Step by
Step Linux
Guide

by
M. B. G. Suranga De Silva

Step by Step Linux Guide, describes the system administration aspects of using Linux.
It isintended for people who know nothing about system administration. This book

Step by Step™ Linux Guide. Page 1

doesn’t tell you how to install Linux sinceit isvery straight forward but it gives you
real world mail, DNS, proxy, web, messaging etc... server installations and
configurations.

System administration is all the things that one has to do to keep a computer systemin a
useable shape. It

Includes things like backing up files and restoring , installing new programs, creating
accounts for users, making certain that the filesystem is not corrupted, and so on.

Thereisno one official Linux distribution, so different people have different setups,
and many people

have a setup they have built up themselves. This book is not targeted at any one
distribution, even though

| use Red Hat Linux 8 and 9 the contents can be applied to any distribution.

Many people have helped me with this book, directly or indirectly. | would like to
especially thank my own brother Dilan Kalpa De Silva, Luckshika Jayadevafor her
excellent type-setting, my ever loving mother, two sisters and my aunt Mallika
Vitharana.

Step by Step™ Linux Guide. Page 2

Quick Configs

Jabberd

Sendmail

Qpopper

Qmail

CourrierMAP Server
Squirrelmail

DHCP Server

PHP and Mysql

PostGRE

File Server

Squid

Squidguard

| ptables

Freeradius

Apache

Apache Monitoring Tool (AWT Stats)
Samba

DNSBind

OpenLDAP

NoCatAuth

Load Balancers

Load Sharing

Network Monitoring Tool (nagios)
Kernal Recompilation
Javain Linux

Linux commandsin brief

Step by Step™ Linux Guide.

Page 3

Target Market
IT Training Institutes
IT Departments of any organization

Libraries (school/public/ universities)
Students

Unique Selling Points

1. Open Source freely available

2. Stable

3. Everything in single book

4. Administrators can build their own systems, from that they can take
the full control over the system. When company relies on the system,

administrators will feel more job security.

5. No need of expensive PCsto learn, just 486 is enough to become an
expert.

6. High Security
7. Free Five hours onsite cooperate training.

8. Easiest way to become a System Administrator or Systems Engineer.

Jabberd Quick Installation Guide

Step by Step™ Linux Guide. Page 4

The jabberd server isthe original open-source server implementation of
the Jabber protocol, and is the most popular software for deploying
Jabber either inside a company or asa public IM service.

1. Savethefilejabberd-1.4.2.tar.gz to /tmp/ (or to adirectory of your
choice).

1. Open aconsole window and create the directory as /path/to/jabber/
asfollows

[root@im root]#mkdir /path/
[root@im root]#mkdir /path/to/
[root@im root]#mkdir /path/to/jabber/
3. Typemv /tmp/jabberd-1.4.2.tar.gz /path/to/jabber/
4. Typecd /path/tol/jabber/
5. Typegzip -d jabberd-1.4.2.tar.gz

6. Typetar -xvf jabberd-1.4.2.tar (thiscreates ajabberd-1.4.2/
directory containing various files and subdirectories)

7. Typecd jabber-1.4.2/

8. Type./configure

9 Typemake

10. Open another console and type cd /path/to/jabber/jabber-1.4.2/

11. Typels-l jabberd/jabberd to view the permissions on the Jabber
daemon. The output on your console should look something like
this: -rwxr-xr-x 1 user group 675892 Feb 25 2004
jabberd/jabberd

12. Type ./jabberd/jabberd to start the Jabber daemon. Thiswill run
the server using the default hostname of localhost. Y ou should see

Step by Step™ Linux Guide. Page 5

one line of output in your console window: 20020923T02:50:26:
[notice] (-internal): initializing server.

13. Open a separate console window on the same machine and type
telnet localhost 5222 to connect to your server (yes, you can
connect using simple old telnet!). Y ou should see the following:

Trying 127.0.0.1...
Connected to your-machine-name.
Escape character is"]'".

14. Now open an XML stream to your server by pasting the full text of
the following XML snippet into your telnet window:

<stream:stream

to="localhost'

xmlns='jabber:client'
xmins:stream="http://etherx.jabber.org/streams>

Y ou should immediately receive areply from your server:

<?xml version="1.0'?> <stream:stream
xmlns:stream="http://etherx.jabber.org/streams' id="some-random-
id' xmins="jabber:client' from="1ocal host">

Congratulations! Y our Jabber server isworking.

15. Closethe stream properly by pasting the following XML snippet
into your telnet window: </stream:stream>

16. Stop the server by killing the process or ssimply typing ~C in the
window where you started the server deamon.

Configuring the Hostnhame

Step by Step™ Linux Guide. Page 6

http://etherx.jabber.org/streams
http://etherx.jabber.org/streams

You change the configuration of jabberd by editing a file named
jabber.xml, which is located in your /path/to/jabber/jabber-1.4.2
directory. The jabber.xml file contains a great deal of comments that
help you understand what each configuration option does. However,
right now all that we need to change is the hostname. So open jabber.xml

in your favorite text editor (vi, emacs, etc.) and edit the line that reads as
follows:

<host><jabberd:cmdline flag=" h" >localhost</jabber d:cmdline></host>

Y ou now need to give Jabber server'sip address or hostname here.

EX.

<host><jabberd:cmdline flag="h" >192.168.200.8</jabber d:cmdline></host>
or

<host><jabberd:cmdline flag="h" >im.jic.com</jabberd:cmdline></host>

Note:

Make sureto create afolder and nameit asthe nameyou put in the
abovelinethat is192.168.200.8 or im.jic.com in
/path/toljabber/jabber-1.4.2/spool/

Ex:

[root@im root]#mkdir /path/to/jabber/jabber -
1.4.2/spo0l/192.168.200.8

or

[root@im root]#mkdir /path/to/jabber/jabber-1.4.2/spool/im.jic.com

Now you need to configure your server to bind to a specific IP address.
First, in the <pthcsock/> section of your jabber.xml file, change <ip
port="5222"/> to <ip port="5222">yourlPaddress</ip>. Second, in the

Step by Step™ Linux Guide. Page 7

dialback section of your jabber.xml file, change <ip port="5269"/> to <ip
port="5269">your| Paddress</ip>.

Ex:
<ip port="5222">192.168.200.8</ip>
<ip port="5269">192.168.200.8</ip>

Now jabber.xml and type in console again ./jabberd/jabberd to start the
Jabber daemon previously you have killed.

Install windows jabber client exodus version:0.9.0.0 in your win PC in
the same lan segment that the jabber server runs. You can specify the
jabber server name by typing server name or ip address in the Server
drop down menu. Type your user name and password (any username and
password you like) and click “ok”

¥ pefault Profile Details =10 x|
Frofile |C|:|nneu:ti|:un | Prosy | HTTF Palling I
Uzemane:
Enter deszired usermarme fior newy
accounts.
Server: Iim.jin::.n::n:nm j
Download a list of zervers
Resource: IExu:u:Ius j
Passwond: I*******
[Savepaszsword
[T This i a new accourt
o] 4 Cancel
or

Step by Step™ Linux Guide. Page 8

 pefault Profile Details -0l x|
Profile | Connection | Procey | HTTP Polling I

=emame: Isuranga
Erter dezired usermame fiar new
accounts.
Server: |1 92.168.200.3 Bl
Download a list of servers
Fesource: IExu:u:Ius j
Pas=sword: I*******

[T Save pazsword
[T This iz a new accourt

Ok Cancel

Then it ask to create a new user since it was not previously in the jabber
server.

Exodus =

@ This account does not exist on this server, Create a new accounk?

Yes Mo |

Click “yes’ and proceed. Y ou need to add another user like this and add
contact between the other user and start messaging. Following
screenshots show how to add a new contact.

Step by Step™ Linux Guide. Page 9

Add Conktact

Cortact Type: I..Ial:ul:ner

Contact |1D: Iprasau:l [@irn jic.corm
Mickname: If:urasad
Group: IFn'er'u:Is j

Add & new Group

Eateway Server: Iim.jiu:.u:u:um

8],4

Cancel |

or

Add Contact

x|

Cortact Type: I.Jal:ul:ner

[

Contact |1D: Iprasau:l 192 1652008
Mickrarme: Iprasau:l
Group: |Friends |

Add a new Group

Eateway Server: Iim.jil:.ccum

8] 4

Cancel |

Step by Step™ Linux Guide.

Page 10

=10 =l

¥ Extodus - surang
Exodus Tools Help

| OB

= Friends {0/1)
' prasad

' PAvailable

Sendmail Quick Installation Guide
1. Gotothe/etc/mail folder and select the “sendmail.mc” file.

2. Open*“sendmail.mc” filein any available text editor. (Remember
not to make any changes to sendmail.cf file)

3. Addthefollowing linesto the sendmail.mc file using the text editor.

FEATURE(always add_domain)dnl
FEATURE(masquerade entire_ domain’)
FEATURE(masquerade_envelope’)
FEATURE(allmasquerade’)
MASQUERADE_AS(dtslk.")
MASQUERADE_DOMAIN(dtslk.")
MASQUERADE_AS(dts.lk)

Note:

Replace dts.lk by the domain name of your or ganization

Step by Step™ Linux Guide. Page 11

4. Comment the following line in the sendmail.mc file by adding “dnl” in front:
DAEMON_OPTIONS(port=smtp,)
Changed lines should look like this:
dnl DAEMON_OPTIONS(port=smtp,)
5. Typethefollowing in the command prompt to generate a new
“sendmail.cf” file:
m4 /etc/mail/sendmail.mc > /etc/mail/sendmail.cf

6. Add thefollowing linesto etc/mail/accessfile:

localhost.localdomain RELAY

localhost RELAY

192.168.1 RELAY

dts.lk RELAY
Note:

Add the network id of your domain and domain name instead of the
values given here.

7. Typethefollowing in the command prompt:
makemap hash /etc/mail/access.db < /etc/mail/access
8. Addthefollowing linesto the /etc/mail/local-host-names file:

dts.lk
eng.dts.lk

Note:

Add the names of your domains or sub-domains

Step by Step™ Linux Guide. Page 12

9. Addthefollowing entriesto the etc/hostsfile:

127.0.0.1 mail.glts.lk mail
127.0.0.1 mail.eng.dlts.lk mail

Note:

These are aliasesfor thelocal server. Replacethe entrieswith your
own domain info.

7. Edit the /etc/sysconfig/network as follows:

NETWORKING = YES
HOSTNAME = mail .dts.lk

Note:

Replace with your own domain info.

8. Edit the /etc/sysconfig/networking/profiles/default/network file
HOSTNAME = mail .dlts.lk

9. Typethefollowing in command prompt to restart sendmail
/sbin/service sendmail restart

10. Totest sendmail type following in the command prompt:

telnet localhost 25

Step by Step™ Linux Guide. Page 13

Qpopper Quick Installation Guide

1. Make/usr/local/gpopper/ directory and download and save
gpopper4.0.5.tar.gz file to that directory directory.

2. Gotothedirectory where qpopper is stored (/usr/local/qpopper/)
and type following in the command line:

gunzip qpopper4.0.5.tar.gz
then type:
tar xvf gpopper4.0.5.tar

3. Go to the gpopper4.0.5 directory (/usr/local/qpopper/gpopper4.0.5/)
and type the following in command line:

Jconfigure
Then type:
make
4. Use“mkdir” command to create a directory as follows:

mkdir /usr/local/man/
mkdir /usr/local/man/man8

5. Typefollowingin command line:
make install
6. Openthefile“/etc/xinetd.conf” and add the following lines to the
file and save:
(A similar configuration is available in the following file:

/gpopper/gpopper 4.0.5/samples/gpopper .xinetd
Y ou can copy it to the destination and do the necessary changes)

Step by Step™ Linux Guide. Page 14

service pop3

{
flags = REUSE NAMEINARGS
socket_type =stream
wait =no
user = root
server = Jusr/local/sbin/popper
server_args = popper —f /etc/qpopper 110.cfg —s
instances =50
disable =no
port =110
per_source =10

}

service pop3s

{
flags = REUSE NAMEINARGS
socket_type =stream
wait =no
user = root
server = Jusr/local/sbin/popper
server_args = popper —f /etc/gqpopper 110.cfg —s
instances =50
disable =no
per_source =10

}

7. Go to gpopper source directory and then to the “ samples’
directory inside that
(e.g. /usr/local/qpopper/gpopper4.0.5/samples)

8. Open the gpopper.config file in
/usr/local/gpopper/qpopper4.0.5/samples/ and save it as
“gpopper110.cfg” in/etc/.

9. Typefollowing in the command prompt:

service xinetd restart

10. Type the following in command prompt to test gpopper:

telnet localhost 110
Step by Step™ Linux Guide. Page 15

10.

11.

12.

13.

14.

SquirrelMail with change passwd Quick
| nstallation Guide

Start the IMAP server and httpd in Red Hat services and put
squirrelmail-1.4.2.tar.gz to /var/www/html/ directory
Unpack SquirrelMail in

tar -xvzf squirrelmail-1.4.2.tar.gz
Go to the config folder of squirrelmail-1.4.2 directory asfollows

cd /var/lwww/html/squirrelmail-1.4.2/config/
make a new file called “config.php” in that directory and copy the
contents of “config_default.php” to “config.php”
(“config_default.php” isin the same directory that is
Ivariwww/html/squirrelmail-1.4.2/config/)
Now open config.php and change the $domain = ‘ yourdomain.com’;
Open your web browser and type http://localhost/ squirrelmail-1.4.2/
Now you should see the login page.

Go to the directory /var/www/html/squirrelmail-1.4.2/plugins

Download change_passwd-3.1-1.2.8.tar.gz and compatibility-
1.2.tar.gz to that directory and unpack

[root@im root]#cd /var/www/html/squirrelmail-1.4.2/config
[root@im config]#./conf.pl
choose option 8 and add the compatibility plugin.save and exit

[root@im root]#cd /var/www/html/squirrelmail -
1.4.2/plugins/change_passwd

[root@im change_passwd]#cp config.php.sample config.php

Step by Step™ Linux Guide. Page 16

15.

16.

17.

18.

19.

[root@im change_passwd]#chown root:apache chpasswd
[root@im change_passwd]#chmod 4750 chpasswd
[root@im change passwd]#cd ../../config/

[root@im config]#./conf.pl

choose option 8 and add the change_passwd plugin.save and exit.

Installing and Configuring Samba

Download Samba (samba-latest.tar.gz) from www.samba.or g

tar zxpf samba-latest.tar.gz
cd samba-***

./configure

make

makeinstall

make smb.conf file and put it into /usr/local/samballib folder. Get
the smb.conf from RedHat Linux's etc/samba and do the following
changes.
WORKGROUP = SLTSERVICES (NT domain nad or workgroup name)
netbios name = samba (machine name)
server string = SLTS Samba server (small description about the server)
uncomment hosts allow = 192.168.1. 192.168.2. 127.
* refer the appendix for an example smb.conf file.

Step by Step™ Linux Guide. Page 17

http://www.samba.org

Add new user to Samba

lusr/local/samba/bin/smbpasswd -a < username > < password >

Note:

The users you need to add into samaba should be already created in Linux.
Start Samba

lusr/local/samba/sbin/smbd -D
lusr/local/sambalshin/nmbd -D

If you want to have start samba on bootup, put the above linesinto the
etc/rc.d/rc.local file.

Stop Samba

#killall -9 smbd
#killall -9 nmbd

DHCP Server

These are the steps of setting up DHCP server in ethO interface
Y ou can edit /etc/dhcpd.conf as follows

ddns-update-style interim;

ignore client-update;

default-lease-time 600;

max-lease-time 7200;

option subnet-mask 255.255.255.0;

option brodcat-address 192.168.1.255;

option roters 192.168.1.1;

option domain-name-servers 203.115.0.1

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.100 192.168.1.200

}

Step by Step™ Linux Guide. Page 18

Make sure to give the interface that the DHCP drags in
letc/sysconfig/dhcpd as follows
#command line option here
DHCPDRAGS = ethO

Now start the DHCP by executing the following command.
/shbin/service dhcpd start

If you want to change the configuration of a DHCP server that was
running before, then you have to change the |ease database stored in
Ivar/lib/dhcp/dhcpd.leases as follows,

mv dhcpd.leases~ dhcpd.leases

Say Yesto over write the file and restart the dhcpd.
service dhcpd restart

PHP/MySQL

Testing For PHP and MySQL

Thereisasimpletest for both PHP and MySQL. Open atext editor and type
in the following:

<?

phpinfo();

>

and save it as phpinfo.php in /var/www/html/

If you have PHP installed you will see a huge page with al the details of
your PHP installation on it. Next, scroll down through all this information.
If you find a section about MySQL then you will know that MySQL is
installed. These are preinstaled in RH8 and RH9.

Step by Step™ Linux Guide. Page 19

Using MySQL

Start Mysqgl database by typing /etc/init.d/mysgld start
Type mysgladmin password your passwor d

Type mysgl —u root —p

Then it asks to enter the password you just given above
Then you come to a prompt like this

mysql>
Type exit and come back to the prompt

Now you can create a database called “ databasel” by typing the
following command.

mysqgladmin —p create databasel

Now type again mysgl —u root —p and come to the mysgl prompt
There type show databases as follows

mysql> show databases,

Then you should be able to see the database you have just created
“databasel”

Put “createtable.php” as followsin /variwww/html/

<?

Suser="root";

$password="suranga";

$database="database";

mysqgl_connect(local host,$user,$password);
@mysql_select_db($database) or die("Unable to select database");
$query="CREATE TABLE contacts (id int(6) NOT NULL
auto_increment,first varchar(15) NOT NULL last varchar(15) NOT
NULL,phone varchar(20) NOT NULL,mobile varchar(20) NOT
NULL,fax varchar(20) NOT NULL ,email varchar(30) NOT NULL ,web
varchar(30) NOT NULL,PRIMARY KEY (id),UNIQUE id (id),KEY
id_2 (id))";

mysql_query($query);

mysgl_close();
>

Step by Step™ Linux Guide. Page 20

save thisin /var/www/html/ and type http://localhost/createtable.php
in your browser

again come to mysgl prompt and type use databasel; and show tables;
then you should see the newly created contacts table

Following is the insertdata.php save it also in /var/www/html/ and in
your browser type http://localhost/insertdata.php and press enter.

<?

Suser="root";

$password="suranga";

$database="database";

mysqgl_connect(local host,$user,$password);
@mysgl_select_db($database) or die("Unable to select database");
$query = "INSERT INTO contacts VALUES (",'John’,'Smith','01234
567890','00112 334455','01234
567891','johnsmith@gowansnet.com'’, http://www.gowansnet.com')";
mysql_query($query);

mysgl_close();
>

again come to mysgl prompt and type select * from contacts,

Now you can see the contents of the contact table.

Inserting data to mysqgl via html web page
Create a database called “kalpadb” by typing

[prompt]# mysgladmin —p create kalpadb

Goto mysgl prompt by typing

[prompt]# mysql —u root —p

Create atable called kalpa

Step by Step™ Linux Guide. Page 21

http://localhost/createtable.php
http://localhost/insertdata.php
mailto:johnsmith@gowansnet.com
http://www.gowansnet.com

mysql>CREATE TABLE kalpa (fname varchar(20) NOT NULL ,age
varchar(15) NOT NULL);

Now you can save following add.html in /var /'www/html/ folder
<html>

<head>
<title><ftitle>
<style>

text { color:black ; font-size:10px; font-family:verdana}
text2 { color:black ; font-size:10px; font-weight:bold ; font-
family:verdana}

</style>

</head>

<body bgcolor=#ffcc00>

<div class=text2>

<form action="add.php" method="post">

<p>First Name:

<input class=text type="text" name="first_name" size=40 />

Age

<input class=text type="text" name="age" size=4 />

<input class=text type="submit" name="submitjoke" value="SUBMIT"
/>

</p>

</form>

</div>

</body>

</html>

Thisisadd.php need to savein /var /'www/html/
<html>
<head>

<title></title>
<style>

Step by Step™ Linux Guide. Page 22

text { color:black ; font-size:10px; font-family:verdana}
text2 { color:black ; font-size:10px; font-weight:bold ; font-
family:verdana}

</style>
</head>
<body class=text bgcol or=#ffcc00>

<7php

$dbenx = @mysgl_connect(‘localhost’, 'root’, 'kagawena);
if ('$dbenx) {
die('<p>Unable to connect to the ' . 'database server at thistime.</p>'
);

}

if (! @mysqgl_select_db('kalpadb')) {
die('<p>Unableto locate the joke ' . ‘database at this time.</p>");
}

if (isset($_POST['submitjoke])) {

$fname=$ POST['first_name];

$age=3$ POST['age];

$sgl = "INSERT INTO kalpa SET fname="$fname’,age="$age' ";
if (@mysgl_query($sa)) {

echo('<p>Successfully added.</p>");

echo('Back");

} else{

echo('<p>Error adding to the database: ' .

mysgl_error() . '</p>";

}

}

>

</body>
</html>

Thisis show.php where you can see the contents of the table via your
browser. Savethisalsoin /var fwww/html/

Step by Step™ Linux Guide. Page 23

<html>

<head>

<title></title>

<META HTTP-EQUIV="Expires’ CONTENT="0">
<meta http-equiv="pragma’ content="no-cache">

<style>
text { color:black ; font-size:10px; font-family:verdana}

</style>
</head>
<body>

<?php

$dbenx = @mysqgl_connect('localhost’, 'root’, 'kagawenad);
if ('$dbcnx) {
die('<p>Unable to connect to the ' . 'database server at thistime.</p>'
);

}

if (! @mysql_select_db(‘kalpadb')) {
die('<p>Unableto locate the' . 'database at this time.</p>');
}

$result = @mysgl_query('SELECT * FROM kalpa);

if (1$result) {

die('<p>Error performing query: ' . mysqgl_error() . '</p>");
}

echo('<table bgcol or=#ffcc00 class=text bordercol or=#000000
cellpadding=2 align=center border=1 width=300>");
echo('<tr>");

echo(’'<td width=150>Name</td>");

echo(’'<td width=150>Age</td>");

echo('</tr>");

while ($row = mysqgl_fetch_array($result)) {

echo('<tr>");
Step by Step™ Linux Guide. Page 24

echo('<td>" . $row['fname] . '</td>");
echo('<td>' . $row['age] . '</td>");
echo('</tr>");

}
echo('</table>");

>

</body>
</html>

a http://im.jic.com/add.html - Microsoft Internet Explorer

File | Edit ‘iew Favorites Tools Help

SRk - = - () [7) 4 | Dhsearch [Favorites Chmedia (4 | EARIE M=

fiddress Q hittpsfim,jic, comy'add. html

First Name:

Isuranga de silva

Age:

|28|

=8 http://im.jic.com/show.php - Microsoft Internet Explorer

File Edit Wew Favorites Tools Help

Hhack + = - @ o | @&!arch [Favorites @Media @ | %v = =

Address I@ bkt ffim. jic..comfshaw, php

|Name || Age |

|suranga de zilva ||28 |

Step by Step™ Linux Guide. Page 25

Installing Tomcat and JAVA in Linux

The only requirements to run Tomcat are that a Java Development Kit
(JDK), aso cdled a Java Software Developement Kit (SDK), be
installed and the JAVA_HOME environment variable be set.

Java SDK
| chose to install Sun's Java 2 Platform, Standard Edition, which can be

downloaded from http://java.sun.com/j2se/). | chose the J2SE v1.4.2
SDK Linux self-extracting binary file.

Change to the directory where you downloaded the SDK and make the
self-extracting binary executable (/usr/local/java)

chmod +x j2sdk-1 4 1 06-linux-i586.bin
Run the self-extracting binary:
Jj2sdk-1_4 1 06-linux-i586.bin

There should now be a directory called j2sdk1.4.2 in the download
directory.

Set the JAVA_HOME environment variable, by modifying /etc/profile
so it includes the following:

JAVA_HOME="/usr/local/javalj2sdk1.4.2"

export JAVA_ HOME
CATALINA_HOME="/usr/local/tomcat/jakarta-tomcat-4.1.29"
export CATALINA_HOME

There will be other environment variables being set in /etc/profile, so
you will probably be adding JAVA_HOME to an existing export
command. /etc/profile is run at startup and when a user logs into a
system. Tomcat will be discussed later but for the time being append the
above mentioned JAVA_HOME and CATALINA_HOME in /etc/profile

Y ou can check the environment variables by typing echo
$JAVA_HOME or echo $CATALINA_HOME in command prompt

Step by Step™ Linux Guide. Page 26

http://java.sun.com/j2se/

Tomcat Account

You will install and configure Tomcat as root; however, you should
create a group and user account for Tomcat to run under as follows:

groupadd tomcat
useradd -g tomcat tomcat

Thiswill create the /home/tomcat directory, where | will install my
Tomcat applications.

Tomcat Standalone

Unzip Tomcat by issuing the following command from your download
directory:

tar xvzf tomcat-4.1.29.tar.gz
Thiswill create adirectory called jakarta-tomcat-4.1.29

The directory where Tomcat isinstalled is referred to as
CATALINA_HOME in the Tomcat documentation. In this case
CATALINA_HOME=/usr/local/tomcat/jakarta-tomcat-4.1.29

It is recommend setting up a symbolic link to point to your current
Tomcat version. This will save you from having to change your startup
and shutdown scripts each time you upgrade Tomcat or set a
CATALINA_HOME environment variable. It also allows you to keep
several versions of Tomcat on your system and easily switch amongst
them. Here is the command | issued from inside /ust/local to create a
symbolic link called /usr/local/tomcat/jakarta-tomcat that points to
lusr/local/tomcat/jakarta-tomcat-4.1.29:

In -sjakarta-tomcat-4.1.29 jakarta-tomcat

Change the group and owner of the /usr/local/tomcat/jakarta-tomcat and
lusr/local/jakarta-tomcat-4.1.29 directories to tomcat:

chown tomcat.tomcat /usr/local/tomcat/jakar ta-tomcat
chown -R tomcat.tomcat /usr/local/tomcat/jakarta-tomcat-4.1.29

Step by Step™ Linux Guide. Page 27

It is not necessary to set the CATALINA_HOME environment variable.
Tomcat is smart enough to figure out CATALINA_HOME on its own.

You should now be able to stat and stop Tomcat from the
CATALINA _HOME/bin directory by typing ./startup.sh and
Jshutdown.sh respectively. Test that Tomcat is working by starting it
and typing http://localhost:8080 into your browser. You should see the
Tomcat welcome page with links to documentation and sample code.
Verify Tomcat is working by clicking on some of the examples links.

Linux commandsin brief

pstree
top

PS -auxw
vmstat

free
pmap

cat
[/proc/sysivm/freepages

uname-a
cat /proc/version

cat /etc/redhat-release
uptime

w

/sbin/Ismod
Step by Step™ Linux Guide.

Processes and parent-child relarionships
Show top processes

process status

Monitor virtual memory

Display amount of free and used memory
in the system. (Also: cat /proc/meminfo)

Display/examine memory map and
libraries (so). Usage: pmap pid
Display virtua memory "free pages".

One may increase/decrease this limit:
echo 300 400 500 > /proc/sysivm/freepages

print system information
Display Linux kernel version in use.

Display Red Hat Linux Release.
(also /etclissue)

Tell how long the system has been
running. Also number of users and
system’s load average.

Show who islogged on and what they
are doing.

List al currently loaded kernel modules.
Page 28

/sbin/runlevel

hostname

service

df -k

du -sh

mount

cat
/proc/filesystems

cat /proc/mounts
showmount
cat /proc/swaps

cat
/proc/ide/hda/any-
file

who

Same as cat /proc/modules
Displays the system's current runlevel.

Displays/changes the system's node
name. (Must also manually change
hostname setting in /etc/sysconfig/network.
Command will change entry in /etc/hosts)

Display status of system services.
Example: service --status-all
Help: service --help

report filesystem disk space usage.

(-k reports in Kbytes)

Calculates file space usage for agiven
directory. (and everything under it)

(-s option summarizes)

Displays all mounted devices, their
mountpoint, filesystem, and access. Used
with command line arguments to mount file
system.

Display filesystems currently in use.

Display mounted filesystems currently in
use.

Displays mount info for NFS filesystems.
Displays swap partition(s) size, type and
guantity used.

Displays disk information held by kernel.

Displays currently logged in users.
Use who -uH for idle time and terminal info.

users Show all userslogged in.
Step by Step™ Linux Guide. Page 29

Displays currently logged in users and processes they
are running.

whoami Displays user id.
Display groups you are part of.

9rouPs yse groups user-id to display groups for a given user.

- Display all environment variablesin your current
environment.

i Display user and all group ids.

Useid user-id to display info for another user id.
last Show listing of last logged in users.

Shell command to display previously entered

history commands.

RPM Command Description
rpm -qilp Query for information on package and
program_package- list destination of filesto be installed
ver.rpm by the package.
i - Upgrade the system with the RPM
program_package- ackane
ver.rpm packeag
rpm -ivh
program_package- New Install
ver.rpm
o e Fresheninstall. Removesal filesof
\eer ?pm P 9 older version.
rpm -q Query system RPM database
roaram package (/var/lib/rpm), to seeif packageis
program packag installed.
— Query system RPM database for
F;o rgm ackaoe info/description on package (if
program_packag installed)
rpm -gl List al files on the system associated
program_package with the package.
rpm -gf file Identify the package to which thisfile

Step by Step™ Linux Guide. Page 30

belongs.

rpm-e .
program package Uninstall package from your system
List ALL packageson your system.
rpm -ga Use thiswith grep to find families of
packages.
. Non sure if RPM downloded ok?
fpm -K --nogpg *.rpm Verify md5 sum.

RPM Flag Description
RPM flag to force install even if dependancy

R requirements are not met.
--force Overwrite of other packages allowed.
[— Don't execute scripts which are triggered by the
9 installation of this package.
—-root Use the system chrooted at /directory-name. This
Idirectorv- means the database will be read or modified under
y /directory-name. (Used by developersto maintain
name : i
multiple environments)
Allow installation even if the architectures of the
, binary RPM and host don't match. Thisis often
--ignorearch

required for RPM's which were assembled
incorrectly

logrotate - Rotate log files:

Step by Step™ Linux Guide. Page 31

Many system and server application programs such as Apache, generate
log files. If left unchecked they would grow large enough to burden the
system and application. The logrotate program will periodically backup
the log file by renameing it. The program will also alow the system
administrator to set the limit for the number of logs or their size. Thereis
also the option to compress the backed up files.

Configuration file: /etc/logrotate.conf
Directory for logrotate configuration scripts: /etc/logrotate.d/

Example logrotate configuration script: /etc/logrotate.d/process-name

Ivar/log/process-name.log {
rotate 12
monthly
errors root@l ocal host
missingok
postrotate
lusr/bin/killall -HUP process-name 2> /dev/null || true
endscript

}

The configuration file lists the log file to be rotated, the process kill
command to momentarily shut down and restart the process, and some
configuration parameterslisted in the logr otate man page.

Using the find command:

Step by Step™ Linux Guide. Page 32

Find man page
Form of command: find path operators

Ex.

