
4.4.5 Makefile in the dns-dir Directory 127
4.4.6 Building Everything 128
4.4.7 Cleaning Everything 129
4.4.8 Making Individual Targets 129

4.5 Special Features of make 130
4.5.1 Running Commands in Parallel 130
4.5.2 Non-Stop Execution 130

4.6 Control Structures and Directives 131
4.6.1 The ifeq Directive 132
4.6.2 The ifneq Directive 132
4.6.3 The ifdef Directive 132
4.6.4 The ifndef Directive 133
4.6.5 The for Control Structure 133

4.7 Getting the Latest Version and Installation 133
4.7.1 Compilation 133

Contents xi
4.7.2 Installation 134
4.8 References and Resources 134

 Chapter 5 Working with GNU Debugger 135

5.1 Introduction to GDB 136
5.2 Getting Started with GDB 136

5.2.1 Most Commonly Used gdb Commands 137
5.2.2 A Sample Session with gdb 138
5.2.3 Passing Command Line Arguments to the Program

Being Debugged 141
5.3 Controlling Execution 144

5.3.1 The step and finish Commands 144
5.4 Working with the Stack 146
5.5 Displaying Variables 151

5.5.1 Displaying Program Variables 151
5.5.2 Automatic Displaying Variables with Each Command 153
5.5.3 Displaying Environment Variables 154
5.5.4 Modifying Variables 155

5.6 Adding Break Points 156
5.6.1 Continuing from Break Point 158
5.6.2 Disabling Break Points 159
5.6.3 Enabling Break Points 159
5.6.4 Deleting Break Points 160

5.7 Debugging Optimized Code 160
5.8 Files and Shared Libraries 163
5.9 Using gdb With GNU Emacs 164

5.10 Debugging Running Processes 165
5.11 Installing GDB 168

5.11.1 Downloading and Building 168
5.11.2 Final Installation 168

5.12 Other Open Source Debuggers 169
5.12.1 The kdbg Debugger 169
5.12.2 The ddd Debugger 172
5.12.3 The xxgdb Debugger 173

5.13 References and Resources 174

xii Contents
 Chapter 6 Introduction to CVS 175

6.1 CVS Policies 176
6.2 Project Management and Communication 176
6.3 Installing and Managing CVS 176

6.3.1 Configuring CVS 177
6.3.2 Importing a Project into the Repository 179

6.4 Using the CVS Client 180
6.4.1 Local Repositories 181
6.4.2 Remote Repositories 182
6.4.3 Checking out a Project 182
6.4.4 Finding the Status of a Project 183
6.4.5 Finding Differences 184
6.4.6 Resolving Conflicts 185
6.4.7 Checking the Project Back In 186
6.4.8 Adding Files to a Project 186
6.4.9 Removing Files from a Project 187

6.4.10 Renaming Files within a Project 188
6.4.11 Removing your Working Copy 188
6.4.12 Tags and Releases 189

6.5 Introduction to jCVS 190
6.5.1 System Requirements 190
6.5.2 Installation Instructions 190
6.5.3 Using jCVS 191

6.6 Using Emacs with CVS 196
6.6.1 Installing pcl-cvs 197
6.6.2 Using pcl-cvs 197

6.7 Secure remote access with CVS 199
6.7.1 Secure Shell Access 199

6.8 References and Resources 201

 Chapter 7 Miscellaneous Tools 203

7.1 Using indent Utility 204
7.1.1 Getting Started with Indent 205
7.1.2 Selecting Coding Styles 206
7.1.3 Blank Lines and Comments 209
7.1.4 Formatting Braces 210
7.1.5 Formatting Declarations 211

Contents xiii
7.1.6 Breaking Long Lines 212
7.1.7 Summary of Options 213

7.2 Using sed Utility 215
7.3 Using diff Utility 215

7.3.1 Other Forms of diff Utility 218
7.4 Using cscope and cbrowser 219
7.5 Generating C Function Prototypes from C Source Code

Using cproto 222
7.6 Using ltrace and strace Utilities 223
7.7 Using GNU Binary Utilities 226

7.7.1 Using the ar Utility 226
7.7.2 Using the ranlib Utility 228
7.7.3 Using the nm Utility 228
7.7.4 Using the strip Utility 231
7.7.5 Using the objcopy Utility 231
7.7.6 Using the objdump Utility 232
7.7.7 Using the size Utility 236
7.7.8 Using the strings Utility 237
7.7.9 Using the addr2line Utility 237

7.8 Using the ldd Utility 238
7.9 References and Resources 238

 Chapter 8 Cross-Platform and Embedded Systems Development 239

8.1 Introduction to the Cross-Platform Development Process 240
8.1.1 Host Machine 240
8.1.2 Target Machine 240
8.1.3 Native and Cross Compilers 241
8.1.4 Cross Platform Development Cycle 241

8.2 What are Embedded Systems? 243
8.2.1 Embedded Systems and Moving Parts 244
8.2.2 Embedded Systems and Power Consumption 245
8.2.3 Embedded Operating Systems 245
8.2.4 Software Applications for Embedded Systems 246

8.3 How Development Systems Differ for Embedded Systems 246
8.3.1 Knowledge of Target System Hardware 246
8.3.2 Is the Target System Real-Time? 247

xiv Contents
8.3.3 Testing Methodology 247
8.4 Cross Compilations 247

8.4.1 Software Emulators 248
8.4.2 In-circuit emulators 249
8.4.3 Introduction to JTAG and BDM 249

8.5 Connecting to Target 250
8.5.1 Using gdbserver with GNU Debugger 250
8.5.2 Attaching to a Running Process Using gdbserver 255
8.5.3 Using Stubs with GNU Debugger 256
8.5.4 Debugging the Debug Session 256

8.6 Hardware Used for Cross Platform and Embedded Systems
Development 258

8.6.1 Arcom SBC-GX1 Board 258
8.6.2 Artesyn PM/PPC Mezzanine Card 260

8.7 References 261

 Chapter 9 Platform Independent Development with Java 263

9.1 How Java Applications Work 264
9.1.1 Java Compiler 264
9.1.2 Java Virtual Machine 264

9.2 Kaffe 264
9.3 The Jboss Java Development System 266
9.4 Java 2 SDK 267

9.4.1 Java 2 SDK Standard Edition 267
9.4.2 Getting and Installing Java SDK from Sun 269
9.4.3 Creating jar Files 269

9.5 Building Java Applications 270
9.5.1 Creating Source Code File 270
9.5.2 Compiling Java Code 270
9.5.3 Running Java Applications 271
9.5.4 Using gcj to Build Java Applications 271

9.6 Building Applets 271
9.7 Testing Applets with Netscape 272
9.8 Jikes for Java 272
9.9 Miscellaneous 274

9.9.1 Embedded Java 274
9.9.2 Real Time Java 274

Contents xv
9.9.3 Wireless Applications 275
9.10 References 275

 Appendix A Typical Hardware Requirements for a Linux
Development Workstation 277

Index 283

P R E F A C E
Setting up a complete development environment using open source tools has always
been a challenging task. Although all of the development tools are available in the open source,
no comprehensive development environment exists as of today. This book is an effort to enable
the reader to set up and use open source to create such an environment. Each chapter of the book
is dedicated to a particular component of the development environment.

Chapter 1 provides an introduction to the practical software development life cycle and
stages. The chapter also provides information about the documentation required for all serious
software development projects. Guidelines are provided about criteria for selecting hardware
and software platforms.

Chapter 2 is about using editors. Editors are essential components of any software devel-
opment system. Selection of a good editor saves time and money in the development life cycle.
This chapter provides information about commonly used editors like Emacs, Jed and vim (vi
Improved).

Chapter 3 is about the GNU set of compilers commonly known as GCC. The procedure
for installation and use of gcc with different languages is presented here.

Larger software projects contain hundreds or thousands of files. Compiling these files in
an orderly fashion and then building the final executable product is a challenging task. GNU
make is a tool used to build a project by compiling and linking source code files. Chapter 4 pro-
vides information on how to install and use this important tool.

Chapter 5 discusses debuggers. An introduction to commonly used debuggers is provided
in this chapter with an emphasis on the GNU debugger gdb.

Chapter 6 introduces CVS, which is the open source revision control system and is most
widely used in open source development. Setting up a CVS server is detailed in this chapter. You
will learn how to use remote the CVS server in a secure way.

There are tools other than compilers, debuggers and editors. These tools are discussed in
Chapter 7. These tools help in building good products.
xvii

xviii Preface
Open source tools are also widely used in embedded and cross-platform development.
Chapter 8 provides information using open source tools in such environments. Remote debug-
ging is an important concept and it is explained in this chapter.

Chapter 9 is the last chapter of the book and it provides a basic introduction to open source
Java development.

There is one important thing that you must keep in mind while reading this book. It is not
a tutorial on any language or programming techniques. It is about development tools and how to
use these. You need other books to learn programming languages and techniques.

The book explains the installation procedures of different tools. By the time you read this
book, new versions of these tools may be available. The installation procedures will not vary
drastically in these versions and you can use the steps explained in this book. In fact, most of the
open source tools employ the same compiling and installation procedure that you will note in
this book. This process has been consistent and is expected to remain the same in future as well.