Search and list all files from current directory and down for the string

ABC:

find ./ -name"*" -exec grep -H ABC{} \;

find ./ -typef -print | xargs grep -H "ABC" /dev/null
egrep -r ABC *

Find all files of a given type from current directory on down:
find ./ -name "*.conf" -print

Find all user files larger than 5Mb:
find /home -size +5000000c -print

Find all files owned by a user (defined by user id number. see

/etc/passwd) on the system: (could take avery long time)
find / -user 501 -print

Find all files created or updated in the last five minutes: (Great for

finding effects of make ingtall)
find/ -cmin -5

Find all usersin group 20 and change them to group 102: (execute as root)
find / -group 20 -exec chown :102{} \;

Find all suid and setgid executables:
find / \(-perm -4000 -o -perm -2000\) -type f -execlIs-ldb {} \;
find / -type f -perm +6000 -Is

Note:

Suid executable binaries are programs which switch to root
privaleges to perform their tasks. These are created by applying a
"stickey" bit: chmod +s. These programs should be watched as they
are often the first point of entry for hackers. Thus it is prudent to
run this command and remove the " stickey" bits from executables

Step by Step™ Linux Guide. Page 33

which either won't be used or are not required by users. chmod -s
filename

Find all writable directories:
find / -perm -0002 -type d -print

Find all writablefiles:
find / -perm -0002 -type f -print
find/-perm-2! -typel -Is

Find files with no user:
find / -nouser -0 -nogroup -print

Find files modified in the last two days:
find/ -mtime 2 -0 -ctime 2

Compare two drivesto seeif al filesareidentical:
find / -path /proc -prune -o -path /new-disk -prune -o -xtype f -exec cmp {} /new-
disk{} \;

Partial list of find directives:

Directive Description

-name Find files whose name matches given pattern
-print Display path of matching files

-user Searches for files belonging to a specific user
~exec Execute Unix/Linux command for each matching
command {} file

\; '

-atime (+t,- Find files accessed more that +t days ago, less than
t,t) -t or precisely t days ago.

;‘g'me(”" Find files changed ...

-perm Find files set with specified permissions.

-type Locate files of a specified type:

c: character devicefiles
b: blocked device
d: directories

Step by Step™ Linux Guide. Page 34

p: pipes
I: symbolic links
S: sockets
f: regular files
-sizen Find file sizeislarger than "n" 512-byte blocks
(default) or specify a different measurement by
using the specified letter following "n":
nb: bytes
nc: bytes
nk: kilobytes
nw: 2-byte words

Also see:

gFind - GUI front-end to the GNU find utility

Finding/L ocating files:

Find location/list of files which contain a given

locate/slocate partial name
which Find executablefile_ location of command given.
Command must be in path.
whereis Find executgblefile location of command given
and related files
. Display name of RPM package from which the file
rom-affile o8 alled PR

File Infor mation/Status/Owner ship/Security:
Is List directory contents. List file information

chmod Change file access permissions
chmod ugo+rwx file-name :Change file security so that the
user, group and all others haveread, write and execute
privileges.
chmod go-wx file-name :Remove file access so that the group
and all others have write and execute privileges
revoked/removed.

chown Change file owner and group
chown root.root file-name :Make file owned by root. Group

Step by Step™ Linux Guide. Page 35

assignment is also root.

fuser ldentify processes using files or sockets
If you ever get the message: error: cannot get exclusive lock
then you may need to kill a process that hasthefile
locked. Either terminate the process through the

application interface or using the fuser command: fuser -k
file-name

file ldentify file type.
filefile-name

Uses /usr/share/magic, /usr/share/magic.mime for file signatures
to identify file type. The file extention isNOT used.

cat /proc/ioports List I/O ports used by system.
cat /proc/cpuinfo List info about CPU.

CPAN moduleinstallation
Automatically: (preferred)
perl -MCPAN -e shell - First timethrough it will ask a
bunch of questions. Answer " no" to thefirst question for
autoconfigure.

cpan> install Image::Magick

cpan> install 10::String
1O::String is up to date.

cpan> help

Step by Step™ Linux Guide. Page 36

File compression/decompression utilities:
Basic file compression utilities: (and file extensions)

0zip (.g2): Also see zcat, gunzip, gznew, gzmor e
compress: gzip file-name
decompress: gzip -d file-name.gz

bzip2 (.bz2): Also see: bunzip2, bzcat, bzip2recover
compress: bzip2 file-name
decompress: bunzip2 file-name.bz2

compress (.Z): (Adaptive Lempel-Ziv compression) Also see:
uncompr ess, zcat

compress. compress file-name

decompress. uncompress file-name.Z

(Provided by the RPM package ncompress)

pack (.z): Also see: unpack

compress: pack file-name

decompress: unpack file-name.z

zip (.zip): Compressfiles or groups of files. (R.P.Byrne
compression) Compatable with PC PKZIP files. Also see: unzip
compress: zip file-name

decompress: unzip file-name.zip

Using TAR (Tape Archive) for simple backups:

It should be noted that automated enterprise wide multi-system backups
should use a system such as Amanda. (See Backup/Restore links on
YoLinux home page) Simple backups can be performed using the tar
command:

tar -cvf /dev/stO /home /opt

Thiswill backup thefiles, directories and all it's subdirectories and files
of the directories /home and /opt to the first SCSI tape device. (/dev/st0)

Step by Step™ Linux Guide. Page 37

Restoring files from backup:
tar -xvf /dev/stO

Script to perform weekly archive backups: /etc/cron.weekly/backup-
weekly.sh

#1/bin/bash

tar -cz -f /mnt/BackupServer/user-id/backup-weekly-"date +%F .tar.gz -
C /home/user-id dir-to-back-up

Be sure to allow execute permission on the script: chmod ugo+x
/etc/cron.weekly/backup-weekly.sh

Manual page for thetar command.

Notes:

Backup using compression to put more on SCSI tape device: tar -z -
cvf /dev/stO /home /opt

List contents of tape: tar -tf /dev/stO

List contents of compressed backup tape: tar -tzf /dev/stO

Backup directory to afloppy: tar -cvf /dev/fd0 /home/userl

When restored it requires root because the root of the backup is
"/home".

Backup sub-directory to floppy using a relative path: tar -cvf /dev/fdO
src

First execute this command to go to the parent directory: cd
/home/userl

Step by Step™ Linux Guide. Page 33

Backup sub-directory to floppy using a defined relative path: tar -cvf
/dev/fd0 -C /home/userl src

Restore from floppy: tar -xvf /dev/fdO

Backup directory to a compressed archivefile:

tar -z -cvf /usr/local/Backups/backup-03212001.tar.gz -C
/home/user2/src project-x

List contents: tar -tzf /usr/local/Backups/backup-03212001.tar.gz
Restore:

cd /home/user2/src

tar -xzf /usr/local/Backups/backup-03212001.tar.gz

IPTABLES

When a packet first enters the firewall, it hits the hardware and then gets
passed on to the proper device driver in the kernel. Then the packet starts
to go through a series of stepsin the kernel, before it is either sent to the
correct application (locally), or forwarded to another host - or whatever
happensto it.

First, let us have a look at a packet that is destined for our own local
host. It would pass through the following steps before actually being
delivered to our application that receivesit:

Table 3-1. Destination local host (our own machine)

Step Table |Chain Comment

1 On the wire (e.g., Internet)

2 Comesin on the interface
(e.g., ethO)

Step by Step™ Linux Guide. Page 39

Step

Table

mangle

nat

mangle

filter

Chain

PREROUTING

PREROUTING

INPUT

INPUT

Comment

This chain is normally used for
mangling packets, i.e, changing
TOS and so on.

This chain is used for DNAT
mainly. Avoid filtering in this chain
since it will be bypassed in certain
Cases.

Routing decision, i.e., is the packet
destined for our local host or to be
forwarded and where.

At this point, the mangle INPUT
chain is hit. We use this chain to
mangle packets, after they have
been routed, but before they are
actually sent to the process on the
machine.

This is where we do filtering for all
incoming traffic destined for our
local host. Note that al incoming
packets destined for this host pass
through this chain, no matter what
interface or in which direction they
came from.

Local process/application
(i.e., server/client program)

Note that this time the packet was passed through the INPUT chain
instead of the FORWARD chain. Quite logical. Most probably the only
thing that's really logical about the traversing of tables and chainsin your
eyes in the beginning, but if you continue to think about it, you'll find it
will get clearer intime.

Step by Step™ Linux Guide.

Page 40

Now we look at the outgoing packets from our own local host and what

steps they go through.

Table 3-2. Sourcelocal host (our own machine)

Step | Table Chain

1

2

3 mangle OUTPUT

4 nat OUTPUT

5 filter OUTPUT

6 mangle POSTROUTING

Step by Step™ Linux Guide.

Comment

Local process/application
(i.e., server/client program)

Routing decision. What source
address to use, what outgoing
interface to use, and other necessary
information that needs to be
gathered.

Thisiswhere we mangle packets, it
is suggested that you do not filter in
this chain since it can have side
effects.

This chain can be used to NAT
outgoing packets from the firewall
itself.

Thisiswhere we filter packets
going out from the local host.

The POSTROUTING chain in the
mangle table is mainly used when
we want to do mangling on packets
before they leave our host, but after
the actual routing decisions. This
chain will be hit by both packets
just traversing the firewall, as well
as packets created by the firewal
itself.

Page 41

Step | Table Chain

7 nat POSTROUTING
8

9

Comment

This is where we do SNAT as
described earlier. It is suggested
that you don't do filtering here since
it can have side effects, and certain
packets might dip through even
though you set a default policy of
DROP.

Goes out on some interface
(e.g., ethO)

On the wire (e.g., Internet)

In this example, we're assuming that the packet is destined for another
host on another network. The packet goes through the different stepsin

the following fashion:

Table 3-3. Forwarded packets

Step | Table Chain

1

2

3 mangle PREROUTING
4 nat PREROUTING

Step by Step™ Linux Guide.

Comment
On the wire (i.e., Internet)

Comesin on the interface
(i.e., ethO)

This chainisnormally used for
mangling packets, i.e., changing
TOS and so on.

This chain is used for DNAT
mainly. SNAT is done further on.
Avoid filtering in this chain since it
will be bypassed in certain cases.

Page 42

Step | Table Chain

5

6 mangle FORWARD

7 filter FORWARD

8 mangle POSTROUTING
9 nat POSTROUTING
10

11

Step by Step™ Linux Guide.

Comment

Routing decision, i.e., is the packet
destined for our local host or to be
forwarded and where.

The packet is then sent on to the
FORWARD chain of the mangle
table. This can be used for very
specific needs, where we want to
mangle the packets after the initia
routing decision, but before the last
routing decision made just before
the packet is sent out.

The packet gets routed onto the
FORWARD chain. Only forwarded
packets go through here, and here
we do all the filtering. Note that all
traffic that's forwarded goes
through here (not only in one
direction), so you need to think
about it when writing your rule-set.

This chain is used for specific types
of packet mangling that we wish to
take place after al kinds of routing
decisions has been done, but still on
this machine.

This chain should first and foremost
be used for SNAT. Avoid doing
filtering here, since certain packets
might pass this chain without ever
hitting it. This is aso where
Masqguerading is done.

Goes out on the outgoing interface
(i.e., ethl).

Out on the wire again (i.e., LAN).

Page 43

Step | Table Chain Comment

As you can see, there are quite alot of steps to pass through. The packet
can be stopped at any of the iptables chains, or anywhere else if it is
malformed; however, we are mainly interested in the iptables aspect of
this lot. Do note that there are no specific chains or tables for different
interfaces or anything like that. FORWARD is adways passed by all
packets that are forwarded over this firewall/router.

Do not use the INPUT chain to filter on in the previous
scenario! INPUT is meant solelyfor packets to our local host

that do not get routed to any otherdestination.

We have now seen how the different chains are traversed in three
separate scenarios. If we were to figure out a good map of al this, it
would look something like this:

Step by Step™ Linux Guide. Page 44

Hetwork

Routing |
decision _J

%

To clarify this image, consider this. If we get a packet into the first
routing decision that is not destined for the local machine itself, it will be
routed through the FORWARD chain. If the packet is, on the other hand,
destined for an IP address that the local machine is listening to, we
would send the packet through the INPUT chain and to the local
machine.

Step by Step™ Linux Guide. Page 45

Also worth a note, is the fact that packets may be destined for the local
machine, but the destination address may be changed within the
PREROUTING chain by doing NAT. Since this takes place before the
first routing decision, the packet will be looked upon after this change.
Because of this, the routing may be changed before the routing decision
is done. Do note, that all packets will be going through one or the other
path in this image. If you DNAT a packet back to the same network that
it came from, it will still travel through the rest of the chains until it is
back out on the network.

If you feel that you want more information, you could use the
rc.test-iptables.txt script. Thistest script should give you the

necessary rulesto test how the tables and chains are traversed.

3.2. mangletable

This table should as we've aready noted mainly be used for mangling
packets. In other words, you may freely use the mangle matches etc that
could be used to change TOS (Type Of Service) fields and so on.

You are strongly advised not to use this table for any filtering;
nor will any DNAT, SNAT or Masquerading work in this
table.

Targets that are only valid in the mangle table:

TOS
TTL
MARK

Step by Step™ Linux Guide. Page 46

The TOS target is used to set and/or change the Type of Service field in
the packet. This could be used for setting up policies on the network
regarding how a packet should be routed and so on. Note that this has not
been perfected and is not really implemented on the Internet and most of
the routers don't care about the value in this field, and sometimes, they
act faulty on what they get. Don't set this in other words for packets
going to the Internet unless you want to make routing decisions on it,
with iproute2.

The TTL target is used to change the TTL (Time To Live) field of the
packet. We could tell packets to only have a specific TTL and so on. One
good reason for this could be that we don't want to give ourself away to
nosy Internet Service Providers. Some Internet Service Providers do not
like users running multiple computers on one single connection, and
there are some Internet Service Providers known to look for a single host
generating different TTL values, and take this as one of many signs of
multiple computers connected to a single connection.

The MARK target is used to set special mark values to the packet. These
marks could then be recognized by the iproute2 programs to do different
routing on the packet depending on what mark they have, or if they don't
have any. We could also do bandwidth limiting and Class Based
Queuing based on these marks.

3.3. nat table

This table should only be used for NAT (Network Address Translation)
on different packets. In other words, it should only be used to trandate
the packet's source field or destination field. Note that, as we have said
before, only the first packet in a stream will hit this chain. After this, the
rest of the packets will automatically have the same action taken on them
asthe first packet. The actual targets that do these kind of things are:

DNAT
SNAT
MASQUERADE

The DNAT target is mainly used in cases where you have a public IP
and want to redirect accesses to the firewall to some other host (on a

Step by Step™ Linux Guide. Page 47

DMZ for example). In other words, we change the destination address of
the packet and reroute it to the host.

SNAT ismainly used for changing the source address of packets. For the
most part you'll hide your local networks or DMZ, etc. A very good
example would be that of a firewall of which we know outside IP
address, but need to substitute our local network's IP numbers with that
of our firewall. With this target the firewall will automatically SNAT
and De-SNAT the packets, hence making it possible to make
connections from the LAN to the Internet. If your network uses
192.168.0.0/netmask for example, the packets would never get back
from the Internet, because IANA has regulated these networks (among
others) as private and only for use inisolated LANS.

The MASQUERADE target is used in exactly the same way as SNAT,
but the MASQUERADE target takes a little bit more overhead to
compute. The reason for this, is that each time that the MASQUERADE
target gets hit by a packet, it automatically checks for the IP address to
use, instead of doing as the SNAT target does - just using the single
configured IP address. The MASQUERADE target makes it possible to
work properly with Dynamic DHCP IP addresses that your ISP might
provide for your PPP, PPPoE or SLIP connections to the Internet.

3.4. Filter table

The filter table is mainly used for filtering packets. We can match
packets and filter them in whatever way we want. This is the place that
we actually take action against packets and look at what they contain and
DROP or /ACCEPT them, depending on their content. Of course we
may also do prior filtering; however, this particular table, is the place for
which filtering was designed. Almost all targets are usable in this chain.
We will be more prolific about the filter table here; however you now
know that this table is the right place to do your main filtering.

Step by Step™ Linux Guide. Page 48

Chapter 4. The state machine

This chapter will deal with the state machine and explain it in detail.
After reading trough it, you should have a complete understanding of
how the State machine works. We will also go through a large set of
examples on how states are dealt within the state machine itself. These
should clarify everything in practice.

4.1. Introduction

The state machine is a special part within iptables that should really not
be called the state machine at al, since it is really a connection tracking
machine. However, most people recognize it under the first name.
Throughout this chapter i will use this names more or less as if they
where synonymous. This should not be overly confusing. Connection
tracking is done to let the Netfilter framework know the state of a
specific connection. Firewalls that implement this are generally called
stateful firewalls. A stateful firewall is generally much more secure than
non-stateful firewalls since it allows us to write much tighter rule-sets.

Within iptables, packets can be related to tracked connections in four
different so called states. These are known as NEW, ESTABLISHED,
RELATED and INVALID. We will discuss each of these in more depth
later. With the --state match we can easily control who or what is
allowed to initiate new sessions.

All of the connection tracking is done by special framework within the
kernel called conntrack. conntrack may be loaded either as a module, or
as an interna part of the kernel itself. Most of the time, we need and
want more specific connection tracking than the default conntrack engine
can maintain. Because of this, there are also more specific parts of
conntrack that handles the TCP, UDP or ICMP protocols among others.
These modules grabs specific, unique, information from the packets, so
that they may keep track of each stream of data. The information that
conntrack gathers is then used to tell conntrack in which state the stream
is currently in. For example, UDP streams are, generaly, uniquely

Step by Step™ Linux Guide. Page 49

identified by their destination IP address, source IP address, destination
port and source port.

In previous kernels, we had the possibility to turn on and off
defragmentation. However, since iptables and Netfilter were introduced
and connection tracking in particular, this option was gotten rid of. The
reason for thisis that connection tracking can not work properly without
defragmenting packets, and hence defragmenting has been incorporated
into conntrack and is carried out automatically. It can not be turned off,
except by turning off connection tracking. Defragmentation is aways
carried out if connection tracking is turned on.

All connection tracking is handled in the PREROUTING chain, except
locally generated packets which are handled in the OUTPUT chain.
What this means is that iptables will do all recalculation of states and so
on within the PREROUTING chain. If we send the initial packet in a
stream, the state gets set to NEW within the OUTPUT chain, and when
we receive a return packet, the state gets changed in the PREROUTING
chainto ESTABLISHED, and so on. If the first packet is not originated
by ourself, the NEW state is set within the PREROUTING chain of
course. So, al state changes and calculations are done within the
PREROUTING and OUTPUT chains of the nat table.

4.2. The conntrack entries

Let'stake abrief look at a conntrack entry and how to read themin
/proc/net/ip_conntrack. Thisgivesalist of al the current entriesin your conntrack
database. If you have theip_conntrack module loaded, acat of
/proc/net/ip_conntrack might look like:

Tcp 6117 SYN_SENT src=192.168.1.6 dst=192.168.1.9 sport=32775\

dport=22 [UNREPLIED] src=192.168.1.9 dst=192.168.1.6 sport=22 \
dport=32775 use=2

Step by Step™ Linux Guide. Page 50

This example contains al the information that the conntrack module
maintains to know which state a specific connection isin. First of all, we
have a protocol, which in this case is tcp. Next, the same value in normal
decimal coding. After this, we see how long this conntrack entry has to
live. This value is set to 117 seconds right now and is decremented
regularly until we see more traffic. This value is then reset to the default
value for the specific state that it isin at that relevant point of time. Next
comes the actual state that this entry isin at the present point of time. In
the above mentioned case we are looking at a packet that is in the
SYN_SENT state. The internal value of a connection is dightly different
from the ones used externally with iptables. The value SYN_SENT tells
us that we are looking at a connection that has only seen a TCP SYN
packet in one direction. Next, we see the source IP address, destination
IP address, source port and destination port. At this point we see a
specific keyword that tells us that we have seen no return traffic for this
connection. Lastly, we see what we expect of return packets. The
information details the source IP address and destination IP address
(which are both inverted, since the packet is to be directed back to us).
The same thing goes for the source port and destination port of the
connection. These are the values that should be of any interest to us.

The connection tracking entries may take on a series of different values,
all specified in the conntrack headers available in

l'i nux/include/netfilter-ipv4/ip_conntrack*.h files. These
values are dependent on which sub-protocol of 1P we use. TCP, UDP or
ICMP protocols take specific default values as specified in

l'i nux/include/netfilter-ipv4/ip_conntrack.h.Wewill look
closer at thiswhen we look at each of the protocols, however, we will
not use them extensively through this chapter, since they are not used
outside of the conntrack internals. Also, depending on how this state
changes, the default value of the time until the connection is destroyed
will aso change.

Step by Step™ Linux Guide. Page 51

Recently there was a new patch made available in iptables
patch-o-matic, called tcp-window-tracking. This patch adds,
among other things, al of the above timeouts to special sysctl
variables, which means that they can be changed on the fly,
while the system is still running. Hence, this makes it
unnecessary to recompile the kernel every time you want to
change the timeouts.
These can be altered via using specific system calls availablein
the/ proc/ sys/net/ipvé4/netfilter directory. Youshouldin
particular ook at the
/ proc/ sys/net/ipv4/ netfilter/ip_ct_* variables.

When a connection has seen traffic in both directions, the conntrack
entry will erase the [UNREPLIED] flag, and then reset it. The entry tells
us that the connection has not seen any traffic in both directions, will be
replaced by the [ASSURED] flag, to be found close to the end of the
entry. The [ASSURED] flag tells us that this connection is assured and
that it will not be erased if we reach the maximum possible tracked
connections. Thus, connections marked as [ASSURED] will not be
erased, contrary to the non assured connections (those not marked as
[ASSURED]). How many connections that the connection tracking table
can hold depends upon a variable that can be set through the ip-sysctl
functions in recent kernels. The default value held by this entry varies
heavily depending on how much memory you have. On 128 MB of
RAM you will get 8192 possible entries, and at 256 MB of RAM, you
will get 16376 entries. You can read and set your settings through the
/proc/sys/net/ipv4/ip_conntrack_max setting.

4.3. User-land states

As you have seen, packets may take on severa different states within the
kernel itself, depending on what protocol we are talking about. However,
outside the kernel, we only have the 4 states as described previously.
These states can mainly be used in conjunction with the state match
which will then be able to match packets based on their current

Step by Step™ Linux Guide. Page 52

connection tracking state. The valid states are NEW, ESTABLISHED,
RELATED and INVALID states. The following table will briefly
explain each possible state.

Table 4-1. User-land states

State
NEW

Explanation

The NEW dtate tells us that the packet is the first
packet that we see. This means that the first packet that
the conntrack module sees, within a specific
connection, will be matched. For example, if we see a
SYN packet and it is the first packet in a connection
that we see, it will match. However, the packet may as
well not be a SYN packet and still be considered
NEW. This may lead to certain problems in some
instances, but it may also be extremely helpful when
we need to pick up lost connections from other
firewalls, or when a connection has already timed out,
but in reality is not closed.

ESTABLISHED The ESTABLISHED state has seen traffic in both

directions and will then continuousy match those
packets. ESTABLISHED connections are fairly easy
to understand. The only requirement to get into an
ESTABLISHED state is that one host sends a packet,
and that it later on gets areply from the other host. The
NEW state will upon receipt of the reply packet to or
through the firewall change to the ESTABLISHED
state. ICMP error messages and redirects etc can also
be considered as ESTABLISHED, if we have
generated a packet that in turn generated the ICMP

message.

Step by Step™ Linux Guide. Page 53

State
RELATED

INVALID

Explanation

The RELATED state is one of the more tricky states.
A connection is considered RELATED when it is
related to another aready ESTABLISHED
connection. What this means, is that for a connection to
be considered as RELATED, we must first have a
connection that is considered ESTABLISHED. The
ESTABLISHED connection will then spawn a
connection outside of the main connection. The newly
gpawned connection will then be considered
RELATED, if the conntrack module is able to
understand that it is RELATED. Some good examples
of connections that can be considered as RELATED
are the FTP-data connections that are considered
RELATED to the FTP control port, and the DCC
connections issued through IRC. This could be used to
allow ICMP replies, FTP transfers and DCC's to work
properly through the firewall. Do note that most TCP
protocols and some UDP protocols that rely on this
mechanism are quite complex and send connection
information within the payload of the TCP or UDP
data segments, and hence require specia helper
modules to be correctly understood.

The INVALID state means that the packet can not be
identified or that it does not have any state. This may
be due to severa reasons, such as the system running
out of memory or ICMP error messages that do not
respond to any known connections. Generaly, it is a
good ideato DROP everything in this state.

These states can be used together with the --state match to match packets
based on their connection tracking state. This is what makes the state
machine so incredibly strong and efficient for our firewall. Previoudly,
we often had to open up all ports above 1024 to let al traffic back into
our local networks again. With the state machine in place this is not
necessary any longer, since we can now just open up the firewall for
return traffic and not for al kinds of other traffic.

4.4. TCP connections

Step by Step™ Linux Guide. Page 54

In this section and the upcoming ones, we will take a closer look at the
states and how they are handled for each of the three basic protocols
TCP, UDP and ICMP. Also, we will take a closer look at how
connections are handled per default, if they can not be classified as either
of these three protocols. We have chosen to start out with the TCP
protocol sinceit is a stateful protocol initself, and has alot of interesting
details with regard to the state machine in iptables.

A TCP connection is always initiated with the 3-way handshake, which
establishes and negotiates the actual connection over which data will be
sent. The whole session is begun with a SYN packet, then a SYN/ACK
packet and finally an ACK packet to acknowledge the whole session
establishment. At this point the connection is established and able to start
sending data. The big problem is, how does connection tracking hook up
into this? Quite smply really.

As far as the user is concerned, connection tracking works basically the
same for all connection types. Have a look at the picture below to see
exactly what state the stream enters during the different stages of the
connection. As you can see, the connection tracking code does not really
follow the flow of the TCP connection, from the users viewpoint. Once it
has seen one packet(the SYN), it considers the connection as NEW.
Once it sees the return packet(SYN/ACK), it considers the connection as
ESTABLISHED. If you think about this a second, you will understand
why. With this particular implementation, you can alow NEW and
ESTABLISHED packets to leave your loca network, only allow
ESTABLISHED connections back, and that will work perfectly.
Conversdly, if the connection tracking machine were to consider the
whole connection establishment as NEW, we would never really be able
to stop outside connections to our local network, since we would have to
allow NEW packets back in again. To make things more complicated,
there is a number of other internal states that are used for TCP
connections inside the kernel, but which are not available for usin User-
land. Roughly, they follow the state standards specified within REC 793
- Transmission Control Protocol at page 21-23. We will consider these
in more detail further along in this section.

Step by Step™ Linux Guide. Page 55

Client . Firewall ' Server

SYN
O smv/ack
 ESTABLISHED

I

As you can seg, it is realy quite simple, seen from the user's point of
view. However, looking at the whole construction from the kernel's
point of view, it's a little more difficult. Let's look at an example.
Consider exactly how the connection states change in the
/ proc/ net/ip_conntrack table. The first state is reported upon receipt
of the first SYN packet in a connection.

tcp 6117 SYN_SENT src=192.168.1.5 dst=192.168.1.35 sport=1031 \
dport=23 [UNREPLIED] src=192.168.1.35 dst=192.168.1.5 sport=23 \
dport=1031 use=1

As you can see from the above entry, we have a precise state in which a
SY N packet has been sent, (the SYN_SENT flag is set), and to which as yet
no reply has been sent (witness the [UNREPLI ED] flag). The next internal
state will be reached when we see another packet in the other direction.

Step by Step™ Linux Guide. Page 56

tcp 657 SYN_RECV sr¢=192.168.1.5 dst=192.168.1.35 sport=1031\
dport=23 src=192.168.1.35 dst=192.168.1.5 sport=23 dport=1031 \
use=1

Now we have received a corresponding SYN/ACK in return. As soon as
this packet has been received, the state changes once again, this time to
SYN_RECV. SYN_RECV télls us that the original SYN was delivered
correctly and that the SYN/ACK return packet also got through the
firewall properly. Moreover, this connection tracking entry has now seen
traffic in both directions and is hence considered as having been replied
to. This is not explicit, but rather assumed, as was the [UNREPLIED]
flag above. The final step will be reached once we have seen the fina
ACK in the 3-way handshake.

tcp 6 431999 ESTABLISHED src=192.168.1.5 dst=192.168.1.35 \
sport=1031 dport=23 src=192.168.1.35 dst=192.168.1.5 \
sport=23 dport=1031 use=1

In the last example, we have gotten the final ACK in the 3-way
handshake and the connection has entered the ESTABLISHED state, as
far as the interna mechanisms of iptables are aware. After a few more
packets, the connection will also become [ASSURED] , as shown in the
introduction section of this chapter.

When a TCP connection is closed down, it is done in the following way
and takes the following states.

Step by Step™ Linux Guide. Page 57

FIN/ACK
ESTABLISH

ED

ACK
ESTABLISH

ED
CLOSED

FIN/ACK
ESTABLISH
ED

ACK K
CLOSED

~ CLOSED

As you can see, the connection is never really closed until the last ACK
is sent. Do note that this picture only describes how it is closed down
under normal circumstances. A connection may also, for example, be
closed by sending a RST(reset), if the connection were to be refused. In
this case, the connection would be closed down after a predetermined
time.

When the TCP connection has been closed down, the connection enters
the TIME_WAIT state, which is per default set to 2 minutes. Thisis used
so that all packets that have gotten out of order can still get through our
rule-set, even after the connection has aready closed. This is used as a
kind of buffer time so that packets that have gotten stuck in one or
another congested router can still get to the firewall, or to the other end
of the connection.

Step by Step™ Linux Guide. Page 58

If the connection isreset by a RST packet, the state is changed to
CLOSE. This means that the connection per default have 10 seconds
before the whole connection is definitely closed down. RST packets are
not acknowledged in any sense, and will break the connection directly.
There are aso other states than the ones we have told you about so far.
Hereisthe complete list of possible states that a TCP stream may take,
and their timeout values.

Table4-2. Internal states

State Timeout value
NONE 30 minutes
ESTABLISHED 5 days
SYN_SENT 2 minutes
SYN_RECV 60 seconds
FIN_WAIT 2 minutes
TIME_WAIT 2 minutes
CLOSE 10 seconds
CLOSE_WAIT 12 hours
LAST_ACK 30 seconds
LISTEN> 2 minutes

These values are most definitely not absolute. They may change with
kernel revisions, and they may also be changed via the proc file-system
in the /proc/sys/net/ipv4/netfilter/ip_ct_tcp * variables. The default
values should, however, be fairly well established in practice. These
values are set in jiffies (or 1/100th parts of seconds), so 3000 means 30
seconds.

Step by Step™ Linux Guide. Page 59

Also note that the User-land side of the state machine does not
@ look at TCP flags set in the TCP packets. Thisis generally bad,
since you may want to allow packets in the NEW state to get

through the firewall, but when you specify the NEW flag, you
will in most cases mean SY N packets.

Thisis not what happens with the current state implementation;
instead, even a packet with no bit set or an ACK flag, will count
asNEW and if you match on NEW packets. This can be used
for redundant firewalling and so on, but it is generally extremely
bad on your home network, where you only have asingle
firewall. To get around this behavior, you could use the
command explained in the Sate NEW packets but no SYN bit set
section of the Common problems and questions appendix.
Another way isto install the tcp-window-tracking extension
from patch-o-matic, which will make the firewall able to track
states depending on the TCP window settings.

4.5. UDP connections

UDP connections are in them selves not stateful connections, but rather
stateless. There are severa reasons why, mainly because they don't
contain any connection establishment or connection closing; most of all
they lack sequencing. Receiving two UDP datagrams in a specific order
does not say anything about which order in which they where sent. It is,
however, still possible to set states on the connections within the kernel.
Let's have alook at how a connection can be tracked and how it might
look in conntrack.