After reading this book, we are very much hopeful that the reader will be able to under-
stand different components of a development system. You will also be able to create such a sys-
tem from scratch using open source tools.

Rafeeq Ur Rehman
Christopher Paul

A B O U T T H E CD
This book comes with a CD-ROM. The CD-ROM contains source code of all soft-
ware and utilities used in this book. You can compile and install these tools as explained in this
book. If you need latest versions of these tools, you can download these from the links provided
in the book.
xix

xvii

A CK N O W L E D G M E N T S

This is my third book and I have been very fortunate to get help from many people around
me in all of these projects. Professor Shahid Bokhari at the University of Engineering and Tech-
nology Lahore, Pakistan, provided valuable suggestions while I was creating table of contents
for this book. In fact he proposed a mini table of contents about what should be included in the
book to make it useful both for the developers and students of computer science and engineer-
ing. I am grateful for his continued support.

Mike Schoenborn, Amgad Fahmy, and Greg Ratcliff at Peco II Inc. continuously encour-
aged me during the time I was writing the manuscript and I am thankful to all of them. I am also
thankful to Victor Kean for providing his life experiences both in real social life and software
development.

I am also thankful to Jill Harry and Mary Sudul at Prentice Hall PTR for bearing with me
and pushing me to meet deadlines which really helped bring this book to the market in time.

Drew Streib did a great job in reviewing the manuscript and giving very useful suggestions
to improve it. Thanks Drew.

Jim Shappell at Arcom Control Systems provided x86 based board for testing embedded
development examples and remote debugging. Cole Creighton at Artesyn Communication Prod-
ucts provided PowerPC based board for cross-platform development testing purpose. I am
thankful to both of them for their help in developing the manuscript of this book.

xviii Acknowledgments

Bruce Parens gave valuable suggestions about what to include in the book. He also agreed
to print the book under his Open Source Series. I was excited to get his approval and I am thank-
ful to him.

And I am thankful to the open source community all over the world for putting such a
huge effort to build these open source tools. This book exists only because of the open source
products and tools.

Above all, I am thankful to my father, who taught me how to read and write and work
hard.

Rafeeq Ur Rehman
September 25, 2002

C H A P T E R 1
Introduction to
Software
Development
oftware development is a complicated process. It requires careful
planning and execution to meet the goals. Sometimes a developer

must react quickly and aggressively to meet everchanging market
demands. Maintaining software quality hinders fast-paced software devel-
opment, as many testing cycles are necessary to ensure quality products.

This chapter provides an introduction to the software development pro-
cess. As you will learn, there are many stages of any software develop-
ment project. A commercial software product is usually derived from
market demands. Sales and marketing people have first-hand knowledge
of their customers’ requirements. Based upon these market requirements,
senior software developers create an architecture for the products along
with functional and design specifications. Then the development process
starts. After the initial development phase, software testing begins, and
many times it is done in parallel with the development process. Documen-
tation is also part of the development process because a product cannot be
brought to market without manuals. Once development and testing are
done, the software is released and the support cycle begins. This phase
may include bug fixes and new releases.

After reading this chapter, you should understand how software develop-
ment is done and the components of a software development system. At

S

1

2 Chapter 1 • Introduction to Software Development
the end of the chapter, you will find an introduction to Linux Standard
Base. This chapter is not specific to a particular hardware platform or
tools. You will start learning about components of an actual software
development platform in the next chapter.

1.1 Life Cycle of a Software Development Project

Software development is a complicated process comprising many stages. Each stage requires a
lot of paperwork and documentation in addition to the development and planning process. This
is in contrast to the common thinking of newcomers to the software industry who believe that
software development is just “writing code.” Each software development project has to go
through at least the following stages:

• Requirement gathering
• Writing functional specifications
• Creating architecture and design documents
• Implementation and coding
• Testing and quality assurance
• Software release
• Documentation
• Support and new features

Figure 1-1 shows a typical development process for a new product.
There may be many additional steps and stages depending upon the nature of the software

product. You may have to go through multiple cycles during the testing phase as software testers
find problems and bugs and developers fix them before a software product is officially released.
Let us go into some detail of these stages.

1.1.1 Requirement Gathering

Requirement gathering is usually the first part of any software product. This stage starts
when you are thinking about developing software. In this phase, you meet customers or prospec-
tive customers, analyzing market requirements and features that are in demand. You also find out
if there is a real need in the market for the software product you are trying to develop.

In this stage, marketing and sales people or people who have direct contact with the cus-
tomers do most of the work. These people talk to these customers and try to understand what
they need. A comprehensive understanding of the customers’ needs and writing down features of
the proposed software product are the keys to success in this phase. This phase is actually a base
for the whole development effort. If the base is not laid correctly, the product will not find a
place in the market. If you develop a very good software product which is not required in the
market, it does not matter how well you build it. You can find many stories about software prod-
ucts that failed in the market because the customers did not require them. The marketing people

Life Cycle of a Software Development Project 3
usually create a Marketing Requirement Document or MRD that contains formal data represen-
tation of market data gathered.

Spend some time doing market research and analysis. Consider your competitors’ prod-
ucts (if any), a process called competitive analysis. List the features required by the product. You
should also think about the economics of software creation at this point. Is there a market? Can I
make money? Will the revenue justify the cost of development?

Market research

Product
requirements

Product architecture and
functional specifications

Product Design

Coding and
implementation

Testing and
quality assurance

Software release

New featuresBug fixes

Support

Customer

Create functional specification

Add new features to existing product

Figure 1-1 Typical processes for software development projects.

4 Chapter 1 • Introduction to Software Development
1.1.2 Writing Functional Specifications

Functional specifications may consist of one or more documents. Functional specification
documents show the behavior or functionality of a software product on an abstract level. Assum-
ing the product is a black box, the functional specifications define its input/output behavior.
Functional specifications are based upon the product requirements documentation put forward
by people who have contact with the enduser of the product or the customers.

In larger products, functional specifications may consist of separate documents for each
feature of the product. For example, in a router product, you may have a functional specification
document for RIP (Routing Information Protocol), another for security features, and so on.

Functional specifications are important because developers use them to create design doc-
uments. The documentation people also use them when they create manuals for end users. If dif-
ferent groups are working in different physical places, functional specifications and architecture
documents (discussed next) are also a means to communicate among them. Keep in mind that
sometimes during the product development phase you may need to amend functional specifica-
tions keeping in view new marketing requirements.

1.1.3 Creating Architecture and Design Documents

When you have all of the requirements collected and arranged, it is the turn of the techni-
cal architecture team, consisting of highly qualified technical specialists, to create the architec-
ture of the product. The architecture defines different components of the product and how they
interact with each other. In many cases the architecture also defines the technologies used to
build the product. While creating the architecture documents of the project, the team also needs
to consider the timelines of the project. This refers to the target date when the product is required
to be on the market. Many excellent products fail because they are either too early or late to mar-
ket. The marketing and sales people usually decide a suitable time frame to bring the product to
market. Based on the timeline, the architecture team may drop some features of the product if it
is not possible to bring the full-featured product to market within the required time limits.

Once components of the product have been decided and their functionality defined, inter-
faces are designed for these components to work together. In most cases, no component works in
isolation; each one has to coordinate with other components of the product. Interfaces are the
rules and regulations that define how these components will interact with each other. There may
be major problems down the road if these interfaces are not designed properly and in a detailed
way. Different people will work on different components of any large software development
project and if they don’t fully understand how a particular component will communicate with
others, integration becomes a major problem.

For some products, new hardware is also required to make use of technology advance-
ments. The architects of the product also need to consider this aspect of the product.

After defining architecture, software components and their interfaces, the next phase of
development is the creation of design documents. At the architecture level, a component is
defined as a black box that provides certain functionality. At the design documents stage, you

Life Cycle of a Software Development Project 5
have to define what is in that black box. Senior software developers usually create design docu-
ments and these documents define individual software components to the level of functions and
procedures. The design document is the last document completed before development of the
software begins. These design documents are passed on to software developers and they start
coding. Architecture documents and MRDs typically need to stay in sync, as sales and market-
ing will work from MRDs while engineering works from engineering documents.

1.1.4 Implementation and Coding

The software developers take the design documents and development tools (editors, com-
pilers, debuggers etc.) and start writing software. This is usually the longest phase in the product
life cycle. Each developer has to write his/her own code and collaborate with other developers to
make sure that different components can interoperate with each other. A revision control system
such as CVS (Concurrent Versions System) is needed in this phase. There are a few other open
source revision control systems as well as commercial options. The version control system pro-
vides a central repository to store individual files. A typical software project may contain any-
where from hundreds to thousands of files. In large and complex projects, someone also needs to
decide directory hierarchy so that files are stored in appropriate locations. During the develop-
ment cycle, multiple persons may modify files. If everyone is not following the rules, this may
easily break the whole compilation and building process. For example, duplicate definitions of
the same variables may cause problems. Similarly, if included files are not written properly, you
can easily cause the creation of loops. Other problems pop up when multiple files are included in
a single file with conflicting definitions of variables and functions.