Step by Step™ Linux Guide. Page 60

Client | Firewall Server

UDP Packet .

3 UDP Packet

_+ ESTABLISHED -

L - - -

As you can see, the connection is brought up almost exactly in the same
way as a TCP connection. That is, from the user-land point of view.
Internally, conntrack information looks quite a bit different, but
intrinsically the details are the same. First of al, let's have alook at the
entry after the initial UDP packet has been sent.

udp 17 20 src=192.168.1.2 dst=192.168.1.5 sport=137 dport=1025 \
[UNREPLI ED] src=192.168.1.5 dst=192.168. 1.2 sport=1025 \
dport =137 use=1

As you can see from the first and second values, this is an UDP packet.
Thefirst is the protocol name, and the second is protocol number. Thisis
just the same as for TCP connections. The third value marks how many
seconds this state entry has to live. After this, we get the values of the
packet that we have seen and the future expectations of packets over this
connection reaching us from the initiating packet sender. These are the
source, destination, source port and destination port. At this point, the
[UNREPLI ED] flag tells us that there's so far been no response to the
packet. Finally, we get a brief list of the expectations for returning
packets. Do note that the latter entries are in reverse order to the first
values. The timeout at this point is set to 30 seconds, as per default.

Step by Step™ Linux Guide. Page 61

udp 17 170 src=192.168. 1.2 dst=192.168.1.5 sport=137 \
dport=1025 src=192.168.1.5 dst=192. 168. 1.2 sport=1025 \
dport =137 use=1

At this point the server has seen a reply to the first packet sent out and
the connection is now considered asESTABLISHED. Thisis not shown
in the connection tracking, as you can see. The main difference is that
the [UNREPLI ED] flag has now gone. Moreover, the default timeout has
changed to 180 seconds - but in this example that's by now been
decremented to 170 seconds - in 10 seconds' time, it will be 160 seconds.
There's one thing that's missing, though, and can change a bit, and that is
the [ASSURED] flag described above. For the [ASSURED] flag to be set on
a tracked connection, there must have been a small amount of traffic
over that connection.

udp 17 175 src=192.168. 1.5 dst=195.22.79.2 sport=1025 \
dport =53 src=195.22.79.2 dst=192.168.1.5 sport=53 \
dport =1025 [ASSURED] use=1

At this point, the connection has become assured. The connection looks
exactly the same as the previous example, except for the[ASSURED] flag.
If this connection is not used for 180 seconds, it times out. 180 Seconds
is a comparatively low value, but should be sufficient for most use. This
valueisreset to its full value for each packet that matches the same entry
and passes through the firewall, just the same as for all of the internal
states.

Step by Step™ Linux Guide. Page 62

4.6. | CMP connections

ICMP packets are far from a stateful stream, since they are only used for
controlling and should never establish any connections. There are four
ICMP types that will generate return packets however, and these have 2
different states. These ICMP messages can take the NEW and
ESTABLISHED states. The ICMP types we are talking about are Echo
request and reply, Timestamp request and reply, Information request and
reply and finally Address mask request and reply. Out of these, the
timestamp request and information request are obsolete and could most
probably just be dropped. However, the Echo messages are used in
severa setups such as pinging hosts. Address mask requests are not used
often, but could be useful at times and worth allowing. To get an idea of
how this could look, have alook at the following image.

Client Firewall Server
ICMP Echo
Request
NEW :
ICMP Echo I
Reply ™
" ESTABLISHED .
Client
Processing

Step by Step™ Linux Guide. Page 63

As you can seein the above picture, the host sends an echo request to the
target, which is considered as NEW by the firewall. The target then
responds with a echo reply which the firewall considers as state
ESTABLISHED. When the first echo request has been seen, the
following state entry goesinto the ip_conntrack.

icnp 1 25 src=192.168.1.6 dst=192.168.1.10 type=8 code=0 \
i d=33029 [UNREPLI ED] src=192.168.1.10 dst=192.168.1.6 \
type=0 code=0 i d=33029 use=1

This entry looks alittle bit different from the standard states for TCP and
UDP as you can see. The protocol is there, and the timeout, as well as
source and destination addresses. The problem comes after that however.
We now have 3 new fields called type, code and id. They are not special
in any way, the type field contains the ICMP type and the code field
contains the ICMP code. These are al available in ICMP types appendix.
The fina id field, contains the ICMP ID. Each ICMP packet gets an ID
set to it when it is sent, and when the receiver gets the ICMP message, it
sets the same ID within the new ICMP message so that the sender will
recognize the reply and will be able to connect it with the correct ICMP
request.

The next field, we once again recognize as the [UNREPLIED] flag,
which we have seen before. Just as before, this flag tells us that we are
currently looking at a connection tracking entry that has seen only traffic
in one direction. Finally, we see the reply expectation for the reply ICMP
packet, which is the inversion of the original source and destination 1P
addresses. As for the type and code, these are changed to the correct
values for the return packet, so an echo request is changed to echo reply
and so on. The ICMP ID is preserved from the request packet.

The reply packet is considered as being ESTABLISHED, as we have
aready explained. However, we can know for sure that after the ICMP
reply, there will be absolutely no more lega traffic in the same
connection. For this reason, the connection tracking entry is destroyed
once the reply hastraveled all the way through the Netfilter structure.

Step by Step™ Linux Guide. Page 64

In each of the above cases, the request is considered as NEW, while the
reply isconsidered as ESTABLISHED. Let's consider this more closely.
When the firewall sees a request packet, it considers it as NEW. When
the host sends a reply packet to the request it is considered
ESTABLISHED.

Note that this means that the reply packet must match the
criterion given by the connection tracking entry to be considered

as established, just as with all other traffic types.

ICMP requests has a default timeout of 30 seconds, which you can
change in the /proc/sys/net/ipv4/netfilter/ip_ct_icmp_timeout entry. This
should in general be a good timeout value, since it will be able to catch
most packets in transit. Another hugely important part of ICMP is the
fact that it is used to tell the hosts what happened to specific UDP and
TCP connections or connection attempts. For this ssmple reason, ICMP
replies will very often be recognized as RELATED to original
connections or connection attempts. A simple example would be the
ICMP Host unreachable or ICMP Network unreachable. These should
aways be spawned back to our host if it attempts an unsuccessful
connection to some other host, but the network or host in question could
be down, and hence the last router trying to reach the site in question will
reply with an ICMP message telling us about it. In this case, the ICMP
reply is considered as a RELATED packet. The following picture
should explain how it would look.

Step by Step™ Linux Guide. Page 65

Client Firewall | Server

SYN
1 NEW
.| ICMP Net
Unreachable
| RELATED -
Client L~
aborts

In the above example, we send out a SYN packet to a specific address.
This is considered as a NEW connection by the firewall. However, the
network the packet is trying to reach is unreachable, so a router returns a
network unreachable ICMP error to us. The connection tracking code
can recognize this packet as RELATED. thanks to the already added
tracking entry, so the ICMP reply is correctly sent to the client which
will then hopefully abort. Meanwhile, the firewall has destroyed the
connection tracking entry since it knows this was an error message. The
same behavior as above is experienced with UDP connections if they run
into any problem like the above. All ICMP messages sent in reply to
UDP connections are considered as RELATED. Consider the following
image.

Step by Step™ Linux Guide. Page 66

Client Firewall | Server

UDP Packet
1 NEW
ICHMP Net
Prohibited
. REIATED
client
aborts

This time an UDP packet is sent to the host. This UDP connection is
considered as NEW. However, the network is administratively
prohibited by some firewall or router on the way over. Hence, our
firewall receives a ICMP Network Prohibited in return. The firewall
knows that this ICMP error message is related to the already opened
UDP connection and sends it as an RELATED packet to the client. At
this point, the firewall destroys the connection tracking entry, and the
client receives the ICMP message and should hopefully abort.

4.7. Default connections

In certain cases, the conntrack machine does not know how to handle a
specific protocol. This happens if it does not know about that protocol in
particular, or doesn't know how it works. In these cases, it goes back to a
default behavior. The default behavior is used on, for example,
NETBLT, MUX and EGP. This behavior looks pretty much the same as
the UDP connection tracking. The first packet is considered NEW, and
reply traffic and so forth is considered ESTABLISHED.

Step by Step™ Linux Guide. Page 67

When the default behavior is used, al of these packets will attain the
same default timeout value. This can be set via the
/ proc/ sys/net/ipv4/ netfilter/ip_ct_generic_tineout Variable.
The default value here is 600 seconds, or 10 minutes. Depending on what
traffic you are trying to send over a link that uses the default connection
tracking behavior, this might need changing. Especialy if you are
bouncing traffic through satellites and such, which can take along time.

4.8. Complex protocols and
connection tracking

Certain protocols are more complex than others. What this means when
it comes to connection tracking, is that such protocols may be harder to
track correctly. Good examples of these are the ICQ, IRC and FTP
protocols. Each and every one of these protocols carries information
within the actual data payload of the packets, and hence requires special
connection tracking helpersto enable it to function correctly.

Let's take the FTP protocol as the first example. The FTP protocol first
opens up a single connection that is called the FTP control session.
When we issue commands through this session, other ports are opened to
carry the rest of the data related to that specific command. These
connections can be done in two ways, either actively or passively. When
a connection is done actively, the FTP client sends the server a port and
|P address to connect to. After this, the FTP client opens up the port and
the server connects to that specified port from its own port 20 (known as
FTP-Data) and sends the data over it.

The problem here is that the firewall will not know about these extra
connections, since they where negotiated within the actual payload of the
protocol data. Because of this, the firewall will be unable to know that it
should let the server connect to the client over these specific ports.

The solution to this problem is to add a special helper to the connection
tracking module which will scan through the data in the control
connection for specific syntaxes and information. When it runs into the
correct information, it will add that specific information as RELATED

Step by Step™ Linux Guide. Page 683

and the server will be able to track the connection, thanks to that
RELATED entry. Consider the following picture to understand the
states when the FTP server has made the connection back to the client.

Client | Firewall | Server

SYN

RELATED
SYN/ACK

N ESTABLISHED |

Passive FTP works the opposite way. The FTP client tells the server that
it wants some specific data, upon which the server replies with an IP
address to connect to and at what port. The client will, upon receipt of
this data, connect to that specific port, from its own port 20(the FTP-data
port), and get the datain question. If you have an FTP server behind your
firewall, you will in other words require this module in addition to your
standard iptables modules to let clients on the Internet connect to the
FTP server properly. The same goes if you are extremely restrictive to
your users, and only want to let them reach HTTP and FTP servers on
the Internet and block all other ports. Consider the following image and
its bearing on Passive FTP.

Step by Step™ Linux Guide. Page 69

Client Firewall | Server

SYN
"N RELATED

2 SYN/ACK
_ ESTABLISHED

ACK

Some conntrack helpers are already available within the kernel itself.
More specifically, the FTP and IRC protocols have conntrack helpers as
of writing this. If you can not find the conntrack helpers that you need
within the kernel itself, you should have alook at the patch-o-matic tree
within user-land iptables. The patch-o-matic tree may contain more
conntrack helpers, such as for the ntalk or H.323 protocols. If they are
not available in the patch-o-matic tree, you have a number of options.
Either you can look at the CV'S source of iptables, if it has recently gone
into that tree, or you can contact the Netfilter-devel mailing list and ask
if it isavailable. If it is not, and there are no plans for adding it, you are
left to your own devices and would most probably want to read the Rusty
Russell's Unreliable Netfilter Hacking HOW-TO which is linked from
the Other resources and links appendix.

Conntrack helpers may either be statically compiled into the kernel, or as
modules. If they are compiled as modules, you can |load them with the
following command

nodpr obe i p_conntrack_*

Step by Step™ Linux Guide. Page 70

Do note that connection tracking has nothing to do with NAT, and hence
you may require more modules if you are NAT'ing connections as well.
For example, if you were to want to NAT and track FTP connections,
you would need the NAT module as well. All NAT helpers starts with
ip_nat_ and follow that naming convention; so for example the FTP
NAT helper would be named ip_nat_ftp and the IRC module would be
named ip _nat irc. The conntrack helpers follow the same naming
convention, and hence the IRC conntrack helper would be named
ip_conntrack_irc, while the FTP conntrack helper would be named
ip_conntrack_ftp.

Chapter 5. Saving and restoring
largerule-sets

The iptables package comes with two more tools that are very useful,
specially if you are dealing with larger rule-sets. These two tools are
called iptables-save and iptablesrestore and are used to save and
restore rule-sets to a specific file-format that looks a quite a bit different
from the standard shell code that you will see in the rest of this tutorial.

5.1. Speed considerations

One of the largest reasons for using the iptables-save and iptables-
restore commands is that they will speed up the loading and saving of
larger rule-sets considerably. The main problem with running a shell
script that contains iptables rules is that each invocation of iptables
within the script will first extract the whole rule-set from the Netfilter
kernel space, and after this, it will insert or append rules, or do whatever
change to the rule-set that is needed by this specific command. Finaly, it
will insert the new rule-set from its own memory into kernel space.
Using a shell script, this is done for each and every rule that we want to
insert, and for each time we do this, it takes more time to extract and
insert the rule-set.

Step by Step™ Linux Guide. Page 71

To solve this problem, there is the iptables-save and r estor e commands.
The iptables-save command is used to save the rule-set into a specially
formatted text-file, and the iptables-restore command is used to load
this text-file into kernel again. The best parts of these commands is that
they will load and save the rule-set in one single request. iptables-save
will grab the whole rule-set from kernel and save it to afile in one single
movement. iptables-restor e will upload that specific rule-set to kernel in
a single movement for each table. In other words, instead of dropping the
rule-set out of kernel some 30.000 times, for really large rule-sets, and
then upload it to kernel again that many times, we can now save the
whole thing into afile in one movement and then upload the whole thing
in as little as three movements depending on how many tables you use.

As you can understand, these tools are definitely something for you if
you are working on a huge set of rules that needs to be inserted.
However, they do have drawbacks that we will discuss more in the next
section.

5.2. Drawbackswith restore

As you may have already wondered, can iptables-restore handle any
kind of scripting? So far, no, it can not and it will most probably never
be able to. Thisisthe main flaw in using iptables-restor e since you will
not be able to do a huge set of things with these files. For example, what
if you have a connection that has a dynamically assigned IP address and
you want to grab this dynamic IP every-time the computer boots up and
then use that value within your scripts? With iptables-restore, this is
more or lessimpossible.

One possibility to get around this is to make a small script which grabs
the values you would like to use in the script, then sed the iptables-
restore file for specific keywords and replace them with the values
collected via the small script. At this point, you could save it to a
temporary file, and then use iptables-restore to load the new values.
This causes a lot of problems however, and you will be unable to use
iptables-save properly since it would probably erase your manually
added keywords in the restore script. It is in other words a clumsy
solution.

Step by Step™ Linux Guide. Page 72

Another solution is to load the iptables-restore scripts first, and then
load a specific shell script that inserts more dynamic rules in their proper
places. Of course, as you can understand, this is just as clumsy as the
first solution. iptables-restore is simply not very well suited for
configurations where IP addresses are dynamicaly assigned to your
firewall or where you want different behaviors depending on
configuration options and so on.

Another drawback with iptables-restore and iptables-save is that it is
not fully functional as of writing this. The problem is simply that not a
lot of people use it as of today and hence there is not a lot of people
finding bugs, and in turn some matches and targets will simply be
inserted badly, which may lead to some strange behaviors that you did
not expect. Even though these problems exist, | would highly
recommend using these tools which should work extremely well for most
rule-sets as long as they do not contain some of the new targets or
matches that it does not know how to handle properly.

5.3. iptables-save

The iptables-save command is, as we have aready explained, a tool to
save the current rule-set into a file that iptables-restore can use. This
command is quite simple really, and takes only two arguments. Take a
look at the following example to understand the syntax of the command.

iptables-save[-C] [-t t abl €]

The -c argument tells iptables-save to keep the values specified in the
byte and packet counters. This could for example be useful if we would
like to reboot our main firewall, but not loose byte and packet counters
which we may use for statistical purposes. Issuing a iptables-save
command with the -c argument would then make it possible for us to
reboot but without breaking our statistical and accounting routines. The
default value is, of course, to not keep the counters intact when issuing
this command.

Step by Step™ Linux Guide. Page 73

The -t argument tells the iptables-save command which tables to save.
Without this argument the command will automatically save all tables
available into the file. The following is an example on what output you
can expect from the iptables-save command if you do not have any rule-
set loaded.

Cenerated by iptabl es-save v1.2.6a on Wd Apr 24
10: 19: 17 2002

*filter

: I NPUT ACCEPT [404: 19766]

: FORWARD ACCEPT [0: 0]

: OUTPUT ACCEPT [530: 43376]

COWM T

Conpl eted on Wed Apr 24 10:19:17 2002

Cenerated by iptabl es-save v1.2.6a on Wd Apr 24
10: 19: 17 2002

*mangl e

: PREROUTI NG ACCEPT [451: 22060]

: I NPUT ACCEPT [451: 22060]

: FORWARD ACCEPT [0: 0]

: OUTPUT ACCEPT [594:47151]

: POSTROUTI NG ACCEPT [594: 47151]

CoOw

Conpl eted on Wed Apr 24 10:19:17 2002

Cenerated by iptabl es-save v1.2.6a on Wd Apr 24
10: 19: 17 2002

*nat

: PREROUTI NG ACCEPT [0: 0]

: POSTROUTI NG ACCEPT [3: 450]

: OUTPUT ACCEPT [3: 450]

COWM T

Compl eted on Wed Apr 24 10:19:17 2002

This contains a few comments starting with a # sign. Each table is
marked like *<table-name>, for example *mangle. Then within each
table we have the chain specifications and rules. A chain specification
looks like :<chain-name> <chain-policy> [<packet-counter>:<byte-
counter>]. The chain-name may be for example PREROUTING, the
policy is described previously and can for example be ACCEPT. Finally
the packet-counter and byte-counters are the same counters as in the
output from iptables -L -v. Finally, each table declaration ends in a
COMMIT keyword. The COMMIT keyword tells us that at this point we
should commit all rules currently in the pipeline to kernel.

Step by Step™ Linux Guide. Page 74

The above example is pretty basic, and hence | believe it is nothing more
than proper to show a brief example which contains a very small
|ptables-save ruleset. If we would run iptables-save on this, it would
look something like thisin the output:

Cenerated by iptabl es-save v1.2.6a on Wd Apr 24
10: 19: 55 2002

*filter

;I NPUT DROP [1:229]

: FORWARD DROP [0: 0]

: QUTPUT DROCP [0: 0]

-A INPUT -mstate --state RELATED, ESTABLI SHED - j
ACCEPT

-A FORWARD -i ethO -mstate --state

RELATED, ESTABLI SHED -j ACCEPT

-A FORWARD -i ethl -mstate --state

NEW RELATED, ESTABLI SHED -j ACCEPT

-A QUTPUT -m state --state NEW RELATED, ESTABLI SHED -
j ACCEPT

COWM T

Conpl eted on Wed Apr 24 10:19:55 2002

Cenerated by iptabl es-save v1.2.6a on Wd Apr 24
10: 19: 55 2002

*mangl e

: PREROUTI NG ACCEPT [658: 32445]

: I NPUT ACCEPT [658: 32445]

: FORWARD ACCEPT [0: 0]

: OUTPUT ACCEPT [891:68234]

: POSTROUTI NG ACCEPT [891: 68234]

cow

Conpl eted on Wed Apr 24 10:19:55 2002

Cenerated by iptabl es-save v1.2.6a on Wd Apr 24
10: 19: 55 2002

*nat

: PREROUTI NG ACCEPT [1: 229]

: POSTROUTI NG ACCEPT [3: 450]

: OUTPUT ACCEPT [3: 450]

-A POSTROUTING -0 ethO -j SNAT --to-source
195.233.192.1

COWM T

Conpl eted on Wed Apr 24 10:19:55 2002

As you can see, each command has now been prefixed with the byte and
packet counters since we used the -c argument. Except for this, the
command-line is quite intact from the script. The only problem now, is
how to save the output to a file. Quite smple, and you should aready
know how to do this if you have used linux at al before. It is only a

Step by Step™ Linux Guide. Page 75

matter of piping the command output on to the file that you would like to
saveit as. This could look like the following:

iptables-save -c > /etc/iptables-save

The above command will in other words save the whole rule-set to afile
called/ et c/i pt abl es- save with byte and packet counters still intact.

5.4. iptables-restore

The iptables-restore command is used to restore the iptables rule-set
that was saved with the iptables-save command. It takes al the input
from standard input and can not load from files as of writing this,
unfortunately. Thisisthe command syntax for iptables-restore:

iptables-restore[-c] [-n]

The -c argument restores the byte and packet counters and must be used
if you want to restore counters that was previously saved with iptables-
save. This argument may also be written in its long form --counters.

The -n argument tells iptables-restore to not overwrite the previously
written rules in the table, or tables, that it is writing to. The default
behavior of iptablesrestore is to flush and destroy all previously
inserted rules. The short -n argument may also be replaced with the
longer format --noflush.

To load rule-set with the iptables-restor e command, we could do thisin
several ways, but we will mainly look at the simplest and most common
way here.

cat /etc/iptables-save | iptables-restore -c

This would cat the rule-set located within the /etc/iptables-save file and
then pipe it to iptables-restore which takes the rule-set on the standard
input and then restores it, including byte and packet counters. It is that
simple to begin with. This command could be varied until oblivion and
we could show different piping possibilities, however, thisis a bit out of

Step by Step™ Linux Guide. Page 76

the scope of this chapter, and hence we will skip that part and leave it as
an exercise for the reader to experiment with.

The rule-set should now be loaded properly to kernel and everything
should work. If not, you may possibly have run into a bug in these
commands, however likely that sounds.

Chapter 6. How aruleisbuilt

This chapter will discuss at length how to build your own rules. A rule
could be described as the directions the firewall will adhere to when
blocking or permitting different connections and packets in a specific
chain. Each line you write that's inserted to a chain should be considered
arule. We will also discuss the basic matches that are available, and how
to use them, as well as the different targets and how we can construct
new targets of our own (i.e., new sub chains).

6.1. Basics

As we have aready explained, each rule is aline that the kernel 1ooks at
to find out what to do with a packet. If al the criteria - or matches - are
met, we perform the target - or jump - instruction. Normally we would
write our rulesin a syntax that looks something like this:

iptables|[-tt abl e] command [match] [target/jump]

There is nothing that says that the target instruction has to be last
function in the line. However, you would usually adhere to this syntax to
get the best readability. Anyway, most of the rules you'll see are written
in this way. Hence, if you read someone else's script, you'll most likely
recognize the syntax and easily understand the rule.

Step by Step™ Linux Guide. Page 77

If you want to use another table than the standard table, you could insert
the table specification at the point at which [table] is specified. However,
it is not necessary to state explicitly what table to use, since by default
iptables uses the filter table on which to implement all commands.
Neither do you have to specify the table at just this point in the rule. It
could be set pretty much anywhere along the line. However, it is more or
less standard to put the table specification at the beginning.

One thing to think about though: The command should always come
first, or aternatively directly after the table specification. We use
‘command' to tell the program what to do, for example to insert arule or
to add arule to the end of the chain, or to delete arule. We shall take a
further look at this below.

The match is the part of the rule that we send to the kernel that details the
specific character of the packet, what makes it different from all other
packets. Here we could specify what |P address the packet comes from,
from which network interface, the intended IP address, port, protocol or
whatever. There is a heap of different matches that we can use that we
will look closer at further on in this chapter.

Finally we have the target of the packet. If all the matches are met for a
packet, we tell the kernel what to do with it. We could, for example, tell
the kernel to send the packet to another chain that weve created
ourselves, and which is part of this particular table. We could tell the
kernel to drop the packet dead and do no further processing, or we could
tell the kernel to send a specified reply to the sender. As with the rest of
the content in this section, we'll ook closer at it further on in the chapter.

6.2. Tables

The -t option specifies which table to use. Per default, the filter table is
used. We may specify one of the following tables with the -t option. Do
note that this is an extremely brief summary of some of the contents of
the Traversing of tables and chains chapter.

Step by Step™ Linux Guide. Page 78

Table6-1. Tables

Table
nat

mangle

Explanation

The nat table is used mainly for Network Address
Trandation. "NAT"ed packets get their |P addresses altered,
according to our rules. Packets in a stream only traverse this
table once. We assume that the first packet of a stream is
allowed. The rest of the packets in the same stream are
automatically "NAT"ed or Masqueraded etc, and will be
subject to the same actions as the first packet. These will, in
other words, not go through this table again, but will
nevertheless be treated like the first packet in the stream.
This is the main reason why you should not do any filtering
in this table, which we will discuss at greater length further
on. The PREROUTING chain is used to alter packets as
soon as they get in to the firewall. The OUTPUT chain is
used for altering localy generated packets (i.e., on the
firewall) before they get to the routing decision. Finally we
have the POSTROUTING chain which is used to alter
packets just as they are about to leave the firewall.

This table is used mainly for mangling packets. Among
other things, we can change the contents of different packets
and that of their headers. Examples of this would be to
changethe TTL, TOS or MARK. Note that the MARK is
not really a change to the packet, but a mark value for the
packet is set in kernel space. Other rules or programs might
use this mark further along in the firewall to filter or do
advanced routing on; tc is one example. The table consists
of five built in chans, the PREROUTING,
POSTROUTING, OUTPUT, INPUT and FORWARD
chains. PREROUTING is used for altering packets just as
they enter the firewall and before they hit the routing
decision. POSTROUTING is used to mangle packets just
after al routing decisions has been made. OUTPUT is used
for atering locally generated packets before they enter the
routing decision. INPUT is used to ater packets after they
have been routed to the local computer itself, but before the
user space application actually sees the data. FORWARD is
used to mangle packets after they have hit the first routing
decision, but before they actually hit the last routing

Step by Step™ Linux Guide. Page 79

Table

filter

Explanation

decision. Note that mangle can not be used for any kind of
Network Address Trandation or Masguerading, the nat
table was made for these kinds of operations.

The filter table should be used exclusively for filtering
packets. For example, we could DROP, LOG, ACCEPT or
REJECT packets without problems, as we can in the other
tables. There are three chains built in to this table. The first
one is named FORWARD and is used on al non-locally
generated packets that are not destined for our local host
(the firewall, in other words). INPUT is used on all packets
that are destined for our local host (the firewall) and
OUTPUT isfinally used for al locally generated packets.

The above details should have explained the basics about the three
different tables that are available. They should be used for totally
different purposes, and you should know what to use each chain for. If
you do not understand their usage, you may well dig a pit for yourself in
your firewall, into which you will fall as soon as someone findsit and
pushes you into it. We have aready discussed the requisite tables and
chainsin more detail within the Traversing of tables and chains chapter.
If you do not understand this fully, | advise you to go back and read
through it again.

6.3. Commands

In this section we will cover all the different commands and what can be
done with them. The command tells iptables what to do with the rest of
the rule that we send to the parser. Normally we would want either to
add or delete something in some table or another. The following
commands are available to iptables:

Step by Step™ Linux Guide. Page 80

Table 6-2.

Command
Example
Explanation

Command
Example

Explanation

Command
Example
Explanation

Command
Example
Explanation

Commands

-A, --append
iptables-A INPUT ...

This command appends the rule to the end of the chain. The
rule will in other words always be put last in the rule-set
and hence be checked last, unless you append more rules
later on.

-D, --delete

iptables-D INPUT --dport 80 -j DROP, iptables-D
INPUT 1

This command deletes arule in a chain. This could be done
in two ways; either by entering the whole rule to match (as
in the first example), or by specifying the rule number that
you want to match. If you use the first method, your entry
must match the entry in the chain exactly. If you use the
second method, you must match the number of the rule you
want to delete. The rules are numbered from the top of each
chain, starting with number 1.

-R, --replace
iptables-R INPUT 1-s192.168.0.1 -j DROP

This command replaces the old entry at the specified line. It
works in the same way as the --delete command, but instead
of totally deleting the entry, it will replace it with anew
entry. The main use for this might be while you're
experimenting with iptables.

-l, --insert
iptables-I INPUT 1 --dport 80 -j ACCEPT

Insert arule somewherein achain. Theruleisinserted as
the actual number that we specify. In other words, the above
example would be inserted asrule 1 in the INPUT chain,
and hence from now on it would be the very first rulein the
chain.

Step by Step™ Linux Guide. Page 81

Command
Example
Explanation

Command
Example
Explanation

Command
Example
Explanation

Command
Example
Explanation

L, —list
iptables-L INPUT

This command lists all the entriesin the specified chain. In
the above case, we would list al the entriesin the INPUT
chain. It's also legal to not specify any chain at all. In the
last case, the command would list all the chainsin the
specified table (To specify atable, see the Tables section).
The exact output is affected by other options sent to the
parser, for example the-n and -v options, etc.

-F, -flush
iptables -F INPUT

This command flushes al rules from the specified chain and
is equivalent to deleting each rule one by one, but is quite a
bit faster. The command can be used without options, and
will then delete al rulesin al chains within the specified
table.

-Z,--2ero
iptables -Z INPUT

This command tells the program to zero all countersin a
specific chain, or in all chains. If you have used the -v
option with the -L. command, you have probably seen the
packet counter at the beginning of each field. To zero this
packet counter, use the -Z option. This option works the
same as-L, except that -Z won't list the rules. If -L and -Z
is used together (which islegal), the chains will first be
listed, and then the packet counters are zeroed.

-N, --new-chain

iptables-N allowed

This command tells the kernel to create a new chain of the
specified name in the specified table. In the above example

we create a chain called allowed. Note that there must not
already be a chain or target of the same name.

Step by Step™ Linux Guide. Page 82

Command
Example
Explanation

Command
Example
Explanation

Command
Example
Explanation

-X, --delete-chain
iptables-X allowed

This command del etes the specified chain from the table.
For this command to work, there must be no rules that refer
to the chain that is to be deleted. In other words, you would
have to replace or delete all rulesreferring to the chain
before actually deleting the chain. If this command is used
without any options, all chains but those built in to the
specified table will be deleted.

-P, --policy
iptables-P INPUT DROP

This command tells the kernel to set a specified default
target, or policy, on achain. All packets that don't match
any rule will then be forced to use the policy of the chain.
Legal targets are DROP and ACCEPT (There might be
more, mail meif so).

-E, --rename-chain
iptables-E allowed disallowed

The -E command tellsiptables to change the first name of a
chain, to the second name. In the example above we would,
in other words, change the name of the chain from al | owed
to di sal | owed. Note that thiswill not affect the actual way
the table will work. It is, in other words, just a cosmetic
change to the table.

Y ou should always enter a complete command line, unless you just want
to list the built-in help for iptables or get the version of the command.
To get the version, use the -v option and to get the help message, use the
-h option. Asusual, in other words. Next comes a few options that can
be used with various different commands. Note that we tell you with
which commands the options can be used and what effect they will have.
Also note that we do not include any options here that affect rules or
matches. Instead, we'll take alook at matches and targetsin alater
section of this chapter.

Step by Step™ Linux Guide. Page 83

Table 6-3.

Option

Commands
used with

Explanation

Option

Commands
used with

Explanation

Option

Commands
used with

Explanation

Options

-v, --verbose
--list, --append, --insert, --delete, --replace

This command gives verbose output and is mainly used
together with the --list command. If used together with the -
-list command, it outputs the interface address, rule options
and TOS masks. The --list command will aso include a
bytes and packet counter for each rule, if the --verbose
option is set. These counters uses the K (x1000), M
(x1,000,000) and G (x1,000,000,000) multipliers. To
overrule this and get exact output, you can use the -x option,
described later. If this option is used with the --append, --
insert, --delete or --replace commands, the program will
output detailed information on how the rule was interpreted
and whether it was inserted correctly, etc.