Coding guidelines should also be defined by architects or senior software developers. For
example, if software is intended to be ported to some other platform as well, it should be written
on a standard like ANSI.

During the implementation process, developers must write enough comments inside the
code so that if anybody starts working on the code later on, he/she is able to understand what has
already been written. Writing good comments is very important as all other documents, no mat-
ter how good they are, will be lost eventually. Ten years after the initial work, you may find only
that information which is present inside the code in the form of comments.

Development tools also play an important role in this phase of the project. Good develop-
ment tools save a lot of time for the developers, as well as saving money in terms of improved
productivity. The most important development tools for time saving are editors and debuggers. A
good editor helps a developer to write code quickly. A good debugger helps make the written
code operational in a short period of time. Before starting the coding process, you should spend
some time choosing good development tools.

Review meetings during the development phase also prove helpful. Potential problems are
caught earlier in the development. These meeting are also helpful to keep track of whether the
product is on time or if more effort is needed complete it in the required time frame. Sometimes
you may also need to make some changes in the design of some components because of new

6 Chapter 1 • Introduction to Software Development
requirements from the marketing and sales people. Review meetings are a great tool to convey
these new requirements. Again, architecture documents and MRDs are kept in sync with any
changes/problems encountered during development.

1.1.5 Testing

Testing is probably the most important phase for long-term support as well as for the repu-
tation of the company. If you don’t control the quality of the software, it will not be able to com-
pete with other products on the market. If software crashes at the customer site, your customer
loses productivity as well money and you lose credibility. Sometimes these losses are huge.
Unhappy customers will not buy your other products and will not refer other customers to you.
You can avoid this situation by doing extensive testing. This testing is referred to as Quality
Assurance, or QA, in most of the software world.

Usually testing starts as soon as the initial parts of the software are available. There are
multiple types of testing and these are explained in this section. Each of these has its own
importance.

1.1.5.1 Unit Testing
Unit testing is testing one part or one component of the product. The developer usually

does this when he/she has completed writing code for that part of the product. This makes sure
that the component is doing what it is intended to do. This also saves a lot of time for software
testers as well as developers by eliminating many cycles of software being passed back and forth
between the developer and the tester.

When a developer is confident that a particular part of the software is ready, he/she can
write test cases to test functionality of this part of the software. The component is then for-
warded to the software testing people who run test cases to make sure that the unit is working
properly.

1.1.5.2 Sanity Testing
Sanity testing is a very basic check to see if all software components compile with each

other without a problem. This is just to make sure that developers have not defined conflicting or
multiple functions or global variable definitions.

1.1.5.3 Regression or Stress Testing
Regression or stress testing is a process done in some projects to carry out a test for a

longer period of time. This type of testing is used to determine behavior of a product when used
continuously over a period of time. It can reveal some bugs in software related to memory leak-
age. In some cases developers allocate memory but forget to release it. This problem is known as
memory leakage. When a test is conducted for many days or weeks, this problem results in allo-
cation of all of the available memory until no memory is left. This is the point where your soft-
ware starts showing abnormal behavior.

Life Cycle of a Software Development Project 7
Another potential problem in long-term operation is counter overflow. This occurs when
you increment a counter but forget to decrement, it resulting in an overflow when the product is
used for longer periods.

The regression testing may be started as soon as some components are ready. This testing
process requires a very long period of time by its very nature. The process should be continued
as more components of the product are integrated. The integration process and communication
through interfaces may create new bugs in the code.

1.1.5.4 Functional Testing
Functional testing is carried out to make sure that the software is doing exactly what it is

supposed to do. This type of testing is a must before any software is released to customers. Func-
tional testing is done by people whose primary job is software testing, not the developers them-
selves. In small software projects where a company can’t afford dedicated testers, other
developers may do functional testing also. The key point to keep in mind is that the person who
wrote a software component should not be the person who tested it. A developer will tend to test
the software the way he/she has written it. He/she may easily miss any problems in the software.

The software testers need to prepare a testing plan for each component of the software. A
testing plan consists of test cases that are run on the software. The software tester can prepare
these test cases using functional specifications documents. The tester may also get help from the
developer to create test cases. Each test case should include methodology used for testing and
expected results.

In addition to test cases, the tester may also need to create a certain infrastructure or envi-
ronment to test the functionality of a piece of code. For example, you may simulate a network to
test routing algorithms that may be part of a routing product.