-X, --exact
--list

This option expands the numerics. The output from --list
will in other words not contain the K, M or G multipliers.
Instead we will get an exact output from the packet and byte
counters of how many packets and bytes that have matched
the rule in question. Note that this option is only usable in
the --list command and isn't really relevant for any of the
other commands.

-n, --numeric
--list

This option tells iptables to output numerical values. IP
addresses and port numbers will be printed by using their
numerical values and not host-names, network names or
application names. This option is only applicable to the --
list command. This option overrides the default of resolving
all numerics to hosts and names, where thisis possible.

Step by Step™ Linux Guide. Page 84

Option --line-numbers

Commands |--list
used with

Explanation The --line-number s command, together with the --list
command, is used to output line numbers. Using this option,
each ruleis output with its number. It could be convenient
to know which rule has which number when inserting rules.
This option only works with the --list command.

Option -C, --Set-counters
Commands --insert, --append, --replace
used with

Explanation This option is used when creating a rule or modifying it in
some way. We can then use the option to initialize the
packet and byte counters for the rule. The syntax would be
something like --set-counter s 20 4000, which would tell the
kernel to set the packet counter to 20 and byte counter to
4000.

Option --modpr obe

Commands All
used with

Explanation The --modpr obe option is used to tell iptables which
modul e to use when probing for modules or adding them to
the kernel. It could be used if your modprobe command is
not somewhere in the search path etc. In such cases, it might
be necessary to specify this option so the program knows
what to do in case a needed module is not loaded. This
option can be used with all commands.

Step by Step™ Linux Guide. Page 85

0.4. M atches

In this section welll talk a bit more about matches. I've chosen to narrow
down the matchesinto five different subcategories. First of all we have
the generic matches, which can be used in all rules. Then we have the
TCP matches which can only be applied to TCP packets. We have UDP
matches which can only be applied to UDP packets, and ICMP matches
which can only be used on ICMP packets. Finally we have special
matches, such as the state, owner and limit matches and so on. These
final matches have in turn been narrowed down to even more
subcategories, even though they might not necessarily be different
matches at all. | hope thisis a reasonable breakdown and that all people
out there can understand it.

6.4.1. Generic matches

This section will deal with Generic matches. A generic match is a kind
of match that is always available, whatever kind of protocol we are
working on, or whatever match extensions we have loaded. No special
parameters at all are needed to use these matches; in other words. | have
also included the --protocol match here, even though it is more specific
to protocol matches. For example, if we want to use a TCP match, we
need to use the --protocol match and send TCP as an option to the
match. However, --protocol is also a match in itself, since it can be used
to match specific protocols. The following matches are always available.

Step by Step™ Linux Guide. Page 86

Table 6-4.

Match
Example
Explanation

Match
Example
Explanation

Generic matches

-p, --protocol
iptables-A INPUT -p tcp

This match is used to check for certain protocols. Examples
of protocols are TCP, UDP and ICMP. The protocol must
either be one of the internally specified TCP, UDP or
ICMP. It may also take a value specified in the
/etc/protocols file, and if it can not find the protocol there it
will reply with an error. The protocl may also be a integer
value. For example, the ICMP protocol is integer value 1,
TCPis6 and UDPis 17. Finaly, it may aso take the value
ALL. ALL means that it matches only TCP, UDP and
ICMP. The command may also take a comma delimited list
of protocols, such as udp,tcp which would match all UDP
and TCP packets. If this match is given the integer value of
zero (0), it means ALL protocols, which in turn is the
default behavior, if the --protocol match is not used. This
match can also be inversed with the ! sign, so --protocol !
tcp would mean to match UDP and ICMP.

-S, --SI'C, --sour ce
iptables-A INPUT -s192.168.1.1

This is the source match, which is used to match packets,
based on their source IP address. The main form can be
used to match single IP addresses, such as 192.168.1.1. It
could also be used with a netmask in a CIDR "bit" form, by
specifying the number of ones (1's) on the left side of the
network mask. This means that we could for example add
124 10 use a 255.255.255.0 netmask. We could then match
whole IP ranges, such as our local networks or network
segments behind the firewall. The line would then look
something like 192.168.0.0/24. This would match all
packets in the 192.168.0.x range. Another way is to do it
with an regular netmask in the 255.255.255.255 form (i.e.,
192.168.0.0/255.255.255.0). We could also invert the match
with an'! just as before. If we were in other words to use a

Step by Step™ Linux Guide. Page 87

match in the form of --source ! 192.168.0.0/24, we would
match all packets with a source address not coming from
within the 192.168.0.x range. The default is to match all IP
addresses.

Match -d, --dst, --destination
Example iptables-A INPUT -d 192.168.1.1

Explanation The --destination match is used for packets based on their
destination address or addresses. It works pretty much the
same as the --sour ce match and has the same syntax, except
that the match is based on where the packets are going to.
To match an IP range, we can add a netmask either in the
exact netmask form, or in the number of ones (1's) counted
from the left side of the netmask bits. Examples are:
192.168.0.0/255.255.255.0 and 192.168.0.0/24. Both of
these are equivalent. We could also invert the whole match
with an ! sign, just as before. --destination ! 192.168.0.1
would in other words match all packets except those not
destined to the 192.168.0.1 IP address.

Match -i, --in-interface
Example iptables-A INPUT -i ethO

Explanation This match is used for the interface the packet came in on.
Note that this option is only lega in the INPUT,
FORWARD and PREROUTING chains and will return an
error message when used anywhere else. The default
behavior of thismatch, if no particular interface is specified,
is to assume a string value of +. The + value is used to
match a string of letters and numbers. A single + would in
other words tell the kernel to match all packets without
considering which interface it came in on. The + string can
also be appended to the type of interface, so eth+ would all
Ethernet devices. We can aso invert the meaning of this
option with the help of the ! sign. The line would then have
a syntax looking something like -i ! ethO, which would
match all incoming interfaces, except ethO.

Step by Step™ Linux Guide. Page 83

Match
Example
Explanation

Match
Example
Explanation

-0, --out-interface
iptables-A FORWARD -0 ethO

The --out-interface match is used for packets on the
interface from which they are leaving. Note that this match
is only avalable in the OUTPUT, FORWARD and
POSTROUTING chains, the opposite in fact of the --in-
interface match. Other than this, it works pretty much the
same as the --in-interface match. The + extension is
understood as matching all devices of similar type, so eth+
would match al eth devices and so on. To invert the
meaning of the match, you can use the ! sign in exactly the
same way as for the --in-interface match. If no --out-
interface is specified, the default behavior for this match is
to match all devices, regardless of where the packet is

going.

-f, --fragment
iptables-A INPUT -f

This match is used to match the second and third part of a
fragmented packet. The reason for thisis that in the case of
fragmented packets, there is no way to tell the source or
destination ports of the fragments, nor ICMP types, among
other things. Also, fragmented packets might in rather
special cases be used to compound attacks against other
computers. Packet fragments like this will not be matched
by other rules, and hence this match was created. This
option can also be used in conjunction with the ! sign;
however, in this case the ! sign must precede the match, i.e.
I -f. When this match is inverted, we match all header
fragments and/or unfragmented packets. What this means, is
that we match all the first fragments of fragmented packets,
and not the second, third, and so on. We also match dl
packets that have not been fragmented during transfer. Note
also that there are really good defragmentation options
within the kernel that you can use instead. As a secondary
note, if you use connection tracking you will not see any
fragmented packets, since they are dealt with before hitting
any chain or tableiniptables.

Step by Step™ Linux Guide. Page 89

6.4.2. Implicit matches

This section will describe the matches that are loaded implicitly. Implicit
matches are implied, taken for granted, automatic. For example when we
match on --protocol tcp without any further criteria. There are currently
three types of implicit matches for three different protocols. These are
TCP matches, UDP matches and ICMP matches. The TCP based
matches contain a set of unique criteria that are available only for TCP
packets. UDP based matches contain another set of criteria that are
available only for UDP packets. And the same thing for ICMP packets.
On the other hand, there can be explicit matches that are loaded
explicitly. Explicit matches are not implied or automatic, you have to
specify them specifically. For these you use the -m or --match option,
which we will discuss in the next section.

6.4.2.1. TCP matches

These matches are protocol specific and are only available when working
with TCP packets and streams. To use these matches, you need to
specify --protocol tcp on the command line before trying to use them.
Note that the --protocol tcp match must be to the left of the protocol
specific matches. These matches are loaded implicitly in a sense, just as
the UDP and ICMP matches are loaded implicitly. The other matches
will be looked over in the continuation of this section, after the TCP
match section.

Table 6-5. TCP matches

Match --gport, --sour ce-port
Example |iptables-A INPUT -p tcp --sport 22

Explanation The --sour ce-port match is used to match packets based on
their source port. Without it, we imply all source ports. This
match can either take a service name or a port number. If

Step by Step™ Linux Guide. Page 90

you specify a service name, the service name must be in the
/etc/services file, since iptables uses this file in which to
find. If you specify the port by its number, the rule will load
dlightly faster, since iptables don't have to check up the
service name. However, the match might be a little bit
harder to read than if you use the service name. If you are
writing a rule-set consisting of a 200 rules or more, you
should definitely use port numbers, since the difference is
really noticeable. (On a slow box, this could make as much
as 10 seconds difference, if you have configured a large
rule-set containing 1000 rules or so0). Y ou can also use the --
sour ce-port match to match any range of ports, --sour ce-
port 22:80 for example. This example would match all
source ports between 22 and 80. If you omit specifying the
first port, port O is assumed (is implicit). --sour ce-port :80
would then match port O through 80. And if the last port
specification is omitted, port 65535 is assumed. If you were
to write --source-port 22:, you would have specified a
match for all ports from port 22 through port 65535. If you
invert the port range, iptables automaticaly reverses your
inversion. If you write --source-port 80:22, it is simply
interpreted as --source-port 22:80. You can aso invert a
match by adding a! sign. For example, --sour ce-port ! 22
means that you want to match all ports but port 22. The
inversion could also be used together with a port range and
would then look like --source-port ! 22:80, which in turn
would mean that you want to match all ports but port 22
through 80. Note that this match does not handle multiple
separated ports and port ranges. For more information about
those, look at the multiport match extension.

Match --dport, --destination-port
Example |iptables-A INPUT -p tcp --dport 22

Explanation This match is used to match TCP packets, according to their
destination port. It uses exactly the same syntax as the --
source-port match. It understands port and port range
specifications, as well as inversions. It also reverses high
and low ports in port range specifications, as above. The
match will also assume values of 0 and 65535 if the high or
low port is left out in a port range specification. In other

Step by Step™ Linux Guide. Page 91

words, exactly the same as the --source-port syntax. Note
that this match does not handle multiple separated ports and
port ranges. For more information about those, look at the
multiport match extension.

Match --tcp-flags
Example iptables-p tcp --tcp-flags SYN,FIN,ACK SYN

Explanation This match is used to match on the TCP flags in a packet.
First of al, the match takes a list of flags to compare (a
mask) and secondly it takes list of flags that should be set to
1, or turned on. Both lists should be comma-delimited. The
match knows about the SYN, ACK, FIN, RST, URG, PSH
flags, and it also recognizes the words ALL and NONE.
ALL and NONE is pretty much self describing: ALL means
to use all flags and NONE means to use no flags for the
option. --tcp-flags ALL NONE would in other words mean
to check al of the TCP flags and match if none of the flags
are set. This option can also be inverted with the ! sign. For
example, if we specify ! SYN,FIN,ACK SYN, we would
get a match that would match packets that had the ACK and
FIN bits set, but not the SYN bit. Also note that the comma
delimitation should not include spaces. You can see the
correct syntax in the example above.

Match --syn
Example iptables-p tcp --syn

Explanation The --syn match is more or less an old relic from the
ipchains days and is still there for backward compatibility
and for and to make transition one to the other easier. It is
used to match packets if they have the SYN bit set and the
ACK and RST bits unset. This command would in other
words be exactly the same as the --tcp-flags
SYN,RST,ACK SYN match. Such packets are mainly used
to request new TCP connections from a server. If you block
these packets, you should have effectively blocked all
incoming connection attempts. However, you will not have
blocked the outgoing connections, which a lot of exploits
today use (for example, hacking a legitimate service and
then installing a program or suchlike that enables initiating
an existing connection to your host, instead of opening up a

Step by Step™ Linux Guide. Page 92

new port on it). This match can also be inverted with the !
signinthis, ! --syn, way. This would match all packets with
the RST or the ACK bits set, in other words packets in an
aready established connection.

Match --tcp-option
Example iptables-p tcp --tcp-option 16

Explanation This match is used to match packets depending on their
TCP options. A TCP Option is a specific part of the header.
This part consists of 3 different fields. The first oneis 8 bits
long and tells us which Options are used in this stream, the
second one is also 8 hits long and tells us how long the
options field is. The reason for this length field is that TCP
options are, well, optional. To be compliant with the
standards, we do not need to implement all options, but
instead we can just look at what kind of option it is, and if
we do not support it, we just look at the length field and can
then jump over this data. This match is used to match
different TCP options depending on their decimal values. It
may aso be inverted with the ! flag, so that the match
matches all TCP options but the option given to the match.
For a complete list of all options, take a closer look at the
Internet Engineering Task Force who maintains a list of all
the standard numbers used on the Internet.

6.4.2.2. UDP matches

This section describes matches that will only work together with UDP
packets. These matches are implicitly loaded when you specify the --
protocol UDP match and will be available after this specification. Note
that UDP packets are not connection oriented, and hence there is no such
thing as different flags to set in the packet to give data on what the
datagram is supposed to do, such as open or closing a connection, or if
they are just smply supposed to send data. UDP packets do not require
any kind of acknowledgment either. If they are lost, they are simply lost
(Not taking ICMP error messaging etc into account). This means that
there are quite a lot less matches to work with on a UDP packet than

Step by Step™ Linux Guide. Page 93

there is on TCP packets. Note that the state machine will work on all
kinds of packets even though UDP or ICMP packets are counted as
connectionless protocols. The state machine works pretty much the same
on UDP packets as on TCP packets.

Table 6-6. UDP matches

Match --sport, --sour ce-port
Example |iptables-A INPUT -p udp --sport 53

Explanation This match works exactly the same as its TCP counterpart.
It is used to perform matches on packets based on their
source UDP ports. It has support for port ranges, single
ports and port inversions with the same syntax. To specify a
UDP port range, you could use 22:80 which would match
UDP ports 22 through 80. If the first value is omitted, port O
Is assumed. If the last port is omitted, port 65535 is
assumed. If the high port comes before the low port, the
ports switch place with each other automatically. Single
UDP port matches look as in the example above. To invert
the port match, add a! sign, --source-port ! 53. This would
match all ports but port 53. The match can understand
service names, as long as they are avalable in the
/etc/services file. Note that this match does not handle
multiple separated ports and port ranges. For more
information about this, look a the multiport match
extension.

Match --dport, --destination-port
Example |iptables-A INPUT -p udp --dport 53

Explanation The same goes for this match as for --sour ce-port above. It
is exactly the same as for the equivalent TCP match, but
here it applies to UDP packets. It matches packets based on
their UDP destination port. The match handles port ranges,
single ports and inversions. To match a single port you use,
for example, --destination-port 53, to invert this you would
use --destination-port ! 53. The first would match all UDP
packets going to port 53 while the second would match
packets but those going to the destination port 53. To
specify a port range, you would, for example, use --

Step by Step™ Linux Guide. Page 94

destination-port 9:19. This example would match all
packets destined for UDP port 9 through 19. If the first port
is omitted, port O is assumed. If the second port is omitted,
port 65535 is assumed. If the high port is placed before the
low port, they automatically switch place, so the low port
winds up before the high port. Note that this match does not
handle multiple ports and port ranges. For more information
about this, look at the multiport match extension.

6.4.2.3. ICMP matches

These are the ICMP matches. These packets are even more ephemeral,
that is to say short lived, than UDP packets, in the sense that they are
connectionless. The ICMP protocol is mainly used for error reporting
and for connection controlling and suchlike. ICMP is not a protocol
subordinated to the IP protocol, but more of a protocol that augments the
IP protocol and helps in handling errors. The headers of ICMP packets
are very similar to those of the IP headers, but differ in a number of
ways. The main feature of this protocol is the type header, that tells us
what the packet is for. One example is, if we try to access an
unaccessible IP address, we would normally get an 1CWP host
unr eachabl e in return. For a complete listing of ICMP types, see the
|CMP types appendix. There is only one ICMP specific match available
for ICMP packets, and hopefully this should suffice. This match is
implicitly loaded when we use the --protocol ICMP match and we get
access to it automatically. Note that all the generic matches can also be
used, so that among other things we can match on the source and
destination addresses.

Table6-7. ICMP matches

Match --icmp-type
Example |iptables-A INPUT -p icmp --icmp-type 8

Explanation This match is used to specify the ICMP type to match.
ICMP types can be specified either by their numeric values
or by their names. Numerical values are specified in RFC
792. To find a complete listing of the ICMP name values,

Step by Step™ Linux Guide. Page 95

do an iptables --protocol icmp --help, or check the ICMP
types appendix. This match can also be inverted with the !
sign in this, --icmp-type ! 8, fashion. Note that some ICMP
types are obsolete, and others again may be "dangerous' for
an unprotected host since they may, among other things,
redirect packets to the wrong places.

6.4.3. Explicit matches

Explicit matches are those that have to be specifically loaded with the -m
or --match option. State matches, for example, demand the directive -m
state prior to entering the actual match that you want to use. Some of
these matches may be protocol specific . Some may be unconnected with
any specific protocol - for example connection states. These might be
NEW (the first packet of an as yet unestablished connection),
ESTABLISHED (a connection that is aready registered in the kernel),
RELATED (a new connection that was created by an older, established
one) etc. A few may just have been evolved for testing or experimental
purposes, or just to illustrate what iptables is capable of. This in turn
means that not all of these matches may at first sight be of any use.
Nevertheless, it may well be that you personaly will find a use for
specific explicit matches. And there are new ones coming along all the
time, with each new iptables release. Whether you find a use for them or
not depends on your imagination and your needs. The difference
between implicitly loaded matches and explicitly loaded ones, is that the
implicitly loaded matches will automatically be loaded when, for
example, you match on the properties of TCP packets, while explicitly
loaded matches will never be loaded automatically - it is up to you to
discover and activate explicit matches.

6.4.3.1. Limit match

The limit match extension must be loaded explicitly with the -m limit
option. This match can, for example, be used to advantage to give
limited logging of specific rules etc. For example, you could use this to
match all packets that does not exceed a given value, and after this value

Step by Step™ Linux Guide. Page 96

has been exceeded, limit logging of the event in question. Think of a
time limit : You could limit how many times a certain rule may be
matched in a certain time frame, for example to lessen the effects of DoS
syn flood attacks. This is its main usage, but there are more usages, of
course. The limit match may also be inverted by adding a! flag in front
of the limit match. It would then be expressed as -m limit ! --limit
5/s.This means that all packets will be matched after they have broken
thelimit.

To further explain the limit match, it is basically a token bucket filter.
Consider having a leaky bucket where the bucket leaks X packets per
time-unit. X is defined depending on how many matching packets we
get, so if we get 3 packets, the bucket leaks 3 packets per that time-unit.
The --limit option tells us how many packets to refill the bucket with per
time-unit, while the --limit-bur st option tells us how big the bucket isin
the first place. So, setting --limit 3/minute --limit-burst 5, and then
receiving 5 matches will empty the bucket. After 20 seconds, the bucket
is refilled with another token, and so on until the --limit-burst is reached
again or until they get used.

Consider the example below for further explanation of how this may |ook.

1. Weset arulewith -m limit --limit 5/second --limit-burst 10/second.
The limit-burst token bucket is set to 10 initially. Each packet that
matches the rule uses a token.

2. We get packet that matches, 1-2-3-4-5-6-7-8-9-10, all within a
1/1000 of a second.

3. Thetoken bucket is now empty. Once the token bucket is empty, the
packets that qualify for the rule otherwise no longer match the rule
and proceed to the next rule if any, or hit the chain policy.

4. For each 1/5 swithout a matching packet, the token count goes up by
1, upto amaximum of 10. 1 second after receiving the 10 packets, we
will once again have 5 tokens | eft.

5. And of course, the bucket will be emptied by 1 token for each packet
it receives.

Step by Step™ Linux Guide. Page 97

Table 6-8.

Match
Example
Explanation

Match
Example
Explanation

Limit match options

--limit
iptables-A INPUT -m limit --limit 3/hour

This sets the maximum average match rate for the limit
match. You specify it with a number and an optiona time
unit. The following time units are currently recognized:
/second /minute /hour /day. The default value hereis 3 per
hour, or 3/hour. This tells the limit match how many times
to alow the match to occur per time unit (e.g. per minute).

--limit-bur st
iptables-A INPUT -m limit --limit-burst 5

This is the setting for the burst limit of the limit match. It
tells iptables the maximum number of packets to match
within the given time unit. This number gets decremented
by one for every time unit (specified by the --limit option)
in which the event does not occur, back down to the lowest
possible value, 1. If the event is repeated, the counter is
again incremented, until the count reaches the burst limit.
And so on. The default --limit-burst value is 5. For a
simple way of checking out how this works, you can use the
example Limit-match.txt one-rule-script. Using this script,
you can see for yourself how the limit rule works, by ssmply
sending ping packets at different intervals and in different
burst numbers. All echo replies will be blocked until the
threshold for the burst limit has again been reached.

6.4.3.2. MAC match

The MAC (Ethernet Media Access Control) match can be used to match
packets based on their MAC source address. As of writing this
documentation, this match is a little bit limited, however, in the future

this may be

more evolved and may be more useful. This match can be

Step by Step™ Linux Guide. Page 98

used to match packets on the source MAC address only as previously

said.

Do note that to use this module we explicitly load it with the -m
mac option. The reason that | am saying thisisthat alot of
people wonder if it should not be -m mac-sour ce, which it
should not.

Table 6-9. MAC match options

Match

Example

--mMac-sour ce

iptables-A INPUT -m mac --mac-sour ce
00:00:00:00:00:01

Explanation This match is used to match packets based on their MAC

source address. The MAC address specified must be in the
form XX: XX: XX: XX: XX: XX, else it will not be legal. The
match may be reversed with an'! sign and would look like --
mac-source ! 00:00:00:00:00:01. This would in other
words reverse the meaning of the match, so that all packets
except packets from this MAC address would be matched.
Note that since MAC addresses are only used on Ethernet
type networks, this match will only be possible to use for
Ethernet interfaces. The MAC match is only valid in the
PREROUTING, FORWARD and INPUT chans and
nowhere else.

6.4.3.3. Mark match

The mark match extension is used to match packets based on the marks
they have set. A mark is a specia field, only maintained within the
kernel, that is associated with the packets as they travel through the
computer. Marks may be used by different kernel routines for such tasks
as traffic shaping and filtering. As of today, there is only one way of
setting a mark in Linux, namely the MARK target in iptables. This was
previously done with the FWMARK target in ipchains, and this is why
people still refer to FWMARK in advanced routing areas. The mark

Step by Step™ Linux Guide. Page 99

field is currently set to an unsigned integer, or 4294967296 possible
values on a 32 bit system. In other words, you are probably not going to
run into this limit for quite some time.

Table 6-10. Mark match options

Match --mark
Example |iptables-t mangle-A INPUT -m mark --mark 1

Explanation This match is used to match packets that have previously
been marked. Marks can be set with the MARK target
which we will discuss in the next section. All packets
traveling through Netfilter get a specia mark field
associated with them. Note that this mark field is not in any
way propagated, within or outside the packet. It stays inside
the computer that made it. If the mark field matches the
mark, it is a match. The mark field is an unsigned integer,
hence there can be a maximum of 4294967296 different
marks. You may aso use a mask with the mark. The mark
specification would then look like, for example, --mark 1/1.
If amask is specified, it islogically AND ed with the mark
specified before the actual comparison.

6.4.3.4. Multiport match

The multiport match extension can be used to specify multiple
destination ports and port ranges. Without the possibility this match
gives, you would have to use multiple rules of the same type, just to
match different ports.

Y ou can not use both standard port matching and multiport
@ matching at the same time, for example you can't write: --sport

1024:63353 -m multiport --dport 21,23,80. Thiswill smply

not work. What in fact happens, if you do, is that iptables honors

the first element in the rule, and ignores the multiport
instruction.

Step by Step™ Linux Guide. Page 100

Table 6-11. Multiport match options

Match --Sour ce-port
Example iptables-A INPUT -p tcp -m multiport --sour ce-port
22,53,80,110

Explanation This match matches multiple source ports. A maximum of
15 separate ports may be specified. The ports must be
comma delimited, as in the above example. The match may
only be used in conjunction with the -p tcp or -p udp
matches. It is mainly an enhanced version of the normal --
sour ce-port match.

Match --destination-port

Example iptables-A INPUT -p tcp -m multiport --destination-
port 22,53,80,110

Explanation This match is used to match multiple destination ports. It
works exactly the same way as the above mentioned source
port match, except that it matches destination ports. It too
has a limit of 15 ports and may only be used in conjunction
with -p tcp and -p udp.

Match --port
Example |iptables-A INPUT -p tcp -m multiport --port
22,53,80,110

Explanation This match extension can be used to match packets based
both on their destination port and their source port. It works
the same way as the --source-port and --destination-port
matches above. It can take a maximum of 15 ports and can
only be used in conjunction with -p tcp and -p udp. Note
that the --port match will only match packets coming in
from and going to the same port, for example, port 80 to
port 80, port 110 to port 110 and so on.

Step by Step™ Linux Guide. Page 101

6.4.3.5. Owner match

The owner match extension is used to match packets based on the
identity of the process that created them. The owner can be specified as
the process ID either of the user who issued the command in question,
that of the group, the process, the session, or that of the command itself.
This extension was originally written as an example of what iptables
could be used for. The owner match only works within the OUTPUT
chain, for obvious reasons: It is pretty much impossible to find out any
information about the identity of the instance that sent a packet from the
other end, or where there is an intermediate hop to the rea destination.
Even within the OUTPUT chain it is not very reliable, since certain
packets may not have an owner. Notorious packets of that sort are
(among other things) the different ICMP responses. ICMP responses will
never match.

Table 6-12. Owner match options

Match --uid-owner
Example |iptables-A OUTPUT -m owner --uid-owner 500

Explanation This packet match will match if the packet was created by
the given User ID (UID). This could be used to match
outgoing packets based on who created them. One possible
use would be to block any other user than root from opening
new connections outside your firewall. Another possible use
could be to block everyone but the http user from sending
packets from the HTTP port.

Match --gid-owner
Example |iptables-A OUTPUT -m owner --gid-owner 0

Explanation This match is used to match all packets based on their
Group ID (GID). This means that we match all packets
based on what group the user creating the packets are in.
This could be used to block all but the users in the network
group from getting out onto the Internet or, as described
above, only to alow members of the http group to create
packets going out from the HTTP port.

Step by Step™ Linux Guide. Page 102

Match
Example
Explanation

Match
Example
Explanation

--pid-owner
iptables-A OUTPUT -m owner --pid-owner 78

This match is used to match packets based on the Process
ID (PID) that was responsible for them. This match is a bit
harder to use, but one example would be only to alow PID
94 to send packets from the HTTP port (if the HTTP
process is not threaded, of course). Alternatively we could
write a small script that grabs the PID from a ps output for a
specific daemon and then adds arule for it. For an example,
you could have a rule as shown in the Pid-owner.txt
example.

--sid-owner
iptables-A OUTPUT -m owner --sid-owner 100

This match is used to match packets based on the Session
ID used by the program in question. The value of the SID,
or Session ID of a process, is that of the process itself and
all processes resulting from the originating process. These
latter could be threads, or a child of the original process. So,
for example, al of our HTTPD processes should have the
same SID as their parent process (the originating HTTPD
process), if our HTTPD is threaded (most HTTPDs are,
Apache and Roxen for instance). To show this in example,
we have created a small script called Sd-owner.txt. This
script could possibly be run every hour or so together with
some extra code to check if the HTTPD is actually running
and start it again if necessary, then flush and re-enter our
OUTPUT chain if needed.

6.4.3.6. State match

The state match extension is used in conjunction with the connection
tracking code in the kernel. The state match accesses the connection
tracking state of the packets from the conntracking machine. This allows
us to know in what state the connection is, and works for pretty much all

Step by Step™ Linux Guide. Page 103

protocols, including stateless protocols such as ICMP and UDP. In all
cases, there will be a default timeout for the connection and it will then
be dropped from the connection tracking database. This match needs to
be loaded explicitly by adding a-m state statement to the rule. Y ou will
then have access to one new match caled state. The concept of state
matching is covered more fully in the The state machine chapter, since it
issuch alargetopic.

Table 6-13. State matches

Match --state

Example |iptables-A INPUT -m state --state
RELATED,ESTABLISHED

Explanation This match option tells the state match what states the
packets must be in to be matched. There are currently 4
states that can be used. INVALID, ESTABLISHED, NEW
and RELATED. INVALID means that the packet is
associated with no known stream or connection and that it
may contain faulty data or headers. ESTABLISHED means
that the packet is part of an already established connection
that has seen packets in both directions and is fully valid.
NEW means that the packet has or will start a new
connection, or that it is associated with a connection that
has not seen packets in both directions. Finally, RELATED
means that the packet is starting a new connection and is
associated with an already established connection. This
could for example mean an FTP data transfer, or an ICMP
error associated with an TCP or UDP connection. Note that
the NEW state does not look for SYN bits in TCP packets
trying to start a new connection and should, hence, not be
used unmodified in cases where we have only one firewall
and no load baancing between different firewalls.
However, there may be times where this could be useful.
For more information on how this could be used, read the
The state machine chapter.

Step by Step™ Linux Guide. Page 104

6.4.3.7. TOS match

The TOS match can be used to match packets based on their TOS field.
TOS stands for Type Of Service, consists of 8 bits, and is located in the
IP header. This match is loaded explicitly by adding -m tos to the rule.
TOS is normally used to inform intermediate hosts of the precedence of
the stream and its content (it doesn't really, but it informs of any specific
requirements for the stream, such as it having to be sent as fast as
possible, or it needing to be able to send as much payload as possible).
How different routers and administrators deal with these values depends.
Most do not care at al, while others try their best to do something good
with the packets in question and the data they provide.

Table 6-14. TOS matches

Match --tos
Example |iptables-A INPUT -p tcp -m tos--tos 0x16

Explanation This match is used as described above. It can match packets
based on their TOS field and their value. This could be
used, among other things together with the iproute2 and
advanced routing functions in Linux, to mark packets for
later usage. The match takes an hex or numeric value as an
option, or possibly one of the names resulting from
'iptables -m tos -h'. At the time of writing it contained the
following named values. M ninize-Delay 16 (0x10),
Maxi m ze- Thr oughput 8 (0x08), Maxi m ze-
Reliability 4 (0x04), M ninize-Cost 2 (0x02), and
Nor mal - Service 0O (0x00). M ninize-Del ay means to
minimize the delay in putting the packets through - example
of standard services that would require this include telnet,
SSH and FTP-control. Maxi ni ze- Thr oughput means to
find a path that alows as big a throughput as possible - a
standard protocol would be FTP-data. Maxim ze-
Rel i ability means to maximize the reliability of the
connection and to use lines that are as reliable as possible -
a couple of typical examples are BOOTP and TFTP.

Step by Step™ Linux Guide. Page 105

M ni ni ze- Cost means minimizing the cost of packets
getting through each link to the client or server; for example
finding the route that costs the least to travel aong.
Examples of normal protocols that would use this would be
RTSP (Real Time Stream Control Protocol) and other
streaming video/radio protocols. Finally, Nor mal - Ser vi ce
would mean any normal protocol that has no special needs.

6.4.3.8. TTL match

The TTL match is used to match packets based on their TTL (Time To
Live) field residing in the IP headers. The TTL field contains 8 bits of
data and is decremented once every time it is processed by an
intermediate host between the client and recipient host. If the TTL
reaches 0, an ICMP type 11 code O (TTL equals O during transit) or code
1 (TTL equals O during reassembly) is transmitted to the party sending
the packet and informing it of the problem. This match is only used to
match packets based on their TTL, and not to change anything. The
latter, incidentally, applies to all kinds of matches. To load this match,
you need to add an -m ttl to therule.

Table 6-15. TTL matches

Match --ttl
Example |iptables-A OUTPUT -m ttl --ttl 60

Explanation This match option is used to specify the TTL value to
match. It takes a numeric value and matches this value
within the packet. There is no inversion and there are no
other specifics to match. It could, for example, be used for
debugging your local network - e.g. LAN hosts that seem to
have problems connecting to hosts on the Internet - or to
find possible ingress by Trojans etc. The usage is relatively
limited, however; its usefulness realy depends on your
imagination. One example would be to find hosts with bad
default TTL values (could be due to a badly implemented

Step by Step™ Linux Guide. Page 106

TCP/IP stack, or simply to misconfiguration).

6.4.4. Unclean match

The unclean match takes no options and requires no more than explicitly
loading it when you want to use it. Note that this option is regarded as
experimental and may not work at all times, nor will it take care of al
unclean packages or problems. The unclean match tries to match packets
that seem malformed or unusual, such as packets with bad headers or
checksums and so on. This could be used to DROP connections and to
check for bad streams, for example; however you should be aware that it
could possibly break legal connections.

6.5. TargetsJumps

The target/jumps tells the rule what to do with a packet that is a perfect
match with the match section of the rule. There are a couple of basic
targets, the ACCEPT and DROP targets, which we will deal with first.
However, before we do that, let us have a brief look at how a jump is
done.

The jump specification is done in exactly the same way as in the target
definition, except that it requires a chain within the same table to jump
to. To jump to a specific chain, it is of course a prerequisite that that
chain exists. As we have aready explained, a user-defined chain is
created with the -N command. For example, let's say we create achain in
thefilter table called tcp_packets, like this:

i ptables -N tcp_packets
We could then add a jump target to it like this:
i ptables -A INPUT -p tcp -j tcp_packets

We would then jump from the INPUT chain to the tcp_packets chain
and start traversing that chain. When/If we reach the end of that chain,

Step by Step™ Linux Guide. Page 107

we get dropped back to the INPUT chain and the packet starts traversing
from the rule one step below where it jumped to the other chain
(tcp_packets in this case). If a packet is ACCEPTed within one of the
sub chains, it will be ACCEPT'ed in the superset chain aso and it will
not traverse any of the superset chains any further. However, do note that
the packet will traverse all other chains in the other tables in a normal
fashion. For more information on table and chain traversing, see the
Traversing of tables and chains chapter.

Targets on the other hand specify an action to take on the packet in
guestion. We could for example, DROP or ACCEPT the packet
depending on what we want to do. There are also a number of other
actions we may want to take, which we will describe further on in this
section. Jumping to targets may incur different results, as it were. Some
targets will cause the packet to stop traversing that specific chain and
superior chains as described above. Good examples of such rules are
DROP and ACCEPT. Rules that are stopped, will not pass through any
of the rules further on in the chain or in superior chains. Other targets,
may take an action on the packet, after which the packet will continue
passing through the rest of the rules. A good example of this would be
the LOG, ULOG and TOS targets. These targets can log the packets,
mangle them and then pass them on to the other rules in the same set of
chains. We might, for example, want this so that we in addition can
mangle both the TTL and the TOS values of a specific packet/stream.
Some targets will accept extra options (What TOS value to use etc),
while others don't necessarily need any options - but we can include
them if we want to (log prefixes, masquerade-to ports and so on). We
will try to cover al of these points as we go through the target
descriptions. Let us have alook at what kinds of targets there are.

6.5.1. ACCEPT target

This target needs no further options. As soon as the match specification
for a packet has been fully satisfied, and we specify ACCEPT asthe
target, the rule is accepted and will not continue traversing the current
chain or any other onesin the same table. Note however, that a packet
that was accepted in one chain might still travel through chains within
other tables, and could still be dropped there. There is nothing special
about this target whatsoever, and it does not require, nor have the

Step by Step™ Linux Guide. Page 108

possibility of, adding options to the target. To use this target, we smply
specify -j ACCEPT.

6.5.2. DNAT target

The DNAT target is used to do Destination Network Address
Trandation, which means that it is used to rewrite the Desti nation | P
address of a packet. If a packet is matched, and this is the target of the
rule, the packet, and all subsequent packets in the same stream will be
translated, and then routed on to the correct device, host or network. This
target can be extremely useful, for example, when you have an host
running your web server inside a LAN, but no real IP to give it that will
work on the Internet. You could then tell the firewall to forward all
packets going to its own HTTP port, on to the real web server within the
LAN. We may also specify a whole range of destination IP addresses,
and the DNAT mechanism will choose the destination IP address at
random for each stream. Hence, we will be able to deal with a kind of
load balancing by doing this.

Note that the DNAT target is only available within the PREROUTING
and OUTPUT chains in the nat table, and any of the chains called upon
from any of those listed chains. Note that chains containing DNAT
targets may not be used from any other chains, such as the
POSTROUTING chain.

Table 6-16. DNAT target

Option --to-destination

Example iptables-t nat -A PREROUTING -p tcp -d 15.45.23.67 --
dport 80 -j DNAT --to-destination 192.168.1.1-
192.168.1.10

Explanation The --to-destination option tells the DNAT mechanism
which Destination IP to set in the IP header, and where to
send packets that are matched. The above example would
send on all packets destined for IP address 15.45.23.67 to a
range of LAN IP's, namely 192.168.1.1 through 10. Note, as
described previoudly, that a single stream will always use

Step by Step™ Linux Guide. Page 109

the same host, and that each stream will randomly be given
an |P address that it will always be Destined for, within that
stream. We could also have specified only one IP address,
in which case we would always be connected to the same
host. Also note that we may add a port or port range to
which the traffic would be redirected to. This is done by
adding, for example, an :80 statement to the IP addresses to
which we want to DNAT the packets. A rule could then
look like --to-destination 192.168.1.1:80 for example, or
like --to-destination 192.168.1.1:80-100 if we wanted to
specify a port range. As you can see, the syntax is pretty
much the same for the DNAT target, asfor the SNAT target
even though they do two totaly different things. Do note
that port specifications are only valid for rules that specify
the TCP or UDP protocols with the --protocol option.

Since DNAT requires quite a lot of work to work properly, | have
decided to add a larger explanation on how to work with it. Let's take a
brief example on how things would be done normally. We want to
publish our website via our Internet connection. We only have one IP
address, and the HTTP server is located on our internal network. Our
firewall has the external 1P address$INET _|P, and our HTTP server has
the internal IP address $HTTP_IP and finaly the firewall has the
internal 1P address $LAN_IP. The first thing to do is to add the
following simple rule to the PREROUTING chain in the nat table:

i ptables -t nat -A PREROUTING --dst $INET_IP -p tcp
--dport 80 -j DNAT \--to-destination $HTTP_IP

Now, all packets from the Internet going to port 80 on our firewall are
redirected (or DNAT'ed) to our internal HTTP server. If you test this
from the Internet, everything should work just perfect. So, what happens
if you try connecting from a host on the same local network asthe HTTP
server? It will simply not work. This is a problem with routing really.
We start out by dissect what happens in a normal case. The external box
has IP address SEXT_BOX, to maintain readability.

1. Packet leaves the connecting host going to $SINET _I P and source
$EXT_BOX.

2. Packet reachesthe firewall.
Step by Step™ Linux Guide. Page 110

Firewall DNAT 's the packet and runs the packet through all different
chains etcetera.

Packet leaves the firewall and travelsto the SHTTP_IP.

Packet reachesthe HTTP server, and the HTTP box replies back
through the firewall, if that is the box that the routing database has
entered as the gateway for SEXT_BOX. Normally, thiswould be the
default gateway of the HTTP server.

Firewall Un-DNAT's the packet again, so the packet looks asif it
was replied to from the firewall itself.

Reply packet travels as usual back to the client SEXT_BOX.

Now, we will consider what happens if the packet was instead generated
by a client on the same network as the HTTP server itself. The client has
the IP address $L AN_BOX, while the rest of the machines maintain the
same settings.

1.

2.

Packet leaves 3L AN_BOX to SINET_IP.
The packet reaches the firewall.

The packet gets DNAT 'ed, and all other required actions are taken,
however, the packet is not SNAT 'ed, so the same source IP addressis
used on the packet.

The packet leaves the firewall and reachesthe HTTP server.

The HTTP server tries to respond to the packet, and seesin the
routing databases that the packet came from alocal box on the same
network, and hence tries to send the packet directly to the original
source | P address (which now becomes the destination IP address).

The packet reaches the client, and the client gets confused since the
return packet does not come from the host that it sent the original
request to. Hence, the client drops the reply packet, and waits for the
"real" reply.

Step by Step™ Linux Guide. Page 111

The ssimple solution to this problem isto SNAT all packets entering the
firewall and leaving for a host or IP that we know we do DNAT to. For
example, consider the above rule. We SNAT the packets entering our
firewall that are destined for SHTTP_IP port 80 so that they look as if
they came from $LAN_IP. This will force the HTTP server to send the
packets back to our firewall, which Un-DNAT's the packets and sends
them on to the client. The rule would look something like this:

i ptables -t nat -A POSTROUTING -p tcp --dst $HTTP_IP
--dport 80 -j SNAT \--to-source SLAN IP

Remember that the POSTROUTING chain is processed last of the
chains, and hence the packet will aready be DNAT'ed once it reaches
that specific chain. Thisis the reason that we match the packets based on
the internal address.

This last rule will seriously harm your logging, so it is realy
advisable not to use this method, but the whole example is still a
valid one for all of those who can't afford to set up a specific
DMZ or alike. What will happen is this, packet comes from the
Internet, gets SNAT'ed and DNAT'ed, and finally hitsthe HTTP
server (for example). The HTTP server now only sees the
request as if it was coming from the firewall, and hence logs all
requests from the internet as if they came from the firewall.

This can also have even more severe implications. Takea SMTP
server on the LAN, that alows requests from the internal
network, and you have your firewall set up to forward SMTP
traffic to it. You have now effectively created an open relay
SMTP server, with horrenduously bad logging!

You will in other words be better off solving these problems by
either setting up a separate DNS server for your LAN, or to
actually set up a separate DMZ, the latter being preferred if you
have the money. |

Step by Step™ Linux Guide. Page 112

You think this should be enough by now, and it realy is, unless
considering one final aspect to this whole scenario. What if the firewall
itself tries to access the HTTP server, where will it go? As it looks now,
it will unfortunately try to get to its own HTTP server, and not the server
residingon $HTTP_IP. To get around this, we need to add a DNAT rule
inthe OUTPUT chain as well. Following the above example, this should
look something like the following:

i ptables -t nat -A OQUTPUT --dst $INET IP -p tcp --
dport 80 -j DNAT \--to-destination $HTTP_IP

Adding this final rule should get everything up and running. All separate
networks that do not sit on the same net as the HTTP server will run
smoothly, all hosts on the same network as the HTTP server will be able
to connect and finally, the firewall will be able to do proper connections
aswell. Now everything works and no problems should arise.

Everyone should realize that these rules only effects how the

packet is DNAT'ed and SNAT'ed properly. In addition to these
rules, you may also need extrarulesin thefilter table
(FORWARD chain) to allow the packets to traverse through
those chains aswell. Don't forget that all packets have already
gone through the PREROUTING chain, and should hence have
their destination addresses rewritten already by DNAT.

6.5.3. DROP target

The DROP target does just what it says, it drops packets dead and will
not carry out any further processing. A packet that matches a rule
perfectly and is then Dropped will be blocked. Note that this action
might in certain cases have an unwanted effect, since it could leave dead
sockets around on either host. A better solution in cases where this is
likely would be to use the REJECT target, especially when you want to
block port scanners from getting too much information, such on as
filtered ports and so on. Also note that if a packet has the DROP action
taken on it in a subchain, the packet will not be processed in any of the

Step by Step™ Linux Guide. Page 113

main chains either in the present or in any other table. The packet isin
other words totally dead. As weve seen previoudly, the target will not
send any kind of information in either direction, nor to intermediaries
such asrouters.

6.5.4. LOG target

The LOG target is specialy designed for logging detailed information
about packets. These could for example be considered as illegal. Or,
logging can be used purely for bug hunting and error finding. The LOG
target will return specific information on packets, such as most of the IP
headers and other information considered interesting. It does this via the
kernel logging facility, normally syslogd. This information may then be
read directly with dmesg, or from the syslogd logs, or with other
programs or applications. Thisis an excellent target to use in debug your
rule-sets, so that you can see what packets go where and what rules are
applied on what packets. Note as well that it could be areally great idea
to use the L OG target instead of the DROP target while you are testing a
rule you are not 100% sure about on a production firewall, since a syntax
error in the rule-sets could otherwise cause severe connectivity problems
for your users. Also note that the UL OG target may be interesting if you
are using really extensive logging, since the UL OG target has support
direct logging to MySQL databases and suchlike.

Note that if you get undesired logging direct to consoles, thisis
@ not an iptables or Netfilter problem, but rather a problem
caused by your syslogd configuration - most probably

/ et c/ sysl og. conf . Read more in man syslog.conf for
information about this kind of problem.

The LOG target currently takes five options that could be of interest if
you have specific information needs, or want to set different options to
specific values. They are all listed below.

Step by Step™ Linux Guide. Page 114

Table6-17. LOG target options

Option
Example
Explanation

Option
Example

Explanation

Option

--log-level
iptables-A FORWARD -p tcp -j LOG --log-level debug

Thisisthe option to tell iptables and syslog which log level
to use. For a complete list of log levels read the
sysl og. conf manual. Normally there are the following log
levels, or priorities as they are normally referred to: debug,
info, notice, warning, warn, err, error, crit, alert, emerg and
panic. The keyword error is the same as err, warn is the
same as warning and panic is the same as emerg. Note that
all three of these are deprecated, in other words do not use
error, warn and panic. The priority defines the severity of
the message being logged. All messages are logged through
the kernel facility. In other words, setting kern.=info
/var/log/iptables in your sysl og. conf file and then letting
all your LOG messages in iptables use log level info,
would make al messages appear in the
/var/log/iptables file. Note that there may be other
messages here as well from other parts of the kernel that
uses the info priority. For more information on logging |
recommend you to read the syslog and sysl og. conf man-
pages as well as other HOWTOs etc.

--log-pr efix

iptables-A INPUT -p tcp -j LOG --log-prefix " INPUT
packets'

This option tells iptables to prefix all log messages with a
specific prefix, which can the easily be combined with grep
or other tools to track specific problems and output from
different rules. The prefix may be up to 29 letters long,
including white-spaces and other special symbols.

--log-tcp-sequence

Step by Step™ Linux Guide. Page 115

Example
Explanation

Option
Example
Explanation

Option
Example
Explanation

iptables-A INPUT -p tcp -j LOG --log-tcp-sequence

This option will log the TCP Sequence numbers, together
with the log message. The TCP Sequence number are
special numbers that identify each packet and where it fits
into a TCP sequence, as well as how the stream should be
reassembled. Note that this option constitutes a security risk
if the logs are readable by unauthorized users, or by the
world for that matter. As does any log that contains output
from iptables.

--log-tcp-options

iptables-A FORWARD -p tcp -j LOG --log-tcp-options
The --log-tcp-options option logs the different options from
the TCP packet headers and can be valuable when trying to
debug what could go wrong, or what has actually gone

wrong. This option does not take any variable fields or
anything like that, just as most of the L OG options don't.

--log-ip-options

iptables-A FORWARD -p tcp -j LOG --log-ip-options
The --log-ip-options option will log most of the IP packet
header options. This works exactly the same as the --log-
tcp-options option, but instead works on the IP options.
These logging messages may be vauable when trying to

debug or track specific culprits, as well as for debugging -
in just the same way as the previous option.

6.5.5. MARK target

The MARK target is used to set Netfilter mark values that are
associated with specific packets. This target is only valid in the mangle
table, and will not work outside there. The MARK values may be used
in conjunction with the advanced routing capabilities in Linux to send
different packets through different routes and to tell them to use different
gqueue disciplines (qdisc), etc. For more information on advanced

Step by Step™ Linux Guide. Page 116

routing, check out the Linux Advanced Routing and Traffic Control
HOW-TO. Note that the mark value is not set within the actual package,
but is an value that is associated within the kernel with the packet. In
other words, you can not set a MARK for a packet and then expect the
MARK still to be there on another host. If this is what you want, you
will be better off with the TOS target which will mangle the TOS value
in the IP header.

Table6-18. MARK target options

Option --set-mark

Example |iptables-t mangle-A PREROUTING -p tcp --dport 22 -j
MARK --set-mark 2

Explanation The --set-mark option is required to set a mark. The --set-
mark match takes an integer value. For example, we may
set mark 2 on a specific stream of packets, or on all packets
from a specific host and then do advanced routing on that
host, to decrease or increase the network bandwidth, etc.

6.5.6. MASQUERADE target

The MASQUERADE target is used basicaly the same as the SNAT
target, but it does not require any --to-sour ce option. The reason for this
is that the MASQUERANDE target was made to work with, for example,
dial-up connections, or DHCP connections, which gets dynamic IP
addresses when connecting to the network in question. This means that
you should only use the MASQUERADE target with dynamically
assigned |P connections, which we don't know the actual address of at all
times. If you have a static IP connection, you should instead use the
SNAT target.

When you masguerade a connection, it means that we set the IP address
used on a specific network interface instead of the --to-source option,
and the IP address is automatically grabbed from the information about
the specific interface. The MASQUERADE target also has the effect

Step by Step™ Linux Guide. Page 117

that connections are forgotten when an interface goes down, which is
extremely good if we, for example, kill a specific interface. If we would
have used the SNAT target, we may have been left with a lot of old
connection tracking data, which would be lying around for days,
swallowing up worth-full connection tracking memory. Thisisin genera
the correct behavior when dealing with dial-up lines that are probable to
be assigned a different IP every time it is brought up. In case we are
assigned a different 1P, the connection is lost anyways, and it is more or
lessidiotic to keep the entry around.

It is still possible to use the MASQUERADE target instead of SNAT
even though you do have an static IP, however, it is not favorable since it
will add extra overhead, and there may be inconsistencies in the future
which will thwart your existing scripts and render them "unusable”.

Note that the MASQUERADE target is only vaid within the
POSTROUTING chain in the nat table, just as the SNAT target. The
MASQUERADE target takes one option specified below, which is
optional.

Table 6-19. MASQUERADE tar get

Option --to-ports

Example |iptables-t nat -A POSTROUTING -p TCP -
MASQUERADE --to-ports 1024-31000

Explanation The --to-ports option is used to set the source port or ports
to use on outgoing packets. Either you can specify a single
port like --to-ports 1025 or you may specify a port range as
--to-ports 1024-3000. In other words, the lower port range
delimiter and the upper port range delimiter separated with
a hyphen. This alters the default SNAT port-selection as
described in the SNAT target section. The --to-ports option
is only valid if the rule match section specifies the TCP or
UDP protocols with the --pr otocol match.

Step by Step™ Linux Guide. Page 118

6.5.7. MIRROR target

The MIRROR target is an experimental and demonstration target only,
and you are warned against using it, since it may result in really bad
loops hence, among other things, resulting in serious Denial of Service.
The MIRROR target is used to invert the source and destination fields in
the IP header, and then to retransmit the packet. This can cause some
really funny effects, and I'll bet that thanks to this target not just one red
faced cracker has cracked his own box by now. The effect of using this
target is stark, to say the least. Let's say we set up aMIRROR target for
port 80 at computer A. If host B were to come from yahoo.com, and try
to access the HTTP server at host A, the MIRROR target would return
the yahoo host's own web page (since thisis where it came from).

Note that the MIRROR target is only valid within the INPUT,
FORWARD and PREROUTING chains, and any user-defined chains
which are called from those chains. Also note that outgoing packets
resulting from the MIRROR target are not seen by any of the normal
chains in the filter, nat or mangle tables, which could give rise to loops
and other problems. This could make the target the cause of unforeseen
headaches. For example, a host might send a spoofed packet to another
host that uses the MIRROR command with a TTL of 255, at the same
time spoofing its own packet, so as to seem as if it comes from a third
host that uses the MIRROR command. The packet will then bounce
back and forth incessantly, for the number of hops there are to be
completed. If there is only 1 hop, the packet will jump back and forth
240-255 times. Not bad for a cracker, in other words, to send 1500 bytes
of data and eat up 380 kbyte of your connection. Note that this is a best
case scenario for the cracker or script kiddie, whatever we want to call
them.

6.5.8. QUEUE target

The QUEUE target is used to queue packets to User-land programs and
applications. It is used in conjunction with programs or utilities that are

Step by Step™ Linux Guide. Page 119

extraneous to iptables and may be used, for example, with network
accounting, or for specific and advanced applications which proxy or
filter packets. We will not discuss this target in depth, since the coding of
such applications is out of the scope of this tutoria. First of all it would
simply take too much time, and secondly such documentation does not
have anything to do with the programming side of Netfilter and iptables.
All of this should be fairly well covered in the Netfilter Hacking HOW-
TO.

6.5.9. REDIRECT target

The REDIRECT target is used to redirect packets and streams to the
machine itself. This means that we could for example REDIRECT all
packets destined for the HTTP ports to an HTTP proxy like squid, on our
own host. Locally generated packets are mapped to the 127.0.0.1
address. In other words, this rewrites the destination address to our own
host for packets that are forwarded, or something aike. The
REDIRECT target is extremely good to use when we want, for
example, transparent proxying, where the LAN hosts do not know about
the proxy at all.

Note that the REDIRECT target is only valid within the PREROUTING
and OUTPUT chains of the nat table. It is aso valid within user-defined
chains that are only called from those chains, and nowhere else. The
REDIRECT target takes only one option, as described below.

Table 6-20. REDIRECT target

Option --to-ports

Example |iptables-t nat -A PREROUTING -p tcp --dport 80 -j
REDIRECT --to-ports 8080

Explanation The --to-ports option specifies the destination port, or port
range, to use. Without the --to-ports option, the destination
port is never atered. Thisis specified, as above, --to-ports
8080 in case we only want to specify one port. If we would
want to specify an port range, we would do it like --to-ports
8080-8090, which tells the REDIRECT target to redirect

Step by Step™ Linux Guide. Page 120

the packets to the ports 8080 through 8090. Note that this
option is only available in rules specifying the TCP or UDP
protocol with the --protocol matcher, since it wouldn't
make any sense anywhere else.

6.5.10. REJECT target

The REJECT target works basically the same as the DROP target, but it
also sends back an error message to the host sending the packet that was
blocked. The REJECT target is as of today only valid in the INPUT,
FORWARD and OUTPUT chains or their sub chains. After all, these
would be the only chains in which it would make any sense to put this
target. Note that all chains that use the REJECT target may only be
called by the INPUT, FORWARD, and OUTPUT chains, else they won't
work. There is currently only one option which controls the nature of
how this target works, though this may in turn take a huge set of
variables. Most of them are fairly easy to understand, if you have a basic
knowledge of TCF/IP.

Table 6-21. REJECT target

Option --rgj ect-with

Example |iptables-A FORWARD -p TCP --dport 22 -j REJECT --
r ¢ ect-with tcp-reset

Step by Step™ Linux Guide. Page 121

Explanation This option tells the REJECT target what response to send
to the host that sent the packet that we are rgjecting. Once
we get a packet that matches a rule in which we have
specified this target, our host will first of all send the
associated reply, and the packet will then be dropped dead,
just as the DROP target would drop it. The following reject
types are currently valid: icmp-net-unreachable, icmp-host-
unreachable, icmp-port-unreachable, icmp-proto-
unreachable, icmp-net-prohibited and icmp-host-prohibited.
The default error message is to send an port-unreachable
to the host. All of the above are ICMP error messages and
may be set as you wish. Y ou can find further information on
their various purposes in the appendix ICMP types. Thereis
also the option echo-reply, but this option may only be used
in conjunction with rules which would match ICMP ping
packets. Finaly, there is one more option called tcp-reset,
which may only be used together with the TCP protocol.
The tcp-reset option will tell REJECT to send an TCP
RST packet in reply to the sending host. TCP RST packets
are used to close open TCP connections gracefully. For
more information about the TCP RST read RFC 793 -
Transmission Control Protocol. As stated in the iptables
man page, this is mainly useful for blocking ident probes
which frequently occur when sending mail to broken mail
hosts, that won't otherwise accept your mail.

6.5.11. RETURN target

The RETURN target will cause the current packet to stop traveling
through the chain where it hit the rule. If it is the subchain of another
chain, the packet will continue to travel through the superior chains as if
nothing had happened. If the chain is the main chain, for example the
INPUT chain, the packet will have the default policy taken on it. The
default policy isnormally set to ACCEPT, DROP or similar.

For example, let's say a packet enters the INPUT chain and then hits a
rule that it matches and that tellsit to --jump EXAMPLE_CHAIN. The
packet will then start traversing the EXAMPLE_CHAIN, and all of a

Step by Step™ Linux Guide. Page 122

sudden it matches a specific rule which has the --jump RETURN target
set. It will then jump back to the INPUT chain. Another example would
be if the packet hit a --jump RETURN rule in the INPUT chain. It
would then be dropped to the default policy as previously described, and
no more actions would be taken in this chain.

6.5.12. SNAT target

The SNAT target is used to do Source Network Address Trangdlation,
which means that this target will rewrite the Source IP address in the IP
header of the packet. This is what we want, for example, when several
hosts have to share an Internet connection. We can then turn on ip
forwarding in the kernel, and write an SNAT rule which will trandlate all
packets going out from our local network to the source I P of our own
Internet connection. Without doing this, the outside world would not
know where to send reply packets, since our local networks mostly use
the IANA specified IP addresses which are allocated for LAN networks.
If we forwarded these packets as is, no one on the Internet would know
that they where actually from us. The SNAT target does al the
trandlation needed to do this kind of work, letting all packets leaving our
LAN look as if they came from a single host, which would be our
firewall.

The SNAT target is only vaid within the nat table, within the
POSTROUTING chain. This is in other words the only chain in which
you may use SNAT. Only the first packet in a connection is mangled by
SNAT, and after that all future packets using the same connection will
also be SNATted. Furthermore, the initia rules in the POSTROUTING
chain will be applied to all the packets in the same stream.

Table 6-22. SNAT target

Option --to-sour ce

Example |iptables-t nat -A POSTROUTING -p tcp -0 ethO -j
SNAT --to-sour ce 194.236.50.155-194.236.50.160: 1024-
32000

Step by Step™ Linux Guide. Page 123

Explanation The --to-sour ce option is used to specify which source the
packet should use. This option, at its smplest, takes one IP
address which we want to use for the source | P address in
the IP header. If we want to balance between severa 1P
addresses, we can use a range of |P addresses, separated by
a hyphen. The --to--source IP numbers could then, for
instance, be something like in the above example:
194.236.50.155-194.236.50.160. The source IP for each
stream that we open would then be allocated randomly from
these, and a single stream would always use the same IP
address for all packets within that stream. We can aso
specify arange of ports to be used by SNAT. All the source
ports would then be confined to the ports specified. The port
bit of the rule would then look like in the example above,
:1024-32000. This is only valid if -p tcp or -p udp was
specified somewhere in the match of the rule in question.
iptables will always try to avoid making any port alterations
if possible, but if two hosts try to use the same ports,
iptables will map one of them to another port. If no port
range is specified, then if they're needed, al source ports
below 512 will be mapped to other ports below 512. Those
between source ports 512 and 1023 will be mapped to ports
below 1024. All other ports will be mapped to 1024 or
above. As previoudly stated, iptables will always try to
maintain the source ports used by the actual workstation
making the connection. Note that this has nothing to do with
destination ports, so if a client tries to make contact with an
HTTP server outside the firewall, it will not be mapped to
the FTP control port.

6.5.13. TOStarget

The TOS target is used to set the Type of Service field within the IP
header. The TOS field consists of 8 bits which are used to help in routing
packets. This is one of the fields that can be used directly within
iproute2 and its subsystem for routing policies. Worth noting, is that that
if you handle several separate firewalls and routers, this is the only way

Step by Step™ Linux Guide. Page 124

to propagate routing information within the actual packet between these
routers and firewalls. As previously noted, the MARK target - which
sets a MARK associated with a specific packet - is only available within
the kernel, and can not be propagated with the packet. If you feel a need
to propagate routing information for a specific packet or stream, you
should therefore set the TOS field, which was devel oped for this.

There are currently alot of routers on the Internet which do a pretty bad
job at this, so as of now it may prove to be a bit useless to attempt TOS
mangling before sending the packets on to the Internet. At best the
routers will not pay any attention to the TOS field. At worst, they will
look at the TOS field and do the wrong thing. However, as stated above,
the TOS field can most definitely be put to good use if you have alarge
WAN or LAN with multiple routers. You then in fact have the
possibility of giving packets different routes and preferences, based on
their TOS value - even though this might be confined to your own
network.

The TOS target is only capable of setting specific values, or

named values on packets. These predefined TOS values can be
found in the kernel include files, or more precisdly, the
Li nux/ i p. h file. The reasons are many, and you should actually
never need to set any other values; however, there are ways
around this limitation. To get around the limitation of only being
able to set the named values on packets, you can use the FTOS
patch available at the Paksecured Linux Kernel patches site
maintained by Matthew G. Marsh. However, be cautious with
this patch! Y ou should not need to use any other than the default
values, except in extreme cases.

can not be used outside it.

Also note that some old versions (1.2.2 or below) of iptables
provided a broken implementation of this target which did not
fix the packet checksum upon mangling, hence rendered the
packets bad and in need of retransmission. That in turn would

most probably lead to further mangling and the connection never
working.

@ Note that this target is only valid within the mangle table and

The TOS target only takes one option as described below.

Step by Step™ Linux Guide. Page 125

Table 6-23. TOS tar get

Option
Example

Explanation

--Set-tos

iptables-t mangle -A PREROUTING -p TCP --dport 22
-] TOS --set-tos 0x10

The --set-tos option tells the TOS mangler what TOS value
to set on packets that are matched. The option takes a
numeric value, either in hex or in decimal value. As the
TOS value consists of 8 hits, the value may be 0-255, or in
hex Ox00-OxFF. Note that in the standard TOS target you
are limited to using the named values available (which
should be more or less standardized), as mentioned in the
previous warning. These values are Minimize-Delay
(decimal value 16, hex value 0x10), Maximize-Throughput
(decimal value 8, hex value 0x08), Maximize-Reliability
(decimal value 4, hex value 0x04), Minimize-Cost (decimal
value 2, hex 0x02) or Normal-Service (decimal value 0, hex
value 0x00). The default value on most packets is Normal-
Service, or 0. Note that you can, of course, use the actual
names instead of the actual hex values to set the TOS value;
in fact thisis generally to be recommended, since the values
associated with the names may be changed in future. For a
complete listing of the "descriptive values', do an iptables -
j TOS -h. This listing is complete as of iptables 1.2.5 and
should hopefully remain so for awhile.