The next important job of the tester is to create a service request if an anomaly is found.
The tester should include as much information in the service request as possible. Typical infor-
mation included in reporting bugs includes:

• Test case description
• How the test was carried out
• Expected results
• Results obtained
• If a particular environment was created for testing, a description of that environment

The service request should be forwarded to the developer so that the developer may cor-
rect the problem. Many software packages are available in the market to track bugs and fix prob-
lems in software. There are many web-based tools as well. For a list of freely available open
source projects, go to http://www.osdn.org or http://www.sourceforge.net and search for “bug
track”. OSDN (Open Source Developers Network) hosts many open source software develop-
ment projects. You can find software packages that work with CVS also. CVS is explained in
Chapter 6 of this book.

8 Chapter 1 • Introduction to Software Development
1.1.6 Software Releases

Before you start selling any software product, it is officially released. This means that you
create a state of the software in your repository, make sure that it has been tested for functional-
ity and freeze the code. A version number is assigned to released software. After releasing the
software, development may continue but it will not make any change in the released software.
The development is usually carried on in a new branch and it may contain new features of the
product. The released software is updated only if a bug fixed version is released.

Usually companies assign incremental version numbers following some scheme when the
next release of the software is sent to market. The change in version number depends on whether
the new software contains a major change to the previous version or it contains bug fixes and
enhancement to existing functionality. Releases are also important because they are typically
compiled versions of a particular version of the code, and thus provide a stable set of binaries for
testing.

1.1.6.1 Branches
In almost all serious software development projects, a revision or version control system is

used. This version control system keeps a record of changes in source code files and is usually
built in a tree-like structure. When software is released, the state of each file that is part of the
release should be recorded. Future developments are made by creating branches to this state.
Sometimes special branches may also be created that are solely used for bug fixing. CVS is dis-
cussed in detail in Chapter 6.

1.1.6.2 Release Notes
Every software version contains release notes. These release notes are prepared by people

releasing the software version with the help of developers. Release notes show what happened in
this software version. Typically the information includes:

• Bug fixes
• New functionality
• Detail of new features added to the software
• Any bugs that are not yet fixed
• Future enhancements
• If a user needs a change in the configuration process, it is also mentioned in the release

notes

Typically a user should be given enough information to understand the new release
enhancements and decide whether an upgrade is required or not.

1.1.7 Documentation

There are three broad categories of documentation related to software development pro-
cesses.

Life Cycle of a Software Development Project 9
1. Technical documentation developed during the development process. This includes
architecture, functional and design documents.

2. Technical documentation prepared for technical support staff. This includes technical
manuals that support staff use to provide customer support.

3. End-user manuals and guides. This is the documentation for the end user to assist the
user getting started with the product and using it.

All three types of documents are necessary for different aspects of product support. Tech-
nical documents are necessary for future development, bug fixes, and adding new features. Tech-
nical documentation for technical support staff contains information that is too complicated for
the end user to understand and use. The support staff needs this information in addition to user
manuals to better support customers. Finally each product must contain user manuals.

Technical writers usually develop user manuals which are based on functional specifica-
tions. In the timelines of most software development projects, functional specifications are pre-
pared before code development starts. So the technical writers can start writing user manuals
while developers are writing code. By the time the product is ready, most of the work on user
manuals has already been completed.

1.1.8 Support and New Features

Your customers need support when you start selling a product. This is true regardless of
the size of the product, and even for products that are not software related. Most common sup-
port requests from customers are related to one of the following:

• The customer needs help in installation and getting started.
• The customer finds a bug and you need to release a patch or update to the whole

product.
• The product does not fulfill customer requirements and a new feature is required by the

customer.

In addition to that, you may also want to add new features to the product for the next
release because competitor products have other features. Better support will increase your cus-
tomer loyalty and will create referral business for you.

You may adopt two strategies to add new features. You may provide an upgrade to the cur-
rent release as a patch, or wait until you have compiled and developed a list of new features and
make a new version. Both of these strategies are useful depending how urgent the requirement
for new features is.

10 Chapter 1 • Introduction to Software Development
1.2 Components of a Development System

Like any other system, a development system is composed of many components that work
together to provide services to the developer for the software development task. Depending upon
the requirements of a project, different types of components can be chosen. Many commercial
companies also sell comprehensive development tools. On Linux systems, all of the develop-
ment tools are available and you can choose some of these depending upon your level of exper-
tise with these tools and your requirements. Typically each development platform consists of the
following components:

• Hardware platform

• Operating system

• Editors

• Compilers and assemblers

• Debuggers

• Version control system

• Collaboration and bug tracking

Let us take a closer look on these components and what role they play in the development
cycle.

1.2.1 Hardware Platform

This is the tangible part of the development system. A hardware platform is the choice of
your hardware, PC or workstation, for the development system. You can choose a particular
hardware platform depending upon different factors as listed below:

Cost Depending upon budget, you may chose different types of hardware.
Usually UNIX workstations are costly to buy and maintain. On the
other hand, PC-based workstations are cheap and the maintenance
cost is also low.

Performance Usually UNIX workstations have high performance and stability as
compared to PC-based solutions.

Tools You also need to keep in mind availability of development tools on a
particular platform.

Development Type If the target system is the same as the host system on which develop-
ment is done, the development is relatively easy and native tools are
cheap as well, compared to cross-platform development tools.

Depending upon these factors, you may make a choice from the available hardware plat-
forms for development.

Components of a Development System 11
If hardware is part of the final product, selection of hardware platform also depends upon
customer/market requirement.

1.2.2 Operating System

Choice of a particular operating system may be made depending upon:

• Cost
• Availability of development tools
• Hardware platform
• Native or cross compiling

Some operating systems are cheaper than others. Linux is an excellent choice, as far as
cost is concerned. Linux is also a very good operating system as it has all of the development
tools available. Now you can install Linux on high-end workstations from Sun Microsystems,
HP, and IBM as well as commodity PC hardware available everywhere. It provides stability and
most of the people are familiar with development tools. You can also use the operating system
for cross-platform development using GNU tools.

1.2.3 Editors

Editors play an important role in the development work. Easy-to-use and feature rich edi-
tors, like Emacs, increase developers’ productivity. You should look at a few things while select-
ing editors. These features include:

• Understanding syntax of language
• Collapsing of context
• Support of tags
• Opening multiple files
• Easy editing for generally used editing functions like cut, copy, paste, search, replace

and so on
• Multiple windows
• Support of user defined functions and macros

If you look at the open source community, you can find a lot of good editors available to
developers. The most commonly used editors are Jed, Emacs and Xemacs. However, many other
variants of these editors are also available. You can also use X-Windows-based editors available
on Linux platform. A lot of people also edit in vi or vim, both of these have been very popular
historically.

12 Chapter 1 • Introduction to Software Development
1.2.4 Compilers and Assemblers

Compilers and assemblers are the core development tools because they convert source
code to executable form. Quality of compilers does affect the output code. For example, some
compilers can do much better code optimization compared to others. If you are doing some
cross-platform development, then your compiler should support code generation for the target
machine as well.

GNU compilers collection, more commonly called GCC, is a comprehensive set of com-
pilers for commonly used languages including the following:

• C
• C++
• Java
• Fortran

In addition to GCC, you can find a lot of other open source compilers available for Linux.
Some of these are introduced in Chapter 3.

GNU utilities set, also known as binutils, includes GNU assembler and other utilities that
can be used for many tasks. GNU assembler is used whenever you compile a program using
GNU compiler.

1.2.5 Debuggers

Debuggers are the also an important part of all development systems. You can’t write a
program that is free of bugs. Debugging is a continuous part of software development and you
need good tools for this purpose. GNU debugger, more commonly known as GDB, is a common
debugger. Many other debuggers are also built on this debugger. The GNU debugger and some
other debuggers will be introduced later in this book.

1.2.6 Version Control Systems

The revision control system is a must for any serious development effort where multiple
developers work on a software product. The most popular version control system on Linux is
known as Concurrent Versions System or CVS. CVS allows many people to work on files at the
same time and provides a central repository to store files. Developers can check out files from
this repository, make changes and check the files back into the repository. CVS also works with
editors like GNU Emacs.

When multiple developers are modifying the same file at the same time, conflict may
occur between different changes made by multiple developers. When a conflict is detected in the
files being checked in, CVS provides a mechanism to merge the files appropriately.

CVS can be used over secure links as well. This is required when developers are not phys-
ically located at the same place. A server on the Internet can be used to provide secure access to
the central software repository.

Selection Criteria for Hardware Platform 13
There are other version control systems as well which are popular in the software develop-
ment community. Examples are Aegis, PRCS, RCS and SCCS.

1.2.7 E-mail and Collaboration

In any software development project, collaboration among developers, designers and
architects as well as marketing people is a must. The objective can be achieved in many ways.
Probably e-mail is the most efficient and cheapest way. Some collaboration tools provide more
functionality than just e-mailing.

1.2.8 X-Windows

X-Windows is much more than just a GUI interface on Linux, but for development pur-
poses, it provides a very good user interface. This is especially useful for editors like Emacs.

1.2.9 Miscellaneous Tools

Many miscellaneous tools are also important during the development process. Some of
these tools are listed below:

• The make utility
• The ar program
• The ranlib utility
• The hexdump utility

Information about these tools is provided later in this book.