6.5.14. TTL target

This patch requiresthe TTL patch from the patch-o-matic tree
@ available im the base directory from

http: //mww.netfilter .or g/documentation/index.htmi#FAQ - The

official Netfilter Freguently Asked Questions. Also a good place

to start at when wondering what iptables and Netfilter is about..

Step by Step™ Linux Guide. Page 126

http://www.netfilter.org/documentation/index.html#FAQ

The TTL target is used to modify the Time To Live field in the IP
header. One useful application of this is to change all Time To Live
values to the same value on all outgoing packets. One reason for doing
thisis if you have a bully ISP which don't allow you to have more than
one machine connected to the same Internet connection, and who
actively pursue this. Setting all TTL values to the same vaue, will
effectively make it alittle bit harder for them to notify that you are doing
this. We may then reset the TTL value for all outgoing packets to a
standardized value, such as 64 as specified in Linux kernel.

For more information on how to set the default value used in Linux, read
the ip-sysctl.txt, which you may find within the Other resources and
links appendix.

The TTL target isonly valid within the mangle table, and nowhere el se.
It takes 3 options as of writing this, all of them described below in the
table.

Table6-24. TTL target

Option --ttl-set
Example |iptables-t mangle-A PREROUTING -i ethO-j TTL --
ttl-set 64

Explanation The --ttl-set option tellsthe TTL target which TTL value to
set on the packet in question. A good value would be
around 64 somewhere. It's not too long, and it is not too
short. Do not set this value too high, since it may affect
your network and it is a bit immoral to set this value to
high, since the packet may start bouncing back and forth
between two mis-configured routers, and the higher the
TTL, the more bandwidth will be eaten unnecessary in such
a case. This target could be used to limit how far away our
clients are. A good case of this could be DNS servers,
where we don't want the clients to be too far away.

Option --ttl-dec
Example |iptables-t mangle-A PREROUTING -i ethO-j TTL --
ttl-dec 1

Step by Step™ Linux Guide. Page 127

Explanation The --ttl-dec option tells the TTL target to decrement the

Option
Example

Time To Live value by the amount specified after the --ttl-
dec option. In other words, if the TTL for an incoming
packet was 53 and we had set --ttl-dec 3, the packet would
leave our host with a TTL value of 49. The reason for thisis
that the networking code will automatically decrement the
TTL value by 1, hence the packet will be decremented by 4
steps, from 53 to 49. This could for example be used when
we want to limit how far away the people using our services
are. For example, users should always use a close-by DNS,
and hence we could match all packets leaving our DNS
server and then decrease it by several steps. Of course, the -
-set-ttl may be a better ideafor this usage.

--ttl-inc

iptables-t mangle -A PREROUTING -i ethO-j TTL --
ttl-inc 1

Explanation The --ttl-inc option tells the TTL target to increment the

Time To Live value with the value specified to the --ttl-inc
option. This means that we should raise the TTL value with
the value specified in the --ttl-inc option, and if we
specified --ttl-inc 4, a packet entering with a TTL of 53
would leave the host with TTL 56. Note that the same thing
goes here, as for the previous example of the --ttl-dec
option, where the network code will automatically
decrement the TTL value by 1, which it always does. This
may be used to make our firewall a bit more steathy to
trace-routes among other things. By setting the TTL one
value higher for al incoming packets, we effectively make
the firewall hidden from trace-routes. Trace-routes are a
loved and hated thing, since they provide excellent
information on problems with connections and where it
happens, but at the same time, it gives the hacker/cracker
some good information about your upstreams if they have
targeted you. For a good example on how this could be
used, see the Ttl-inc.txt script.

Step by Step™ Linux Guide. Page 128

6.5.15. ULOG target

The ULOG target is used to provide user-space logging of matching
packets. If a packet is matched and the ULOG target is set, the packet
information is multicasted together with the whole packet through a
netlink socket. One or more user-space processes may then subscribe to
various multicast groups and receive the packet. Thisisin other words a
more complete and more sophisticated logging facility that is only used
by iptables and Netfilter so far, and it contains much better facilities for
logging packets. This target enables us to log information to MySQL
databases, and other databases, making it much simpler to search for
specific packets, and to group log entries. You can find the ULOGD
user-land applications at the ULOGD project page.

Table 6-25. ULOG target

Option --ulog-nigroup
Example iptables-A INPUT -p TCP --dport 22 -j ULOG --ulog-
nigroup 2

Explanation The --ulog-nlgroup option tells the ULOG target which
netlink group to send the packet to. There are 32 netlink
groups, which are smply specified as 1-32. If we would
like to reach netlink group 5, we would simply write --ulog-
nigroup 5. The default netlink group used is 1.

Option --ulog-pr efix

Example iptables-A INPUT -p TCP --dport 22 -j ULOG --ulog-
prefix " SSH connection attempt: "

Explanation The --ulog-prefix option works just the same as the prefix
value for the standard L OG target. This option prefixes all
log entries with a user-specified log prefix. It can be 32
characters long, and is definitely most useful to distinguish
different log-messages and where they came from.

Step by Step™ Linux Guide. Page 129

Option
Example

Explanation

Option
Example

Explanation

--ulog-cprange

iptables-A INPUT -p TCP --dport 22 -j ULOG --ulog-
cprange 100

The --ulog-cprange option tells the ULOG target how
many bytes of the packet to send to the user-space daemon
of ULOG. If we specify 100 as above, we would copy 100
bytes of the whole packet to user-space, which would
include the whole header hopefully, plus some leading data
within the actual packet. If we specify 0, the whole packet
will be copied to user-space, regardiess of the packets size.
The default value is 0, so the whole packet will be copied to
user-space.

--ulog-gthreshold

iptables-A INPUT -p TCP --dport 22 -j ULOG --ulog-
gthreshold 10

The --ulog-gthreshold option tells the ULOG target how
many packets to queue inside the kernel before actually
sending the data to user-space. For example, if we set the
threshold to 10 as above, the kernel would first accumulate
10 packets inside the kernel, and then transmit it outside to
the user-space as one single netlink multi part message. The
default value here is 1 because of backward compatibility,
the user-space daemon did not know how to handle multi-
part messages previously.

Chapter 7. rc.firewall file

This chapter will deal with an example firewall setup and how the script
file could look. We have used one of the basic setups and dug deeper
into how it works and what we do in it. This should be used to get abasic
idea on how to solve different problems and what you may need to think
about before actually putting your scripts into work. It could be used as
is with some changes to the variables, but is not suggested since it may
not work perfectly together with your network setup. As long as you

Step by Step™ Linux Guide. Page 130

have a very basic setup however, it will very likely run quite smooth
with just afew fixesto it.

note that there might be more efficient ways of making the rule-

@ set, however, the script has been written for readability so that
everyone can understand it without having to know too much
BASH scripting before reading this

7.1. examplerc.firewall

OK, so you have everything set up and are ready to check out an
example configuration script. You should at least be if you have come
this far. This example rc.firewall.txt (also included in the Example
scripts code-base appendix) isfairly large but not alot of commentsin it.
Instead of looking for comments, | suggest you read through the script
file to get a basic hum about how it looks, and then you return here to get
the nitty gritty about the whole script.

7.2. explanation of rc.firewall

7.2.1. Configuration options

The first section you should note within the examplerc.firewall.txt is the
configuration section. This should always be changed since it contains
the information that is vital to your actual configuration. For example,
your IP address will always change, hence it is available here. The
$INET_IP should aways be a fully valid IP address, if you got one (if
not, then you should probably look closer at the rc.DHCP.firewall.txt,
however, read on since this script will introduce a lot of interesting stuff
anyways). Also, the SINET_IFACE variable should point to the actual
device used for your Internet connection. This could be ethO, ethl, ppp0,
tr0, etc just to name a few possible device names.

Step by Step™ Linux Guide. Page 131

This script does not contain any special configuration options for DHCP
or PPPoE, hence these sections are empty. The same goes for all sections
that are empty, they are however left there so you can spot the
differences between the scripts in a more efficient way. If you need these
parts, then you could always create a mix of the different scripts, or (hold
yourself) create your own from scratch.

The Local Area Network section contains most of the configuration
options for your LAN, which are necessary. For example, you need to
specify the IP address of the physical interface connected to the LAN as
well as the IP range which the LAN uses and the interface that the box is
connected to the LAN through.

Also, as you may see there is a Localhost configuration section. We do
provide it, however you will with 99% certainty not change any of the
values within this section since you will almost always use the 127.0.0.1
|P address and the interface will almost certainly be named lo. Also, just
below the Localhost configuration, you will find a brief section that
pertains to the iptables. Mainly, this section only consists of the
$IPTABLES variable, which will point the script to the exact location of
the iptables application. This may vary a bit, and the default location
when compiling the iptables package by hand is /usr/local/sbin/iptables.
However, many distributions put the actual application in another
location such as /usr/shin/iptables and so on.

7.2.2. Initial loading of extra modules

First, we see to it that the module dependenciesfiles are up to date by
issuing an /shin/depmod -a command. After this we load the modules
that we will require for this script. Always avoid loading modul es that
you do not need, and if possible try to avoid having modules lying
around at al unless you will be using them. Thisis for security reasons,
since it will take some extra effort to make additional rules this way.
Now, for example, if you want to have support for the LoG, REJECT
and MASQUERADE targets and don't have this compiled statically into
your kernel, we load these modules as follows:

Step by Step™ Linux Guide. Page 132

/sbin/insnod ipt LOG
/sbin/insnod i pt_ REJECT
/sbin/insnod i pt_MASQUERADE

In these scripts we forcedly load the modules, which could |ead

to failures of loading the modules. If amodule failsto load, it
could depend upon alot of factors, and it will generate an error
message. |If some of the more basic modulesfail to load, its
biggest probable error is that the module, or functionality, is
statically compiled into the kernel. For further information on
this subject, read the Problems loading modules section in the
Common problems and questions appendix.

Next is the option to load ipt_owner module, which could for example be
used to only allow certain users to make certain connections, etc. | will
not use that module in this example but basically, you could alow only
root to do FTP and HTTP connections to redhat.com and DROP all the
others. You could also disalow all users but your own user and root to
connect from your box to the Internet, might be boring for others, but
you will be a bit more secure to bouncing hacker attacks and attacks
where the hacker will only use your host as an intermediate host. For
more information about the ipt_owner match, look at the Owner match
section within the How a rule is built chapter.

We may also load extra modules for the state matching code here. All
modules that extend the state matching code and connection tracking
code are called ip_conntrack * and ip_nat_*. Connection tracking
helpers are special modules that tells the kernel how to properly track the
specific connections. Without these so called helpers, the kernel would
not know what to look for when it tries to track specific connections. The
NAT helpers on the other hand, are extensions of the connection tracking
helpers that tells the kernel what to ook for in specific packets and how
to translate these so the connections will actually work. For example,
FTP is a complex protocol by definition, and it sends connection
information within the actual payload of the packet. So, if one of your
NATed boxes connect to a FTP server on the Internet, it will send its
own local network |P address within the payload of the packet, and tells
the FTP server to connect to that IP address. Since this local network
address is not valid outside your own network, the FTP server will not
know what to do with it and hence the connection will break down. The

Step by Step™ Linux Guide. Page 133

FTP NAT helpers do al of the trandations within these connections so
the FTP server will actually know where to connect. The same thing
applies for DCC file transfers (sends) and chats. Creating these kind of
connections requires the IP address and ports to be sent within the IRC
protocol, which in turn requires some trandation to be done. Without
these helpers, some FTP and IRC stuff will work no doubt, however,
some other things will not work. For example, you may be able to
receive files over DCC, but not be able to send files. This is due to how
the DCC starts a connection. First off, you tell the receiver that you want
to send a file and where he should connect to. Without the helpers, the
DCC connection will look as if it wants the receiver to connect to some
host on the receivers own local network. In other words, the whole
connection will be broken. However, the other way around, it will work
flawlessly since the sender will (most probably) give you the correct
address to connect to.

If you are experiencing problems with mIRC DCCs over your

@ firewall and everything works properly with other IRC clients,
read the mlRC DCC problems section in the Common problems
and guestions appendix.

As of this writing, there is only the option to load modules which add
support for the FTP and IRC protocols. For a long explanation of these
conntrack and nat modules, read the Common problems and questions
appendix. There are aso H.323 conntrack helpers within the patch-o-
matic, as well as some other conntrack as well as NAT helpers. To be
able to use these helpers, you need to use the patch-o-matic and compile
your own kernel. For a better explanation on how this is done, read the

Preparations chapter.

Note that you need to load theip_nat_irc and ip_nat_ftp if you
want Network Address Tranglation to work properly on any of
the FTP and IRC protocols. Y ou will also need to load the
ip_conntrack_irc and ip_conntrack_ftp modules before actually
loading the NAT modules. They are used the same way as the

conntrack modules, but it will make it possible for the computer
to do NAT on these two protocaols.

Step by Step™ Linux Guide. Page 134

7.2.3. proc set up

At this point we start the IP forwarding by echoing a1 to
/ proc/ sys/ net/ipv4/ip_forward inthisfashion:

echo" 1" > /proc/sys/net/ipv4/ip_forward

It may be worth a thought where and when we turn on the IP

@ forwarding. In this script and all others within the tutorial, we
turn it on before actually creating any kind of IP filters (i.e.,
iptablesrule-sets). Thiswill lead to a brief period of time where
the firewall will accept forwarding any kind of traffic for
everything between a millisecond to a minute depending on
what script we are running and on what box. This may give
malicious people a small time-frame to actually get through our
firewall. In other words, this option should really be turned on
after creating al firewall rules, however, | have chosen to turn it
on before loading any rules to maintain consistency with the
script breakdown currently used in all scripts.

In case you need dynamic IP support, for example if you use SLIP, PPP
or DHCP you may enable the next option, i p_dynaddr by doing the
following :

echo" 1" > /proc/sys/net/ipva/ip_dynaddr

If there is any other options you might need to turn on you should follow
that style, there's other documentations on how to do these things and
this is out of the scope of this documentation. There is a good but rather
brief document about the proc system available within the kernel, which
is also available within the Other resources and links appendix. The
Other resources and links appendix is generally a good place to start
looking when you have specific areas that you are looking for
information on, that you do not find here.

Step by Step™ Linux Guide. Page 135

The rc.firewal | . txt script, and al other scripts contained
@ within this tutorial, do contain a small section of non-required
proc settings. These may be a good primer to look at when
something is not working exactly as you want it to, however, do

not change these vaues before actually knowing what they
mean.

7.2.4. Displacement of rulesto different
chains

This section will briefly describe my choices within the tutorial
regarding user specified chains and some choices specific to the
rc.firewall.txt script. Some of the paths | have chosen to go here may be
wrong from one or another of aspect. | hope to point these aspects and
possible problems out to you when and where they occur. Also, this
section contains a brief look back to the Traversing of tables and chains
chapter. Hopefully, this will remind you a little bit of how the specific
tables and chains are traversed in areal live example.

| have displaced al the different user-chains in the fashion | have to save
as much CPU as possible but at the same time put the main weight on
security and readability. Instead of letting a TCP packet traverse ICMP,
UDP and TCP rules, | simply match all TCP packets and then let the
TCP packets traverse an user specified chain. Thisway we do not get too
much overhead out of it all. The following picture will try to explain the
basics of how an incoming packet traverses Netfilter. With these pictures
and explanations, | wish to explain and clarify the goals of this script.
We will not discuss any specific details yet, but instead further on in the
chapter. This is a redlly trivia picture in comparison to the one in the
Traversing of tables and chains chapter where we discussed the whole
traversal of chains and tablesin depth.

Step by Step™ Linux Guide. Page 136

Incoming —} [?:;::;;?] FORWARD Outgoing

Local
Process

Based upon this picture, let us make clear what our goals are. This whole
example script is based upon the assumption that we are looking at a
scenario containing one local network, one firewall and an Internet
connection connected to the firewall. This example is also based upon
the assumption that we have a static IP to the Internet (as opposed to
DHCP, PPP and SLIP and others). In this case, we also want to allow the
firewall to act as a server for certain services on the Internet, and we trust
our local network fully and hence we will not block any of the traffic
from the local network. Also, this script has as a main priority to only
allow traffic that we explicitly want to alow. To do this, we want to set
default policies within the chains to DROP. This will effectively kill all
connections and all packets that we do not explicitly allow inside our
network or our firewall.

In the case of this scenario, we would aso like to let our local network
do connections to the Internet. Since the local network is fully trusted,
we want to allow al kind of traffic from the local network to the
Internet. However, the Internet is most definitely not a trusted network
and hence we want to block them from getting to our local network.
Based upon these genera assumptions, let's look at what we need to do
and what we do not need and want to do.

Step by Step™ Linux Guide. Page 137

FORWARD
POLICY: DROP

ACCEPT everything
ESTABLISHED or
RELATED

ACCEPT everything
from LAM to Internet _'

First of al, we want the local network to be able to connect to the
Internet, of course. To do this, we will need to NAT all packets since
none of the local computers have real IP addresses. All of this is done
within the PREROUTING chain, which is created last in this script. This
means that we will also have to do some filtering within the FORWARD
chain since we will otherwise allow outsiders full access to our local
network. We trust our local network to the fullest, and because of that we
specifically allow al traffic from our local network to the Internet. Since
no one on the Internet should be allowed to contact our local network
computers, we will want to block al traffic from the Internet to our local
network except already established and related connections, which in
turn will allow all return traffic from the Internet to our local network.

INPUT
POLICY: DROP

: ; udpincaming_ Localhost ESTABLISHED,
|cmp_packets—’; {Eg pachats + packets _’| Localnet _’{F{ELATED

As for our firewall, we may be a bit low on funds perhaps, or we just
want to offer afew services to people on the Internet. Therefore, we have
decided to alow HTTP, FTP, SSH and IDENTD access to the actual
firewall. All of these protocols are available on the actual firewall, and
hence it should be allowed through the INPUT chain, and we need to
allow the return traffic through the OUTPUT chain. However, we aso
trust the local network fully, and the loopback device and IP address are
also trusted. Because of this, we want to add special rules to allow all

Step by Step™ Linux Guide. Page 138

traffic from the local network as well as the loopback network interface.
Also, we do not want to allow specific packets or packet headers in
specific conjunctions, nor do we want to allow some IP ranges to reach
the firewall from the Internet. For instance, the 10.0.0.0/8 address range
is reserved for local networks and hence we would normally not want to
allow packets from such a address range since they would with 90%
certainty be spoofed. However, before we implement this, we must note
that certain Internet Service Providers actually use these address ranges
within their own networks. For a closer discussion of this, read the
Common problems and questions chapter.

Since we have an FTP server running on the server, as well as the fact
we want to traverse as few rules as possible, we add a rule which lets all
established and related traffic through at the top of the INPUT chain. For
the same reason, we want to split the rules down into sub-chains. By
doing this, our packets will hopefully only need to traverse as few rules
as possible. By traversing less rules, we make the rule-set less time
consuming for each packet, and reduce redundancy within the network.

In this script, we choose to split the different packets down by their
protocol family, for example TCP, UDP or ICMP. All TCP packets
traverse a specific chain named tcp_packets, which will contain rules for
all TCP ports and protocols that we want to allow. Also, we want to do
some extra checking on the TCP packets, so we would like to create one
more subchain for all packets that are accepted for using valid port
numbers to the firewall. This chain we choose to cal the allowed chain,
and should contain a few extra checks before finally accepting the
packet. Asfor ICMP packets, these will traverse the icmp_packets chain.
When we decided on how to create this chain, we could not see any
specific needs for extra checks before alowing the ICMP packets
through if we agree with the type and code of the ICMP packet, and
hence we accept them directly. Finally, we have the UDP packets which
need to be dealt with. These packets, we send to the udp_packets chain
which handles all incoming UDP packets. All incoming UDP packets
should be sent to this chain, and if they are of an allowed type we should
accept them immediately without any further checking.

Since we are running on a relatively small network, this box is also used
as a secondary workstation and to give some extra levy for this, we want
to allow certain specific protocols to make contact with the firewall
itself, such as speak freely and 1 CQ.

Step by Step™ Linux Guide. Page 139

OUTPUT
POLICY: DROP

ACCEPT everything 'ACCEF‘Tevemning 'ACCEF‘Tevthing

from 127.0.0.1 from 192.168.1.2 from 194.236.50.155

Finally, we have the firewalls OUTPUT chain. Since we actualy trust
the firewall quite a lot, we alow pretty much al traffic leaving the
firewall. We do not do any specific user blocking, nor do we do any
blocking of specific protocols. However, we do not want people to use
this box to spoof packets leaving the firewall itself, and hence we only
want to allow traffic from the IP addresses assigned to the firewall itself.
We would most likely implement this by adding rules that ACCEPT all
packets leaving the firewall in case they come from one of the IP
addresses assigned to the firewall, and if not they will be dropped by the
default policy in the OUTPUT chain.

7.2.5. Setting up default policies

Quite early on in the process of creating our rule-set, we set up the
default policies. We set up the default policies on the different chains
with afairly ssmple command, as described below.

iptables[-P{chain} {policy}]

The default policy is used every time the packets do not match arulein
the chain. For example, let's say we get a packet that match no single rule
in our whole rule-set. If this happens, we must decide what should
happen to the packet in question, and this is where the default policy
comes into the picture. The default policy is used on all packets that does
not match with any other rule in our rule-set.

Step by Step™ Linux Guide. Page 140

Do be cautious with what default policy you set on chainsin
@ other tables since they are ssimply not made for filtering, and it

may lead to very strange behaviors.

7.2.6. Setting up user specified chainsin the
filter table

Now you got a good picture on what we want to accomplish with this
firewall, so let us get on to the actual implementation of the rule-set. It is
now high time that we take care of setting up all the rules and chains that
we wish to create and to use, as well as al of the rule-sets within the
chains.

After this, we create the different special chains that we want to use with
the -N command. The new chains are created and set up with no rules
inside of them. The chains we will use are, as previously described,
icmp_packets, tcp_packets, udp_packets and the allowed chain, which is
used by the tcp_packets chain. Incoming packets on $INET_IFACE, of
ICMP type, will be redirected to the chain icmp_packets. Packets of TCP
type, will be redirected to the tcp_packets chain and incoming packets of
UDP type from $INET_IFACE go to udp_packets chain. All of thiswill
be explained more in detail in the INPUT chain section below. To create
a chan is quite ssmple and only consists of a short declaration of the
chain asthis:

iptables[-N chai n]
In the upcoming sections we will have a closer look at each and one of
the user defined chains that we have by now created. Let us have a closer

look at how they look and what rules they contain and what we will
accomplish within them.

Step by Step™ Linux Guide. Page 141

7.2.6.1. Thebad_tcp_packetschain

The bad_tcp_packets chain is devoted to contain rules that inspects
incoming packets for malformed headers or other problems. As it is, we
have only chosen to include a packet filter which blocks all incoming
TCP packets that are considered as NEW but does not have the SYN bit
set, as well as a rule that blocks SYN/ACK packets that are considered
NEW. This chain could be used to check for all possible inconsistencies,
such as above or XMAS port-scans etc. We could also add rules that
looksfor state INVALID.

If you want to fully understand the NEW not SYN, you need to look at
the Sate NEW packets but no SYN bit set section in the Common
problems and questions appendix regarding state NEW and non-SYN
packets getting through other rules. These packets could be allowed
under certain circumstances but in 99% of the cases we wouldn't want
these packets to get through. Hence, we log them to our logs and then we
DROP them.

The reason that we REJECT SYN/ACK packets that are considered
NEW is also very simple. It is described in more depth in the SYN/ACK
and NEW packets section in the Common problems and questions
appendix. Basically, we do this out of courtesy to other hosts, since we
will prevent them from being attacked in a sequence number prediction
attack.

7.2.6.2. The allowed chain

If a packet comes in on $INET_IFACE and is of TCP type, it travels
through the tcp_packets chain and if the connection is against a port that
we want to allow traffic on, we want to do some final checks on it to see
if we actualy do want to allow it or not. All of these final checks are
done within the allowed chain.

Step by Step™ Linux Guide. Page 142

First of al, we check if the packet isa SYN packet. If itisa SYN packet,
it ismost likely to be the first packet in a new connection so, of course,
we dlow this. Then we check if the packet comes from an
ESTABLISHED or RELATED connection, if it does, then we, again of
course, allow it. An ESTABLISHED connection is a connection that has
seen traffic in both directions, and since we have seen a SY N packet, the
connection then must be in state ESTABLISHED, according to the state
machine. The last rule in this chain will DROP everything else. In this
case this pretty much means everything that has not seen traffic in both
directions, i.e., we didn't reply to the SYN packet, or they are trying to
start the connection with a non SYN packet. There is no practical use of
not starting a connection with a SYN packet, except to port scan people
pretty much. There is no currently available TCP/IP implementation that
supports opening a TCP connection with something else than a SYN
packet to my knowledge, hence, DROP it since it is 99% sure to be a
port scan.

7.2.6.3. The TCP chain

The tcp_packets chain specifies what ports that are alowed to use on the
firewall from the Internet. There is, however, even more checks to do,
hence we send each and one of the packets on to the allowed chain,
which we described previously.

-A tcp_packets tells iptables in which chain to add the new rule, the
rule will be added to the end of the chain. -p TCP tells it to match TCP
packets and -s 0/0 matches all source addresses from 0.0.0.0 with
netmask 0.0.0.0, in other words all source addresses. Thisis actualy the
default behavior but | am using it just to make everything as clear as
possible. --dport 21 means destination port 21, in other words if the
packet is destined for port 21 they also match. If all the criteria are
matched, then the packet will be targeted for the alowed chain. If it
doesn't match any of the rules, they will be passed back to the original
chain that sent the packet to the tcp_packets chain.

Asitisnow, | alow TCP port 21, or FTP control port, which is used to
control FTP connections and later on | also alow al RELATED
connections, and that way we allow PASSIVE and ACTIVE connections
since the ip_conntrack _ftp module is, hopefully, loaded. If we do not
want to allow FTP at all, we can unload the ip_conntrack_ftp module

Step by Step™ Linux Guide. Page 143

and delete the $IPTABLES -A tcp_packets-p TCP -s 0/0 --dport 21 -
allowed linefromtherc. firewal | . txt file.

Port 22 is SSH, which is much better than allowing telnet on port 23 if
you want to allow anyone from the outside to use a shell on your box at
al. Note that you are dealing with a firewall. It is always a bad idea to
give others than yourself any kind of access to a firewall box. Firewalls
should always be kept to a bare minimum and no more.

Port 80 isHTTP, in other words your web server, delete it if you do not
want to run aweb server directly on your firewall.

And finally we alow port 113, which is IDENTD and might be
necessary for some protocols like IRC, etc to work properly. Do note that
it may be worth to use the oidentd package if you NAT several hosts on
your local network. oidentd has support for relaying IDENTD requests
on to the correct boxes within your local network.

If you feel like adding more open ports with this script, well, it should be
guite obvious how to do that by now. Just cut and paste one of the other
linesin the tcp_packets chain and change it to the port you want to open.

7.2.6.4. The UDP chain

If we do get a UDP packet on the INPUT chain, we send them on to
udp_packets where we once again do a match for the UDP protocol with
-p UDP and then match everything with a source address of 0.0.0.0 and
netmask 0.0.0.0, in other words everything again. Except this, we only
accept specific UDP ports that we want to be open for hosts on the
Internet. Do note that we do not need to open up holes depending on the
sending hosts source port, since this should be taken care of by the state
machine. We only need to open up ports on our host if we are to run a
server on any UDP port, such as DNS etc. Packets that are entering the
firewall and that are part of an already established connection (by our
local network) will automatically be accepted back in by the --state
ESTABLISHED,RELATED rules at the top of the INPUT chain.

As it is, we do not ACCEPT incoming UDP packets from port 53,
which is what we use to do DNS lookups. The rule is there, but it is per

Step by Step™ Linux Guide. Page 144

default commented out. If you want your firewall to act as an DNS
server, uncomment thisline.

| personally also allow port 123, which is NTP or network time protocol.
This protocol is used to set your computer clock to the same time as
certain other time servers which have very accurate clocks. Most of you
probably do not use this protocol and hence | am not allowing it per
default. The same thing applies here however, the rule is there and it is
simple to uncomment to get it working.

We do currently allow port 2074, which is used for certain real-time
multimedia applications like speak freely which you can use to tak to
other people in rea-time by using speakers and a microphone, or even
better, a headset. If you would not like to use this, you could turn it off
quite ssimply by commenting it out.

Port 4000 is the ICQ protocol. This should be an extremely well known
protocol that is used by the Mirabilis application named ICQ. Thereis at
least 2-3 different ICQ clones for Linux and it is one of the most widely
used chat programs in the world. | doubt there is any further need to
explanwhat it is.

At this point, two extrarules are available if you are experiencing alot of
log entries due to different circumstances. The first rule will block
broadcast packets to destination ports 135 through 139. These are used
by NetBIOS, or SMB for most Microsoft users. This will block all log
entries we may get from Microsoft Networks on our outside otherwise.
The second rule was also created to take care of excessive logging
problems, but instead takes care of DHCP gqueries from the outside. This
is specifically true if your outside network consists of a non-switched
Ethernet type of network, where the clients receive their |P addresses by
DHCP. During these circumstances, you could wind up with alot of logs
from just that.

Do note that the last two rules are specifically opted out since
@ some people may be interested in these kind of logs. If you are
experiencing problems with excessive legit logging, try to drop

these types of packages at this point. There are also more rules
of thistype just before the log rulesin the INPUT chain.

Step by Step™ Linux Guide. Page 145

7.2.6.5. The ICMP chain

This is where we decide what ICMP types to allow. If a packet of ICMP
type comes in on ethO on the INPUT chain, we then redirect it to the
i cp_packet s chain as explained before. Here we check what kind of
ICMP types to allow. For now, | only alow incoming ICMP Echo
requests, TTL equals O during transit and TTL equals O during
reassembly. The reason that we do not allow any other ICMP types per
default here, is that amost all other ICMP types should be covered by
the RELATED state rules.

If an ICMP packet is sent as areply to an already existing packet

@ or packet stream it is considered RELATED to the original
stream. For more information on the states, read the The state
machine chapter.

The reason that | alow these ICMP packets are as follows, Echo
Requests are used to request an echo reply, which in turn is used to
mainly ping other hosts to see if they are available on any of the
networks. Without this rule, other hosts will not be able to ping us to see
if we are available on any network connection. Do note that some people
would tend to erase this rule, since they smple do not want to be seen on
the Internet. Deleting this rule will effectively render any pings to our
firewall totally useless from the Internet since the firewall will simply
not respond to them.

Time Exceeded (i.e., TTL equals O during transit and TTL equals O
during reassembly), is alowed in the case we want to trace-route some
host or if a packet gets its Time To Live set to O, we will get a reply
about this. For example, when you trace-route someone, you start out
with TTL =1, and it gets down to O at the first hop on the way out, and a
Time Exceeded is sent back from the first gateway en route to the host
we are trying to trace-route, then TTL = 2 and the second gateway sends
Time Exceeded, and so on until we get an actual reply from the host we
finally want to get to. This way, we will get a reply from each host on
our way to the actual host we want to reach, and we can see every host in
between and find out what host is broken.

Step by Step™ Linux Guide. Page 146

For a complete listing of all ICMP types, see the ICMP types appendix .
For more information on ICMP types and their usage, i suggest reading
the following documents and reports:

The Internet Control Message Protocol by Ralph Walden.
RFEC 792 - Internet Control Message Protocol by J. Postel.

Asaside-note, | might be wrong in blocking some of these
@ ICMP types for you, but in my case, everything works perfectly
while blocking all the ICMP types that | do not allow.

7.2.7. INPUT chain

The INPUT chain as | have written it uses mostly other chains to do the
hard work. This way we do not get too much load from iptables, and it
will work much better on slow machines which might otherwise drop
packets at high loads. This is done by checking for specific details that
should be the same for alot of different packets, and then sending those
packets into specific user specified chains. By doing this, we can split
down our rule-set to contain much less rules that needs to be traversed by
each packet and hence the firewall will be put through alot less overhead
by packet filtering.

First of al we do certain checks for bad packets. This is done by sending
all TCP packets to the bad_tcp_packets chain. This chain contains a few
rules that will check for badly formed packets or other anomalies that we
do not want to accept. For a full explanation of the The bad_tcp_packets
chain section in this chapter.

At this point we start looking for traffic from generally trusted networks.
These include the local network adapter and all traffic coming from
there, al traffic to and from our loopback interface, including all our
currently assigned IP addresses (this means all of them, including our
Internet IP address). As it is, we have chosen to put the rule that allows
LAN activity to the firewall at the top, since our local network generates
more traffic than the Internet connection. This allows for less overhead
used to try and match each packet with each rule and it is aways a good

Step by Step™ Linux Guide. Page 147

ideato look through what kind of traffic mostly traverses the firewall. By
doing this, we can shuffle around the rules to be more efficient, leading
to less overhead on the firewall and less congestion on your network.

Before we start touching the "real” rules which decides what we allow
from the Internet interface and not, we have a related rule set up to
reduce our overhead. Thisis a state rule which allows all packets part of
an already ESTABLISHED or RELATED stream to the Internet IP
address. This rule has an equivalent rule in the allowed chain, which are
made rather redundant by this rule, which will be evaluated before the
allowed ones are. However, the --state ESTABLISHED,RELATED
rule in the allowed chain has been retained for several reasons, such as
people wanting to cut and pasting the function.

After this, We match all TCP packets in the INPUT chain that comes in
on the $SINET _IFACE interface, and send those to the t cp_packet s,
which was previously described. Now we do the same match for UDP
packets on the $INET_IFACE and send those to the udp_packets chain,
and after this all ICMP packets are sent to the icmp_packets chain.
Normally, afirewall would be hardest hit by TCP packets, then UDP and
last of them al ICMP packets. Thisisin norma case, mind you, and it
may be wrong for you. The absolute same thing should be looked upon
here, as with the network specific rules. Which causes the most traffic?
Should the rules be thrown around to generate less overhead? On
networks sending huge amounts of data, this is an absolute necessity
since a Pentium |11 equivalent machine may be brought to its knees by a
simple rule-set containing 100 rules and a single 100mbit Ethernet card
running at full capacity if the rule-set is badly written. This is an
important piece to look at when writing a rule-set for your own local
network.

At this point we have one extra rule, that is per default opted out, that
can be used to get rid of some excessive logging in case we have some
Microsoft network on the outside of our Linux firewall. Microsoft clients
have a bad habit of sending out tons of multicast packets to the
224.0.0.0/8 range, and hence we have the opportunity to block those
packets here so we don't fill our logs with them. There are also two more
rules doing something similar tasks in the udp_packets chain described
in the The UDP chain.

Step by Step™ Linux Guide. Page 148

Before we hit the default policy of the INPUT chain, we log it so we may
be able to find out about possible problems and/or bugs. Either it might
be a packet that we just do not want to alow or it might be someone who
is doing something bad to us, or finaly it might be a problem in our
firewall not allowing traffic that should be allowed. In either case we
want to know about it so it can be dealt with. Though, we do not log
more than 3 packets per minute as we do not want to flood our logs with
crap which in turn may fill up our whole logging partition, also we set a
prefix to all log entries so we know where it came from.

Everything that has not yet been caught will be DROPed by the default
policy on the INPUT chain. The default policy was set quite some time
back, in the Setting up default policies section, in this chapter.

7.2.8. FORWARD chain

The FORWARD chain contains quite few rulesin this scenario. We have
asingle rule which sends all packets to the bad tcp packets chain, which
was aso used in the INPUT chain as described previousy. The
bad_tcp_packets chain is constructed in such a fashion that it can be used
recycled in severa calling chains, disregarding of what packet traverses
it.

After thisfirst check for bad TCP packets, we have the main rules in the
FORWARD chain. The first rule will alow all traffic from our
$LAN_IFACE to any other interface to flow freely, without restrictions.
This rule will in other words alow all traffic from our LAN to the
Internet. The second rule will allow ESTABLISHED and RELATED
traffic back through the firewall. This will in other words alow packets
belonging to connections that was initiated from our internal network to
flow freely back to our local network. These rules are required for our
local network to be able to access the Internet, since the default policy of
the FORWARD chain was previously set to DROP. This is quite clever,
since it will allow hosts on our local network to connect to hosts on the
Internet, but at the same time block hosts on the Internet from connecting
to the hosts on our internal network.

Step by Step™ Linux Guide. Page 149

Finally we aso have alogging rule which will log packets that are not
allowed in one or another way to pass through the FORWARD chain.
Thiswill most likely show one or another occurrence of a badly formed
packet or other problem. One cause may be hacker attacks, and others
may be malformed packets. Thisis exactly the same rule as the one used
inthe INPUT chain except for the logging prefix, " IPT FORWARD
packet died: " . Thelogging prefix ismainly used to separate log entries,
and may be used to distinguish log entries to find out where the packet
was logged from and some header options.

7.2.9. OUTPUT chain

Since i know that there is pretty much no one but me using this box
which is partialy used as a Firewall and a workstation currently, | allow
amost everything that goes out from it that has a source address
$LOCALHOST_IP, $LAN_IP or $STATIC_IP. Everything else might
be spoofed in some fashion, even though | doubt anyone that | know
would do it on my box. Last of all we log everything that gets dropped.
If it does get dropped, we will most definitely want to know about it so
we may take action against the problem. Either it is a nasty error, or it is
a weird packet that is spoofed. Finaly we DROP the packet in the
default policy.

7.2.10. PREROUTING chain of the nat table

The PREROUTING chain is pretty much what it says, it does network
address trandation on packets before they actually hit the routing
decision that sends them onward to the INPUT or FORWARD chainsin
the filter table. The only reason that we talk about this chain in this script
is that we once again feel obliged to point out that you should not do any
filtering in it. The PREROUTING chain is only traversed by the first
packet in a stream, which means that all subsequent packets will go
totally unchecked in this chain. Asit iswith this script, we do not use the
PREROUTING chain at al, however, this is the place we would be
working in right now if we wanted to do DNAT on any specific packets,
for example if you want to host your web server within your local

Step by Step™ Linux Guide. Page 150

network. For more information about the PREROUTING chain, read the
Traversing of tables and chains chapter.

The PREROUTING chain should not be used for any filtering
since, among other things, this chain is only traversed by the
first packet in a stream. The PREROUTING chain should be

used for network address translation only, unless you really
know what you are doing.

7.2.11. Starting SNAT and the
POSTROUTING chain

So, our final mission would be to get the Network Address Trandation
up, correct? At least to me. First of all we add a rule to the nat table, in
the POSTROUTING chain that will NAT all packets going out on our
interface connected to the Internet. For me this would be eth0. However,
there are specific variables added to al of the example scripts that may
be used to automatically configure these settings. The -t option tells
iptables which table to insert the rule in, in this case the nat table. The -
A command tells us that we want to Append a new rule to an existing
chain named POSTROUTING and -0 $INET_I FACE tells us to match
al outgoing packets on the INET _IFACE interface (or ethO, per default
settings in this script) and finally we set the target to SNAT the packets.
So al packets that match this rule will be SNAT'ed to look as it came
from your Internet interface. Do note that you must set which IP address
to give outgoing packets with the --to-sour ce option sent to the SNAT
target.

In this script we have chosen to use the SNAT target instead of
MASQUERADE for a couple of reasons. The first one is that this script
was supposed to run on a firewall that has a static IP address. A follow
up reason to the first one, would hence be that it is faster and more
efficient to use the SNAT target if possible. Of course, it was also used
to show how it would work and how it would be used in a real live
example. If you do not have a static IP address, you should definitely
give thought to use the MASQUERADE target instead which provides a

Step by Step™ Linux Guide. Page 151

simple and easy facility that will also do NAT for you, but that will
automatically grab the IP address that it should use. This takes alittle bit
extra computing power, but it may most definitely be worth it if you use
DHCP for instance. If you would like to have a closer look at how the
MASQUERADE target may look, you should look at the
rc.DHCP firewall.txt script.

Chapter 8. Example scripts

The objective of this chapter is to give a fairly brief and short
explanation of each script available with this tutorial, and to provide an
overlook of the scripts and what services they provide. These scripts are
not in any way perfect, and they may not fit your exact intentions
perfectly. It isin other words up to you to make these scripts suitable for
your needs. The rest of this tutorial should most probably be helpful in
making this feat. The first section of this tutoria deals with the actual
structure that | have established in each script so we may find our way
within the script a bit easier.

8.1. rc.firewall.txt script structure

All scripts written for this tutorial has been written after a specific
structure. The reason for thisis that they should be fairly conformable to
each other and to make it easier to find the differences between the
scripts. This structure should be fairly well documented in this brief
chapter. This chapter should hopefully give a short understanding to why
al the scripts has been written as they have, and why | have chosen to
maintain this structure.

Even though thisis the structure | have chosen, do note that this
may not be the best structure for your scripts. Itisonly a
structure that | have chosen to use since it fits the need of being

easy to read and follow the best according to my logic.

Step by Step™ Linux Guide. Page 152

8.1.1. Thestructure

Thisisthe structure that all scriptsin thistutoria should follow. If they
differ in some way it is probably an error on my part, unlessit is
specifically explained why | have broken this structure.

1. Configuration - First of all we have the configuration options which
the rest of the script should use. Configuration options should pretty
much always be the first thing in any shell-script.

1.l1.

111

L1110,

1LIV.

Internet - Thisis the configuration section which pertains
to the Internet connection. This could be skipped if we do
not have any Internet connection. Note that there may be
more subsections than those listed here, but only such that
pertains to our Internet connection.

1.1.8) DHCP - If there are possibly any specia DHCP
requirements with this specific script, we will add
the DHCP specific configuration options here.

1.1.b) PoE - If there are a possibility that the user that
wants to use this specific script, and if there are
any specia circumstances that raises the chances
that he is using a PPPOE connection, we will add
specific options for those here.

LAN - If there is any LAN available behind the firewall,
we will add options pertaining to that in this section. This
is most likely, hence this section will almost always be
available.

DMZ - If there is any reason to it, we will add a DMZ
zone configuration at this point. Most scripts lacks this
section, mainly because any norma home network, or
small corporate network, will not have one.

Localhost - These options pertain to our local-host. These
variables are highly unlikely to change, but we have put
most of it into variables anyway. Hopefully, there should
be no reason to change these variables.

Step by Step™ Linux Guide. Page 153

1V.

1.VI.

iptables - This section contains iptables specific
configuration. In most scripts and situations this should
only require one variable which tells us where the iptables
binary islocated.

Other - If there are any other specific options and
variables, they should first of all be fitted into the correct
subsection (If it pertains to the Internet connection, it
should be sub-sectioned there, etc). If it does not fit in
anywhere, it should be sub-sectioned directly to the
configuration options somewhere.

2. Module loading - This section of the scripts should maintain alist of
modules. The first part should contain the required modules, while
the second part should contain the non-required modules.

Note that some modules that may raise security, or add
@ certain services or possibilities, may have been added

2.1

2.11.

even though they are not required. This should normally
be noted in such cases within the example scripts.

Required modules - This section should contain the
required modules, and possibly special modules that adds
to the security or adds special services to the
administrator or clients.

Non-required modules - This section contains modules
that are not required for normal operations. All of these
modules should be commented out per default, and if you
want to add the service it provides, it is up to you.

3. proc configuration - This section should take care of any special
configuration needed in the proc file system. If some of these options
are required, they will be listed as such, if not, they should be
commented out per default, and listed under the non-required proc
configurations. Most of the useful proc configurations will be listed
here, but far from all of them.

Step by Step™ Linux Guide. Page 154

4.

3.1

3.11.

Required proc configuration - This section should contain
al of the required proc configurations for the script in
guestion to work. It could possibly also contain
configurations that raises security, and possibly which
adds special services or possibilities for the administrator
or clients.

Non-required proc configuration - This section should
contain non-required proc configurations that may prove
useful. All of them should be commented out, since they
are not actually necessary to get the script to work. This
list will contain far from all of the proc configurations or
nodes.

rules set up - By now the scripts should most probably be ready to
insert the rule-set. | have chosen to split al the rules down after table
and then chain names. All user specified chains are created before we
do anything to the system built in chains. | have also chosen to set
the chains and their rule specifications in the same order as they are
output by the iptables-L command.

4.1.

Filter table - First of al we go through the filter table and
its content. First of all we should set up al the policiesin
the table.

4.].a) Set policies - Set up all the default policies for the
system chains. Normally | will set DROP policies
on the chains in the filter table, and specifically
ACCEPT services and streams that | want to allow
inside. Thisway we will get rid of all ports that we
do not want to let people use.

4.1.b.) Create user specified chains - At this point we
create all the user specified chains that we want to
use later on within this table. We will not be able
to use these chains in the system chains anyways
if they are not already created so we could as well
get to it as soon as possible.

4..c.) Create content in user specified chains - After
creating the user specified chains we may as well
enter al the rules within these chains. The only
reason | have to enter this data at this point already

Step by Step™ Linux Guide. Page 155

is that may as well put it close to the creation of
the user specified chains. You may as well put this
later on in your script, it istotally up to you.

4.1.d.) INPUT chain - When we have come this far, we
do not have a lot of things left to do within the
filter table so we get onto the INPUT chain. At
this point we should add all rules within the
INPUT chain.

At this point we start following the output from the
@ iptables-L command as you may see. Thereisno
reason for you to stay with this structure, however, do
try to avoid mixing up data from different tables and
chains since it will become much harder to read such

rule-sets and to fix possible problems.

4.1.e) FORWARD chain - At this point we go on to add
the rules within the FORWARD chain. Nothing
special about this decision.

4.1.f.) OUTPUT chain - Last of al inthefilter table, we
add the rules dealing with the OUTPUT chain.
There should hopefully not be too much to do at
this point.

5. nat table - After the filter table we take care of the nat table. Thisis
done after the filter table because of a number of reasons within these
scripts. First of all we do not want to turn the whole forwarding
mechanism and NAT function on at a too early stage, which could
possibly lead to packets getting through the firewall at just the wrong
time point (i.e., when the NAT has been turned on, but none of the
filter rules has been run). Also, | look upon the nat table as a sort of
layer that lies just outside the filter table and kind of surrounds it.
The filter table would hence be the core, while the nat table acts as a
layer lying around the filter table, and finally the mangle table lies
around the nat table as a second layer. This may be wrong in some
perspectives, but not too far from reality.

Step by Step™ Linux Guide. Page 156

5.1. Setpolicies - First of all we set up al the default policies
within the nat table. Normally, | will be satisfied with the
default policy set from the beginning, namely the
ACCEPT policy. This table should not be used for
filtering anyways, and we should not let packets be
dropped here since there are some really nasty things that
may happen in such cases due to our own presumptions. |
let these chains be set to ACCEPT since there is no reason
not to do so.

5.11. Create user specified chains - At this point we create any
user specified chains that we want within the nat table.
Normally | do not have any of these, but | have added this
section anyways, just in case. Note that the user specified
chains must be created before they can actually be used
within the system chains.

5.11I. Create content in user specified chains - By now it should
be time to add all the rules to the user specified chains in
the nat table. The same thing goes here as for the user
specified chains in the filter table. We add this material
here since | do not see any reason not to.

5VI. PREROUTING chain - The PREROUTING chain is used
to do DNAT on packets in case we have any need for it.
In most scripts this feature is not used, or at the very least
commented out, reason being that we do not want to open
up big holes to our local network without knowing about
it. Within some scripts we have this turned on by default
since the sole purpose of those scripts are to provide such
services.

5V. POSTROUTING chain - The POSTROUTING chan
should be fairly well used by the scripts | have written
since most of them depend upon the fact that you have
one or more local networks that we want to firewall
against the Internet. Mainly we will try to use the SNAT
target, but in certain cases we are forced to use the
MASQUERADE target instead.

Step by Step™ Linux Guide. Page 157

S.VI.

OUTPUT chain - The OUTPUT chain is barely used at all
in any of the scripts. Asit looks now, it is not broken, but
| have been unable to find any good reasons to use this
chain so far. If anyone has a reason to use this chain, send
mealineand | will add it to the tutorial.

6. mangle table - The last table to do anything about is the mangle
table. Normally | will not use this table at all, since it should
normally not be used for anyone, unless they have specific needs,
such as masking all boxes to use the exact same TTL or to change
TOS fields etc. | have in other words chosen to leave these parts of
the scripts more or less blank, with a few exceptions where | have
added afew examples of what it may be used for.

6.1.

6.11.

6.111.

6.1V

6.V.

Set policies - Set the default policies within the chain. The
same thing goes here as for the nat table pretty much. The
table was not made for filtering, and hence you should
avoid it al together. | have not set any policies in any of
the scripts in the mangle table one way or the other, and
you are encouraged not to do so either.

Create user specified chains - Create all the user specified
chains. Since | have barely used the mangle table at all in
the scripts, | have neither created any chains here since it
is fairly unusable without any data to use within it.
However, this section was added just in case someone, or
|, would have the need for it in the future.

Create content in user specified chains - If you have any
user specified chains within this table, you may at this
point add the rules that you want within them here.

PREROUTING - At this point there is barely any
information in any of the scripts in this tutoria that
contains any rules here.

INPUT chain - At this point there is barely any
information in any of the scripts in this tutoria that
contains any rules here.

Step by Step™ Linux Guide. Page 158

6.VlI. FORWARD chain - At this point there is barely any
information in any of the scripts in this tutoria that
contains any rules here.

6.VIl. OUTPUT chain - At this point there is barely any
information in any of the scripts in this tutoria that
contains any rules here.

6.VIII POSTROUTING chain - At this point there is barely any
information in any of the scriptsin this tutorial that
contains any rules here.

Hopefully this should explain more in detail how each script is structured
and why they are structured in such away.

Do note that these descriptions are extremely brief, and should

mainly just be seen as a brief explanation to what and why the
scripts has been split down as they have. There is nothing that
says that thisisthe only and best way to go.

Step by Step™ Linux Guide. Page 159

8.2. rc.firewall.txt

Trusted
Intamnal
MNetwork
IP: 192.168.0.0/24

IFACE: ethi

-~

v IP: 192.168.0.2
Firewall

[IFACE: othD

IP: 194.236.50.155

Internet

The rc.firewall.txt script is the main core on which the rest of the scripts
are based upon. Therc.firewall file chapter should explain every detail in
the script most thoroughly. Mainly it was written for a dual homed
network. For example, where you have one LAN and one Internet
Connection. This script also makes the assumption that you have a static
IP to the Internet, and hence don't use DHCP, PPP, SLIP or some other
protocol that assigns you an IP automatically. If you are looking for a
script that will work with those setups, please take a closer look at the
rc.DHCP.firewall.txt script.

Step by Step™ Linux Guide. Page 160

The rc.firewal |.txt script requires the following options to be
compiled statically to the kernel, or as modules. Without one or more of
these, the script will become more or less flawed since parts of the
scripts required functionalities will be unusable. As you change the script
you use, you could possibly need more options to be compiled into your
kernel depending on what you want to use.

CONFIG_NETFILTER
CONFIG_IP_NF_CONNTRACK
CONFIG_|IP_NF_IPTABLES
CONFIG_IP_NF_ MATCH_LIMIT
CONFIG_|IP_NF MATCH_STATE
CONFIG_IP_NF_FILTER
CONFIG_|IP_NF_NAT
CONFIG_IP_ NF_TARGET LOG

Step by Step™ Linux Guide. Page 161

8.3. rc.DM Z firewall .txt

DMZ
HTTP

Trusted

Intamal IP: 192.168.1.2
Metwirk
IP: 192.160.0.0/24 DMS

IP: 192.168.1.3

IFACE: ethi IFACE: eth2
IP: 192.168.0.1 IF: 192.168.1.1
Firewall

IFACE: ethd

IP: 194.236.50.152, 1394.236.50.153,
194.236.50.154
194.236.50.155

Therc.DMZ firewall.txt script was written for those people out there that
have one Trusted Interna Network, one De-Militarized Zone and one
Internet Connection. The De-Militarized Zone is in this case 1-to-1
NATed and requires you to do some IP aiasing on your firewall, i.e.,
you must make the box recognize packets for more than one IP. There
are several ways to get this to work, one is to set 1-to-1 NAT, another
one if you have a whole subnet is to create a subnetwork, giving the
firewall one IP both internally and externally. Y ou could then set the IP's
to the DM Zed boxes as you wish. Do note that this will "stea” two IP's
for you, one for the broadcast address and one for the network address.

Step by Step™ Linux Guide. Page 162

This is pretty much up to you to decide and to implement, this tutorial
will give you the tools to actually accomplish the firewalling and
NATINng part, but it will not tell you exactly what you need to do since it
isout of the scope of the tutorial.

The rc.DMZ firewall.txt script requires these options to be compiled into
your kernel, either statically or as modules. Without these options, at the
very least, available in your kernel, you will not be able to use this
scripts functionality. You may in other words get a lot of errors
complaining about modules and targets/jumps or matches missing. If you
are planning to do traffic control or any other things like that, you should
see to it that you have all the required options compiled into your kernel
there aswell.

CONFIG_NETFILTER
CONFIG_IP_NF_CONNTRACK
CONFIG_|IP_NF_IPTABLES
CONFIG_IP_NF_ MATCH_LIMIT
CONFIG_|IP_NF MATCH_STATE
CONFIG_IP_NF_FILTER
CONFIG_|IP_NF_NAT
CONFIG_IP_ NF_TARGET LOG

You need to have two internal networks with this script as you can see
from the picture. One uses IP range 192.168.0.0/24 and consists of a
Trusted Internal Network. The other one uses IP range 192.168.1.0/24
and consists of the De-Militarized Zone which we will do 1-to-1 NAT to.
For example, if someone from the Internet sends a packet to our DNS_I P,
then we use DNAT, to send the packet on to our DNS on the DMZ
network. When the DNS sees our packet, the packet will be destined for
the actual DNS internal network IP, and not to our external DNS IP. If
the packet would not have been translated, the DNS wouldn't have
answered the packet. We will show a short example of how the DNAT
code looks:

$I PTABLES -t nat -A PREROUTING -p TCP -i $INET_I FACE -d $DNS | P\
--dport 53 -j DNAT --to-destination $DMZ DNS | P

Step by Step™ Linux Guide. Page 163

First of al, DNAT can only be performed in the PREROUTING chain of
the nat table. Then we look for TCP protocol on our $I NET_I FACE with
destination IP that matches our $DNS_I P, and is directed to port 53,
which is the TCP port for zone transfers between name servers. If we
actually get such a packet we give a target of DNAT, in other words
DNAT. After that we specify where we want the packet to go with the --
to-destination option and give it the value of $DMz_DNS_I P, in other
words the IP of the DNS on our DMZ network. Thisis how basic DNAT
works. When the reply to the DNATed packet is sent through the
firewall, it automatically gets un-DNATed.

By now you should have enough understanding of how everything works
to be able to understand this script pretty well without any huge
complications. If there is something you don't understand, that hasn't
been gone through in the rest of the tutorial, mail me since it is probably
afault on my side.

8.4. rc.DHCPfirewall.txt

Trusted
Internal
Network
IP: 192.168.0.0/24

IFACE: eth1
IP: 192.168.0.2

Firewall

IFACE: ethD
IP: unknown

Step by Step™ Linux Guide. Page 164

The rc.DHCP.firewall.txt script is pretty much identical to the original
rc.firewall.txt. However, this script no longer uses the STATIC_IP
variable, which is the main change to the origina rc.firewall.txt script.
The reason is that this won't work together with a dynamic IP
connection. The actual changes needed to be done to the original script is
minimal, however, I've had some people mail me and ask about the
problem so this script will be a good solution for you. This script will
allow people who uses DHCP, PPP and SLIP connections to connect to
the Internet.

Therc.DHCP. firewal | .t xt script requires the following options to be
compiled statically to the kernel, or as modules, as a bare minimum to
run properly.

CONFIG_NETFILTER
CONFIG_IP_NF_CONNTRACK
CONFIG_IP_NF_IPTABLES

CONFIG_IP NF MATCH_LIMIT
CONFIG_IP NF MATCH_STATE
CONFIG_IP_NF _FILTER

CONFIG_IP_ NF_NAT

CONFIG_IP NF TARGET MASQUERADE
CONFIG_IP_ NF_TARGET _LOG

The main changes done to the script consists of erasing the STATIC | P
variable as | aready said and deleting al references to this variable.
Instead of using this variable the script now does its main filtering on the
variable | NET_I FACE. In other words -d $STATIC_I P has been changed
to -i $INET_IFACE. This is pretty much the only changes made and
that's all that's needed really.

There are some more things to think about though. We can no longer
filter in the INPUT chain depending on, for example, --in-interface
$LAN_IFACE --dst $SINET_IP. This in turn forces us to filter only
based on interfaces in such cases where the interna machines must
access the Internet addressable IP. One great example is if we are
running an HTTP on our firewall. If we go to the main page, which
contains static links back to the same host, which could be some dyndns
solution, we would get a real hard trouble. The NATed box would ask
the DNS for the IP of the HTTP server, then try to access that IP. In case
we filter based on interface and 1P, the NATed box would be unable to
get to the HTTP because the INPUT chain would DROP the packets flat

Step by Step™ Linux Guide. Page 165

to the ground. This also applies in a sense to the case where we got a
static IP, but in such cases it could be gotten around by adding rules
which check the LAN interface packets for our INET_I P, and if so
ACCEPT them.

As you may read from above, it may be a good idea to get a script, or
write one, that handles dynamic IP in a better sense. We could for
example make a script that grabs the IP from ifconfig and adds it to a
variable, upon boot-up of the Internet connection. A good way to do this,
would be to use for example the i p- up scripts provided with pppd and
some other programs. For a good site, check out the linuxguruz.org
iptables site which has a huge collection of scripts available to download.
You will find alink to the linuxguruz.org site from the Other resources
and links appendix.

This script might be abit less securethantherc. firewal | . t xt

@ script. | would definitely advise you to use that script if at all
possible since this script is more open to attacks from the
outside.

Also, there is the possibility to add something like this to your scripts:

INET_IP="ifconfig $INET_IFACE | grep inet | cut -d : -f 2| \
cut -d ' " -f I

The above would automatically grab the IP address of the
$INET_IFACE variable, grep the correct line which contains the IP
address and then cuts it down to a manageable |P address. For a more
elaborate way of doing this, you could apply the snippets of code
available within the retreiveip.txt script, which will automatically grab
your Internet IP address when you run the script. Do note that this may
in turn lead to a little bit of "weird" behaviors, such as staling
connections to and from the firewall on the internal side. The most
common strange behaviors are described in the following list.

1. If the script is run from within a script which in turn is executed
by, for example, the PPP daemon, it will hang all currently active
connections due to the NEW not SYN rules (see the State NEW
packets but no SYN bit set section). It is possible to get by, if you
get rid of the NEW not SYN rules for example, but it is
guestionable.

Step by Step™ Linux Guide. Page 166

2. If you got rules that are static and always want to be around, it is
rather harsh to add and erase rules all the time, without hurting
the already existing ones. For example, if you want to block hosts
on your LAN to connect to the firewall, but at the same time
operate a script from the PPP daemon, how would you do it
without erasing your already active rules blocking the LAN?

3. It may get unnecessarily complicated, as seen above which in
turn could lead to security compromises. If the script is kept
simple, it is easier to spot problems, and to keep order init.

8.5. rc.UTIN.firewall.txt

UnTrusted
Intarnal
Network

IP: 192.168.0.0/24

IFACE: eth1
IP: 192.168.0.2

Firewall

IFACE: eth0D
IP: 194.236.50.155

Step by Step™ Linux Guide. Page 167

The rc.UTIN.firewall.txt script will in contrast to the other scripts block
the LAN that is sitting behind us. In other words, we don't trust anyone
on any networks we are connected to. We also disallow people on our
LAN to do anything but specific tasks on the Internet. The only things
we actualy alow is POP3, HTTP and FTP access to the Internet. We
also don't trust the internal users to access the firewall more than we trust
users on the Internet.

Therc. UTIN firewal | . txt script requires the following options to be
compiled statically to the kernel, or as modules. Without one or more of
these, the script will become more or less flawed since parts of the
scripts required functionalities will be unusable. As you change the script
you use, you could possibly need more options to be compiled into your
kernel depending on what you want to use.

CONFIG_NETFILTER
CONFIG_IP_NF_CONNTRACK
CONFIG_IP_NF_IPTABLES
CONFIG_IP NF MATCH_LIMIT
CONFIG_IP NF MATCH_STATE
CONFIG_IP_NF FILTER
CONFIG_IP NF_NAT
CONFIG_IP_NF TARGET LOG

This script follows the golden rule to not trust anyone, not even our own
employees. Thisis asad fact, but alarge part of the hacks and cracks that
a company gets hit by is a matter of people from their own staff
perpetrating the hit. This script will hopefully give you some clues as to
what you can do with your firewall to strengthen it up. It's not very
different from the original rc.firewal | .t xt script, but it does give a
few hints at what we would normally let through etc.

Step by Step™ Linux Guide. Page 168

8.6. rc.test-iptables.txt

The rc.test-iptables.txt script can be used to test al the different chans,
but it might need some tweaking depending on your configuration, such
as turning on ip_forwarding, and setting up masquerading etc. It will
work for mostly everyone though who has all the basic set up and all the
basic tables loaded into kernel. All it really doesis set some L OG targets
which will log ping replies and ping requests. This way, you will get
information on which chain was traversed and in which order. For
example, run this script and then do:

ping -c¢c 1 host.on.the.internet

And tail -n O -f /var/log/messages while doing the first command. This
should show you all the different chains used and in which order, unless
the log entries are swapped around for some reason.

This script was written for testing purposes only. In other words,
@ it'snot agood ideato have rules like this that logs everything of

one sort since your log partitions might get filled up quickly and

it would be an effective Denial of Service attack against you and

might lead to real attacks on you that would be unlogged after
theinitial Denial of Service attack.

8.7. rc.flush-iptables.txt

The rc.flush-iptables.txt script should not really be called a script in
itself. The rc.flush-iptables.txt script will reset and flush all your tables
and chains. The script starts by setting the default policies to ACCEPT
on the INPUT, OUTPUT and FORWARD chains of the filter table.
After this we reset the default policies of the PREROUTING,
POSTROUTING and OUTPUT chains of the nat table. We do this first
so we won't have to bother about closed connections and packets not
getting through. This script is intended for actually setting up and

Step by Step™ Linux Guide. Page 169

troubleshooting your firewall, and hence we only care about opening the
whole thing up and reset it to default values.