1.3 Selection Criteria for Hardware Platform

The development process needs computers, networks, storage, printing and other hardware com-
ponents. However the important hardware decision is the selection of PCs and workstations for
developers. There is no hard and fast rule about how to select a particular hardware platform. It
depends upon the requirements of a development project. Some factors that you may keep in
mind are as follows:

• Cost of the hardware.
• Availability of desired operating system on the hardware. For example, you can’t run

HP-UX on PCs.
• Availability of development tools.
• Maintenance cost.

14 Chapter 1 • Introduction to Software Development
There may be other factors as well and you are the best person to judge what you need.
However, keep in mind that reliability of hardware is one major factor that people usually over-
look. If you buy cheap systems that decrease productivity of developers, you lose a lot of money.

1.4 Selection Criteria for Software Development Tools

After selecting the hardware, software development tools are the next major initial expense in
terms of money and time to set these up. Selection of software development tools depends upon
the choice of hardware and operating system. In many cases GNU tools are very well suited.
Selection of development tools also has a major effect on the productivity of the whole develop-
ment team.

1.5 Managing Development Process

In large software development projects, management of the development process is a big task
and a dedicated person may be needed to take care of this aspect of the project. A development
manager usually acts as a binding and coordinating force among different parties with conflict-
ing interests. These parties include:

• Marketing and sales people who put forward requirements, change requirements and
come up with new requirements, usually when much of the work is already done!

• Architecture and design people.

• Software developers who always think that they always have less amount of time.

• Release management people.

• Software testers.

• Documentation writers.

• Senior managers who often push to complete the project earlier than the deadline.

Coordinating all of these parties is not an easy task. The manager has to convince senior
management that a new feature needs that much time for development. At the same time he has
to push developers to meet the deadlines. Some of the important tasks of software management
in a real-life project are as follows.

1.5.1 Creating Deadlines

The manager usually coordinates with the software developers to set reasonable dead-
lines for certain features. These deadlines must conform to the product delivery time lines.
The manager may have to arrange additional resources to complete feature development in the
allotted time.

Project management software can help a manager to set and meet deadlines and track
completion of different components.

Linux Development Platform Specifications (LDPS) and Linux Standard Base (LSB) 15
1.5.2 Managing the Development Team

The manager has to keep track of how development among different parts of the software
is going on. If part of the product is behind schedule, she has to re-arrange resources to get it
back on track.. She may also need to hire new people to finish the development of a particular
component on schedule.

1.5.3 Resolving Dependencies

Usually software components are dependent on one another. If the development of one
component is lagging behind, it may affect development of other components. The develop-
ment manager needs to keep an eye on these dependencies and how these may affect the over-
all progress of the project. Well-known project management methods are usually helpful for
this task.

1.6 Linux Development Platform Specifications (LDPS) and Linux
Standard Base (LSB)

Linux Development Platform Specifications or LDPS was an effort to design a common specifi-
cation so that programs developed on one Linux distribution could be easily ported to other dis-
tributions. The specifications define components and packages that must be present on Linux
development workstations. The latest version of the specifications at the time of writing this
book is available at http://www.freestandards.org/ldps/1.1/ldps-1.1.html web site.

Linux Standard Base or LSB (http://www.linuxbase.org) is the new forum to standardize
Linux distributions. LSB specifications 1.1.0 is available at the time of writing this book. LSB
compliant applications can run on any LSB compliant distribution without any modification or
recompilation process. Specifications are detailed and the latest version can be found at http://
www.linuxbase.org/spec/.

1.6.1 Libraries

The following libraries will be available on LSB compliant systems. While developing
applications for Linux, the developer can assume presence of these libraries on target machines,
provided the target is LSB compliant.

• libX11
• libXt
• libGL
• libXext
• libICE
• libSM
• libdl
• libcrypt

16 Chapter 1 • Introduction to Software Development
• libz
• libncurses

1.6.2 Current Contributors to LSB

Major Linux vendors include:

• Caldera Inc.
• MandrakeSoft
• Red Hat Software
• The Debian Project
• TurboLinux Inc.
• SuSE
• VA Linux

References

1. LDPS web site at http://www.freestandards.org/ldps/
2. CVS web site at http://www.gnu.org/software/cvs/
3. Aegis at web site http://aegis.sourceforge.net/index.html
4. PRCS at its web site http://prcs.sourceforge.net/
5. GNU Software at http://www.gnu.org
6. Linux Standard Base at http://www.linuxbase.org
7. Open Source Developers Network at http://www.osdn.org