After thiswe flush al chains first in the filter table and then in the NAT
table. This way we know there is no redundant rules lying around
anywhere. When all of this is done, we jump down to the next section
where we erase all the user specified chainsin the NAT and filter tables.
When this step is done, we consider the script done. Y ou may consider
adding rules to flush your mangletableif you useit.

Onefina word on thisissue. Certain people have mailed me

@ asking from me to put this script into the original rc.firewall
script using Red Hat Linux syntax where you type something
likerc.firewall start and the script starts. However, | will not do
that since thisis atutorial and should be used as a place to fetch
ideas mainly and it shouldn't be filled up with shell scripts and
strange syntax. Adding shell script syntax and other things
makes the script harder to read as far as | am concerned and the
tutorial was written with readability in mind and will continue
being so.

8.8. Limit-match.txt

The limit-match.txt script isaminor test script which will let you test the
[imit match and see how it works. Load the script up, and then send ping
packets at different intervals to see which gets through, and how often
they get through. All echo replies will be blocked until the threshold for
the burst limit has again been reached.

Step by Step™ Linux Guide. Page 170

8.9. Pid-owner.txt

The pid-owner.txt is a small example script that shows how we could use
the PID owner match. It does nothing real, but you should be able to run
the script, and then from the output of iptables -L -v be able to tell that
the rule actually matches.

8.10. Sid-owner.txt

The sid-owner.txt is a small example script that shows how we could use
the SID owner match. It does nothing real, but you should be able to run
the script, and then from the output of iptables -L -v be able to tell that
the rule actually matches.

8.11. Ttl-inc.txt

A small example ttl-inc.txt script. This script shows how we could make
the firewall/router invisible to traceroutes, which would otherwise reveal
much information to possible attackers.

8.12. | ptables-save r uleset

A small example script used in the Saving and restoring large rule-sets
chapter to illustrate how iptables-save may be used. This script is non-
working, and should hence not be used for anything else than a
reference.

Step by Step™ Linux Guide. Page 171

Example scripts code-base

|.1. Examplerc.firewall script

#!/ bin/sh

#

rc.firewall - Initial SIMPLE IP Firewall script for
Linux 2.4.x and iptables

#

Copyright (C 2001 Oskar Andreasson

<bl uef | uxATkof f ei nDOTnet >

#

This programis free software; you can redistribute it
and/ or nodify

it under the terns of the GNU General Public License as
publ i shed by

the Free Software Foundation; version 2 of the License.
#

This programis distributed in the hope that it will be
useful ,

but W THOUT ANY WARRANTY; without even the inplied
warranty of

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPGCSE
See t he

GNU General Public License for nore details.

#

You shoul d have received a copy of the GNU Genera
Publ i c License

along with this programor fromthe site that you

downl oaded it

from if not, wite to the Free Software Foundation
Inc., 59 Tenple

Place, Suite 330, Boston, MA 02111-1307 USA

#

HABHHHHHHH T R
HEHHHHHHHH R

#

1. Configuration options.

#

#

1.1 Internet Configuration.
#

Step by Step™ Linux Guide. Page 172

I NET_I P="194. 236. 50. 155"
| NET_I| FACE="et h0"
| NET_BROADCAST="194. 236. 50. 255"

#
1.1.1 DHCP
#

1.1.2 PPPoE

H H H*

1.2 Local Area Network configuration.

H*H H H*

your LAN s | P range and | ocal host IP. /24 nmeans to only
use the first 24

bits of the 32 bit | P address. the sane as net nask

255. 255. 255. 0

#

LAN_| P="192. 168. 0. 2"
LAN | P_RANGE="192. 168. 0. 0/ 16"
LAN | FACE="et h1"

#
1.3 DMZ Configuration.
#

#
1.4 Local host Configuration.
#

LO | FACE="1 0"
LO I P="127.0.0.1"

#
1.5 | PTabl es Configuration.
#

| PTABLES="/usr/ sbin/i pt abl es"

#

1.6 O her Configuration.

#

HABHHHHHHH T R
HHHBHHBHBHHBHAERHY

#

2. Mbdul e | oadi ng.

#

Step by Step™ Linux Guide. Page 173

#
Needed to initially | oad nodul es
#

/ sbin/ depnod -a

#

2.1 Required nodul es
#

/ sbi n/ nodprobe i p_tables

/ sbi n/ nodpr obe i p_conntrack

/ sbi n/ nodprobe iptable filter
/ sbi n/ nodpr obe i ptabl e_nangl e
/ sbi n/ nodpr obe i pt abl e_nat

/ sbi n/ nodpr obe i pt_LOG

/ sbi n/ nodprobe ipt_limt

/ sbi n/ nodprobe ipt_state

2.2 Non-Required nodul es
#

#/ sbi n/ nodpr obe i pt_owner

#/ sbi n/ nodpr obe i pt_REJECT

#/ sbi n/ nodpr obe i pt_MASQUERADE
#/ sbi n/ modprobe i p_conntrack_ftp
#/ sbi n/ modprobe ip_conntrack_irc
#/ sbi n/ nodprobe ip_nat _ftp

#/ sbi n/ nodprobe ip_nat _irc

HAHHH R HAH B R HFH T AR R R R R R R R AR
HAHHH R HAH BB HATH R

#

3. /proc set up.

#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipvd/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipvd/conf/all/rp_filter
#echo "1" > [proc/sys/net/ipvd/conf/all/proxy_arp
#echo "1" > [proc/sys/net/ipvd/ip_dynaddr

Step by Step™ Linux Guide. Page 174

HER R HHH T H
HAHHH IR HAH BB HAH AR

#

4. rules set up

#

HitHH#HH
4.1 Filter table
#

#
4.1.1 Set policies
#

$!| PTABLES - P | NPUT DROP
$!| PTABLES - P QUTPUT DROP
$!| PTABLES - P FORWARD DRCP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$1 PTABLES - N bad_t cp_packets

#
Create separate chains for 1CVWP, TCP and UDP to traverse
#

$1 PTABLES - N al | owed

$I PTABLES - N tcp_packets
$I PTABLES - N udp_packets
$I PTABLES - N i cnp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_t cp_packets chain
#

$I PTABLES - A bad_tcp_packets -p tcp --tcp-flags SYN, ACK
SYN, ACK \

-mstate --state NEW-j REJECT --reject-with tcp-reset
$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j LOG\

Step by Step™ Linux Guide. Page 175

--log-prefix "New not syn:"
$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j DROP

#
al |l owed chain
#

$I PTABLES -A allowed -p TCP --syn -j ACCEPT
$I PTABLES -A allowed -p TCP -mstate --state
ESTABLI SHED, RELATED -j ACCEPT

$I PTABLES - A allowed -p TCP -j DRCP

#
TCP rul es
#

$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 21 -j
al | owed
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 22 -j
al | oned
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 80 -j
al | owed
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 113 -j
al | oned

#
UDP ports
#

#$| PTABLES - A udp_packets -p UDP -s 0/0 --destination-port
53 -j ACCEPT

#$| PTABLES - A udp_packets -p UDP -s 0/0 --destination-port
123 -j ACCEPT

$I PTABLES - A udp_packets -p UDP -s 0/0 --destination-port
2074 -j ACCEPT

$I PTABLES - A udp_packets -p UDP -s 0/0 --destination-port
4000 -j ACCEPT

#

In Mcrosoft Networks you will be swanped by broadcasts.
These |ines

will prevent them from showing up in the I ogs.

#

#$| PTABLES - A udp_packets -p UDP -i $I NET_I FACE -d
$| NET_BROADCAST \
#--destination-port 135:139 -j DROP

#

Step by Step™ Linux Guide. Page 176

If we get DHCP requests fromthe Qutside of our network,
our logs wll

be swanped as well. This rule will block themfrom
getting | ogged.

#

#$| PTABLES - A udp_packets -p UDP -i $I NET_I FACE -d
255. 255. 255. 255 \
#--destination-port 67:68 -j DROP

#
I CVP rul es
#

$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 8 -j
ACCEPT
$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 11 -j
ACCEPT

#
4.1.4 | NPUT chain
#

#
Bad TCP packets we don't want.
#

$I PTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rul es for special networks not part of the Internet
#

$I PTABLES -A INPUT -p ALL -i $LAN | FACE -s $LAN | P_RANGE -
j ACCEPT

$I PTABLES -A INPUT -p ALL -i $LO I FACE -s $LOIP -j ACCEPT
$1 PTABLES -A INPUT -p ALL -i $LO IFACE -s $LAN I P -]
ACCEPT

$I PTABLES -A INPUT -p ALL -i $LO IFACE -s $INET_IP -j
ACCEPT

#

Special rule for DHCP requests from LAN, which are not
caught properly

ot herw se.

#

$1 PTABLES -A INPUT -p UDP -i $LAN | FACE --dport 67 --sport
68 -j ACCEPT

#
Step by Step™ Linux Guide. Page 177

Rul es for incomng packets fromthe internet.
#

$I PTABLES -A INPUT -p ALL -d $INET_IP -mstate --state
ESTABLI SHED, RELATED \

-j ACCEPT

$I PTABLES -A INPUT -p TCP -i $INET_I FACE -] tcp_packets
$1 PTABLES -A INPUT -p UDP -i $INET_I FACE -j udp_packets

$! PTABLES -A INPUT -p ICWMP -i $INET_I FACE -j icnp_packets
#

|If you have a Mcrosoft Network on the outside of your
firewall, you may

al so get flooded by Miulticasts. W drop them so we do
not get fl ooded by

| ogs

#

#$| PTABLES - A I NPUT -i $INET_I FACE -d 224.0.0.0/8 -j DROP
#

Log weird packets that don't nmatch the above.
#

$I PTABLES -A INPUT -mlimt --limt 3/mnute --limt-burst
3 -] LOG\

--log-level DEBUG --1og-prefix "IPT I NPUT packet died: "
#

4.1.5 FORWARD chai n

#

#

Bad TCP packets we don't want

#

$I PTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$1 PTABLES - A FORWARD -i $LAN | FACE -j ACCEPT
$1 PTABLES -A FORWARD -m state --state ESTABLI SHED, RELATED
-j ACCEPT

#

Log weird packets that don't match the above.
#

Step by Step™ Linux Guide. Page 178

$I PTABLES -A FORWARD -m limit --limt 3/mnute --limt-
burst 3 -j LOG\
--log-level DEBUG --1o0g-prefix "IPT FORMRD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$I PTABLES -A QUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to all ow
#

$I PTABLES - A QUTPUT -p ALL -s $LOIP -j ACCEPT
$I PTABLES -A QUTPUT -p ALL -s $LAN_IP -j ACCEPT
$I PTABLES -A OQUTPUT -p ALL -s $INET_IP -j ACCEPT

#
Log weird packets that don't match the above.
#

$I PTABLES -A QUTPUT -mlimit --limt 3/mnute --limt-
burst 3 -j LOG\
--log-level DEBUG --1o0g-prefix "IPT QUTPUT packet died: "

HHHBHA

4.2 nat table
#

#
4.2.1 Set policies
#

#

4.2.2 Create user specified chains

#

#

4.2.3 Create content in user specified chains
#

#

4.2.4 PREROUTI NG chain

#

#

Step by Step™ Linux Guide. Page 179

4.2.5 POSTROUTI NG chain
#

#

Enabl e sinple | P Forwardi ng and Network Address
Transl ati on

#

$I PTABLES -t nat -A POSTROUTING -o $I NET_I FACE -j SNAT --
to-source $INET_IP

#
4.2.6 OUTPUT chain
#

HHH#HH

4.3 nangle table

#

#

4.3.1 Set policies

#

#

4.3.2 Create user specified chains
#

#

4.3.3 Create content in user specified chains
#

#

4. 3.4 PREROUTI NG chain
#

#

4.3.5 INPUT chain

#

#

4.3.6 FORWARD chai n

#

#

4.3.7 OQUTPUT chain

#

#
4.3.8 POSTROUTI NG chai n
#

Step by Step™ Linux Guide. Page 180

|.2. Examplerc.DMZ firewall script

#! / bin/sh

#

rc.DMZ. firewall - DMZ IP Firewal |l script for Linux 2.4.x
and i ptables

#

Copyright (C 2001 Oskar Andreasson

<bl uef | uxATkof f ei nDOTnhet >

#

This programis free software; you can redistribute it
and/ or nodify

it under the terns of the GNU General Public License as
publ i shed by

the Free Software Foundation; version 2 of the License.
#

This programis distributed in the hope that it will be
useful ,

but W THOUT ANY WARRANTY; without even the inplied
warranty of

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE
See t he

GNU General Public License for nore details.

#

You shoul d have received a copy of the GNU Genera
Publ i c License

along with this programor fromthe site that you

downl oaded it

from if not, wite to the Free Software Foundation
Inc., 59 Tenple

Place, Suite 330, Boston, MA 02111-1307 USA

#

HREHHHHHHA TR RRHHHBHAA TR HHAT R RH RS HHAA AR R R B HHA T BB
HEHHHHHHHH R

#

1. Configuration options.

#

#
1.1 Internet Configuration.
#

I NET_I P="194. 236. 50. 152"
HTTP_I P="194. 236. 50. 153"
DNS_| P="194. 236. 50. 154"
| NET_I FACE="et h0O"

Step by Step™ Linux Guide. Page 181

1.1.1 DHCP

H* H H*

1.1.2 PPPoE

H* H H*

1.2 Local Area Network configuration.

H H H*

your LAN s | P range and | ocal host IP. /24 means to only
use the first 24

bits of the 32 bit IP address. the sanme as net mask

255. 255. 255. 0

#

LAN_| P="192. 168. 0. 1"
LAN_| FACE="et h1"

#
1.3 DMZ Configuration.
#

DMZ_HTTP_| P="192. 168. 1. 2"
DMZ_DNS_| P="192. 168. 1. 3"
DVZ_| P="192. 168. 1. 1"
DVZ_| FACE="et h2"

#
1.4 Local host Configuration.
#

LO_| FACE="I o"
LO I P="127.0.0.1"

#
1.5 | PTabl es Configuration.
#

| PTABLES="/usr/ sbin/i pt abl es"

#
1.6 OQther Configuration.
#

HAHHH R HAH BB HFH B R TR AR R R R R R R AR
HAHHH R HAH BB HAH AR

#

2. Mbdul e | oadi ng.

Step by Step™ Linux Guide. Page 182

#

#

Needed to initially |l oad nodul es
#

/ sbin/ depnod -a

#
2.1 Required nodul es
#

/ sbi n/ nodprobe i p_tables

/ sbi n/ nodpr obe i p_conntrack

/ sbi n/ nodprobe iptable filter
/ sbi n/ nodpr obe i pt abl e_nangl e
/ sbi n/ nodpr obe i pt abl e_nat

/ sbi n/ nodpr obe i pt_LOG

/ sbi n/ nodprobe ipt_limt

/ sbi n/ nodprobe ipt_state

#
2.2 Non-Required nmodul es
#

#/ sbi n/ nodpr obe i pt_owner

#/ sbi n/ modpr obe i pt _REJECT

#/ sbi n/ modpr obe i pt _MASQUERADE
#/ sbi n/ nodprobe i p_conntrack ftp
#/ sbi n/ nodprobe ip_conntrack_irc
#/ sbi n/ nodprobe ip_nat _ftp

#/ sbi n/ modprobe ip_nat_irc

HABHHHHHHH T R
HEHHHHHHHH AR

#

3. /proc set up.

#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipvd/ip_forward
#

3.2 Non-Required proc configuration
#

#echo "1" > /[proc/sys/net/ipvd/confl/all/rp filter
Step by Step™ Linux Guide. Page 183

#echo "1" > [proc/sys/net/ipvd/conf/all/proxy_arp
#echo "1" > [proc/sys/net/ipvd/ip_dynaddr

HAHHH R HAH B R HHH R P AR AR R R R R R R AR
HERHR R

#

4. rules set up

#

B
4.1 Filter table
#

#
4.1.1 Set policies
#

$I PTABLES - P | NPUT DROP
$I PTABLES - P QUTPUT DROP
$!| PTABLES - P FORWARD DRCP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$I PTABLES - N bad_t cp_packets

#
Create separate chains for 1CWP, TCP and UDP to traverse
#

$1 PTABLES - N al | owed
$I PTABLES - N i cnp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_t cp_packets chain
#

$I PTABLES - A bad_tcp_packets -p tcp --tcp-flags SYN, ACK
SYN, ACK \

-mstate --state NEW-j REJECT --reject-with tcp-reset
$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j LOG\

Step by Step™ Linux Guide. Page 184

--log-prefix "New not syn:"
$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j DROP

#
al |l owed chain
#

$I PTABLES -A allowed -p TCP --syn -j ACCEPT
$I PTABLES -A allowed -p TCP -mstate --state
ESTABLI SHED, RELATED -j ACCEPT

$I PTABLES - A allowed -p TCP -j DRCP

#
1 CVP rul es
#

Changed rules totally

$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 8 -j
ACCEPT

$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 11 -j
ACCEPT

#
4.1.4 | NPUT chain
#

#
Bad TCP packets we don't want
#

$I PTABLES -A INPUT -p tcp -j bad_tcp_packets
#

Packets fromthe Internet to this box

#

$I PTABLES -A INPUT -p ICWP -i $INET_I FACE -] icnp_packets
#

Packets from LAN, DVWZ or LQOCALHOST

#

#

From DWZ Interface to DMZ firewall [P

#

$!| PTABLES -A INPUT -p ALL -i $DWZ_I FACE -d $DMZ_I P -j
ACCEPT

#
Step by Step™ Linux Guide. Page 185

From LAN Interface to LAN firewall |IP
#

$!I PTABLES -A INPUT -p ALL -i $LAN I FACE -d $LAN_IP -j
ACCEPT

#
From Local host interface to Local host I P's
#

$I PTABLES -A INPUT -p ALL -i $LO I FACE -s $LOIP -j ACCEPT
$1 PTABLES -A INPUT -p ALL -i $LO IFACE -s $LAN I P -]
ACCEPT

$I PTABLES -A INPUT -p ALL -i $LO IFACE -s $INET_IP -j
ACCEPT

#

Special rule for DHCP requests from LAN, which are not
caught properly

ot herw se.

#

$1 PTABLES -A INPUT -p UDP -i $LAN | FACE --dport 67 --sport
68 -j ACCEPT

#

Al established and rel ated packets incomng fromthe
internet to the

firewall

#

$I PTABLES -A INPUT -p ALL -d $INET_IP -mstate --state
ESTABLI SHED, RELATED \
-j ACCEPT

#

In Mcrosoft Networks you will be swanped by broadcasts.
These |ines

will prevent them from showi ng up in the Iogs.

#

#$| PTABLES -A INPUT -p UDP -i $INET_I FACE -d
$| NET_BROADCAST \
#--destination-port 135:139 -j DROCP

#

If we get DHCP requests fromthe Qutside of our network,
our logs wll

be swanped as well. This rule will block themfrom
getting | ogged.

#

Step by Step™ Linux Guide. Page 186

#$| PTABLES -A INPUT -p UDP -i $INET_I FACE -d
255. 255. 255. 255 \
#--destination-port 67:68 -j DROP

#
|If you have a Mcrosoft Network on the outside of your
firewall, you may

al so get flooded by Miulticasts. W drop them so we do
not get fl ooded by

| ogs

#

#$| PTABLES - A I NPUT -i $INET_I FACE -d 224.0.0.0/8 -j DROP
#

Log weird packets that don't nmatch the above.
#

$I PTABLES -A INPUT -mlimt --limt 3/mnute --limt-burst
3 -] LOG\

--log-level DEBUG --1og-prefix "IPT I NPUT packet died: "
#

4.1.5 FORWARD chai n

#

#

Bad TCP packets we don't want

#

$I PTABLES -A FORWARD -p tcp -j bad_tcp_packets

#

DMZ section
#

CGeneral rules
#

$| PTABLES - A FORWARD -i $DMZ_I FACE -0 $I NET_I| FACE -j
ACCEPT

$! PTABLES - A FORWARD -i $INET_I FACE -0 $DVZ_| FACE -m state
\

--state ESTABLI SHED, RELATED -j ACCEPT

$I PTABLES - A FORWARD -i $LAN_| FACE -0 $DVZ_I| FACE -j ACCEPT
$! PTABLES - A FORWARD -i $DMZ_I FACE -0 $LAN | FACE -m state
\

--state ESTABLI SHED, RELATED -j ACCEPT

#
Step by Step™ Linux Guide. Page 187

HITP server
#

$I PTABLES -A FORWARD -p TCP -i $I NET_I FACE -0 $DWZ_| FACE -
d $DMZ_HTTP_I P \

--dport 80 -j allowed

$I PTABLES -A FORWARD -p ICWP -i $I NET_I FACE -0 $DMZ_| FACE
-d $DMZ_HTTP_I P \

-j i1cnp_packets
#

DNS server

#

$I PTABLES - A FORWARD -p TCP -i $I NET_I FACE -0 $DWZ_| FACE -
d $DMZ_DNS_ | P \

--dport 53 -j allowed

$I PTABLES - A FORWARD -p UDP -i $I NET_I FACE -0 $DWZ_I FACE -
d $DMZ_DNS | P \

--dport 53 -j ACCEPT

$I PTABLES -A FORWARD -p ICWP -i $I NET_I FACE -0 $DMZ_| FACE
-d $DMZ_DNS | P \

-j icnp_packets
#

LAN section

#

$1 PTABLES - A FORWARD -i $LAN | FACE -j ACCEPT
$1 PTABLES -A FORWARD -m state --state ESTABLI SHED, RELATED
-j ACCEPT

#
Log weird packets that don't match the above.
#

$I PTABLES -A FORWARD -m limit --limt 3/mnute --limt-
burst 3 -j LOG\
--log-level DEBUG --1o0g-prefix "I PT FORMARD packet died: "

#

4.1.6 OUTPUT chain

#

#

Bad TCP packets we don't want.

#

$I PTABLES -A QUTPUT -p tcp -j bad_tcp_packets
#

Step by Step™ Linux Guide. Page 188

Special OUTPUT rules to decide which IP's to allow
#

$I PTABLES -A QUTPUT -p ALL -s $LOIP -j ACCEPT
$I PTABLES -A QUTPUT -p ALL -s $LAN_IP -j ACCEPT
$I PTABLES -A OQUTPUT -p ALL -s $INET_IP -j ACCEPT

#
Log weird packets that don't match the above.
#

$I PTABLES -A QUTPUT -mlimit --limt 3/mnute --limt-
burst 3 -j LOG\

--log-level DEBUG --1o0g-prefix "IPT QUTPUT packet died: "
Hit####

4.2 nat table
#

#
4.2.1 Set policies
#

4.2.2 Create user specified chains

H H H*

4.2.3 Create content in user specified chains

H H H*

4.2.4 PRERQUTI NG chain

H* H H*

$I PTABLES -t nat -A PREROQUTING -p TCP -i $INET_I FACE -d
$HTTP_I P --dport 80 \

-j DNAT --to-destination $DMZ HTTP_I P

$I PTABLES -t nat -A PREROUTING -p TCP -i $INET_I FACE -d
$DNS_| P --dport 53\

-j DNAT --to-destination $DMZ DNS I P

$I PTABLES -t nat -A PREROQUTING -p UDP -i $INET_I|I FACE -d
$DNS_I P --dport 53\

-j DNAT --to-destination $DMZ DNS | P

#
4.2.5 POSTROUTI NG chain
#

#

Step by Step™ Linux Guide. Page 189

Enabl e sinple | P Forwardi ng and Network Address
Transl ati on
#

$I PTABLES -t nat -A POSTROUTING -0 $I NET_I FACE -j SNAT --
to-source $INET_IP

#
4.2.6 OUTPUT chain
#

HHH#H#

4.3 mangl e table

#

#

4.3.1 Set policies

#

#

4.3.2 Create user specified chains
#

#

4.3.3 Create content in user specified chains
#

#

4. 3.4 PREROUTI NG chain
#

#

4.3.5 INPUT chain

#

#

4.3.6 FORWARD chai n

#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTI NG chai n
#

Step by Step™ Linux Guide. Page 190

|.3. Examplerc.UTIN.firewall script

#! / bin/sh

#

rc.firewall - UTIN Firewall script for Linux 2.4.x and
i ptabl es

#

Copyright (C 2001 Oskar Andreasson

<bl uef | uxATkof f ei nDOTnhet >

#

This programis free software; you can redistribute it
and/ or nodify

it under the terns of the GNU General Public License as
publ i shed by

the Free Software Foundation; version 2 of the License.
#

This programis distributed in the hope that it will be
useful ,

but W THOUT ANY WARRANTY; without even the inplied
warranty of

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE
See t he

GNU General Public License for nore details.

#

You shoul d have received a copy of the GNU Genera
Publ i c License

along with this programor fromthe site that you

downl oaded it

from if not, wite to the Free Software Foundation
Inc., 59 Tenple

Place, Suite 330, Boston, MA 02111-1307 USA

#

HREHHHHHHA TR RRHHHBHAA TR HHAT R RH RS HHAA AR R R B HHA T BB
HEHHHHHHHH R

#

1. Configuration options.

#

#
1.1 Internet Configuration.
#

I NET_I P="194. 236. 50. 155"

| NET_I| FACE="et h0"
| NET_BROADCAST="194. 236. 50. 255"

Step by Step™ Linux Guide. Page 101

1.1.1 DHCP

H* H H*

1.1.2 PPPoE

H H H*

1.2 Local Area Network configuration

H H H*

your LAN s | P range and | ocal host IP. /24 nmeans to only
use the first 24

bits of the 32 bit | P address. the sane as net nask

255. 255. 255.0

#

LAN_| P="192. 168. 0. 2"
LAN | P_RANGE="192. 168. 0. 0/ 16"
LAN_| FACE="et h1"

#
1.3 DMZ Configuration.
#

#
1.4 Local host Configuration.
#

LO_| FACE="I o"
LO I P="127.0.0.1"

#
1.5 | PTabl es Configuration.
#

| PTABLES="/usr/ sbin/i pt abl es"

#
1.6 Other Configuration.
#

HAHHH R HAH BB HFH R TR AR R R R R R R AR
HAHHH R HAH BB HAH AR

#

2. Mbdul e | oadi ng.

#

#
Needed to initially | oad nodul es
#

Step by Step™ Linux Guide. Page 102

/ sbi n/ depnod -a

#
2.1 Required nodul es
#

/ sbi n/ nodprobe i p_tables

/ sbi n/ nodpr obe i p_conntrack

/ sbi n/ nodprobe iptable filter
/ sbi n/ nodpr obe i pt abl e_nangl e
/ sbi n/ nodpr obe i pt abl e_nat

/ sbi n/ nodpr obe i pt_LOG

/ sbi n/ nodprobe ipt_limt

/ sbi n/ nodprobe ipt_state

#
2.2 Non-Required nmodul es
#

#/ sbi n/ nodpr obe i pt_owner

#/ sbi n/ nodpr obe i pt _REJECT

#/ sbi n/ modpr obe i pt _MASQUERADE
#/ sbi n/ modprobe i p_conntrack_ftp
#/ sbi n/ nodprobe ip_conntrack_irc
#/ sbi n/ nodprobe ip_nat _ftp

#/ sbi n/ nodprobe ip_nat _irc

HAHHH R HAH BB HFH R T AR AR R R R R R R AR
HER R

#

3. /proc set up.

#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipvd/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > [proc/sys/net/ipvd/confl/all/rp filter
#echo "1" > [proc/sys/net/ipvd/conf/all/proxy_arp
#echo "1" > [proc/sys/net/ipvd/ip_dynaddr

BHBHBHBHAHAH AR AR A R R R R R R R R R R
BHHBHARHBHHBHHBHH
#

Step by Step™ Linux Guide. Page 193

4. rules set up.
#

HHHHHH
4.1 Filter table
#

#
4.1.1 Set policies
#

$!| PTABLES - P | NPUT DROP
$I PTABLES - P QUTPUT DROP
$!| PTABLES - P FORWARD DRCP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$1 PTABLES - N bad_t cp_packets

#
Create separate chains for 1CVWP, TCP and UDP to traverse
#

$1 PTABLES - N al | owed

$I PTABLES - N tcp_packets
$I PTABLES - N udp_packets
$1 PTABLES - N i cnp_packet s

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$I PTABLES - A bad_tcp_packets -p tcp --tcp-flags SYN, ACK
SYN, ACK \

-mstate --state NEW-j REJECT --reject-with tcp-reset
$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j LOG\

--log-prefix "New not syn:"

$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j DROP

Step by Step™ Linux Guide. Page 194

#
al |l owed chain
#

$I PTABLES -A allowed -p TCP --syn -j ACCEPT
$I PTABLES -A allowed -p TCP -mstate --state
ESTABLI SHED, RELATED -j ACCEPT

$I PTABLES -A allowed -p TCP -j DROP

#
TCP rul es
#

$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 21 -j
al | oned
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 22 -j
al | oned
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 80 -j
al | owed
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 113 -j
al | oned

#
UDP ports
#

#$| PTABLES - A udp_packets -p UDP -s 0/0 --source-port 53 -
j ACCEPT
#$| PTABLES - A udp_packets -p UDP -s 0/0 --source-port 123
-] ACCEPT
$I PTABLES - A udp_packets -p UDP -s 0/0 --source-port 2074
-] ACCEPT
$| PTABLES - A udp_packets -p UDP -s 0/0 --source-port 4000
-j ACCEPT

#

In Mcrosoft Networks you will be swanped by broadcasts.
These |ines

will prevent them from showi ng up in the Iogs.

#

#$| PTABLES - A udp_packets -p UDP -i $I NET_I FACE -d
$| NET_BROADCAST \
#--destination-port 135:139 -j DROCP

#

If we get DHCP requests fromthe Qutside of our network,
our logs wll

be swanped as well. This rule will block themfrom
getting | ogged.

#

Step by Step™ Linux Guide. Page 195

#$| PTABLES - A udp_packets -p UDP -i $I NET_I FACE -d
255. 255. 255. 255 \
#--destination-port 67:68 -j DROP

#
1 CVP rul es
#

$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 8 -j
ACCEPT
$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 11 -j
ACCEPT

#
4.1.4 | NPUT chain
#

#
Bad TCP packets we don't want.
#

$I PTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rul es for special networks not part of the Internet
#

$I PTABLES -A INPUT -p ALL -i $LO I FACE -s $LO IP -j ACCEPT
$1 PTABLES -A INPUT -p ALL -i $LO IFACE -s $LAN I P -]
ACCEPT

$I PTABLES -A INPUT -p ALL -i $LO IFACE -s $INET_IP -j
ACCEPT

#
Rul es for incom ng packets from anywhere.
#

$!I PTABLES -A INPUT -p ALL -d $INET_IP -mstate --state
ESTABLI| SHED, RELATED \

-] ACCEPT

$I PTABLES -A INPUT -p TCP -j tcp_packets

$I PTABLES -A INPUT -p UDP -j udp_packets

$I PTABLES -A INPUT -p ICWP -j icnp_packets

#
I f you have a Mcrosoft Network on the outside of your
firewall, you may

al so get flooded by Miulticasts. W drop them so we do
not get fl ooded by
| ogs

Step by Step™ Linux Guide. Page 196

#
#$| PTABLES - A I NPUT -i $INET_I FACE -d 224.0.0.0/8 -j DROP
#

Log weird packets that don't match the above.
#

$IPTABLES -A INPUT -mlimt --limt 3/mnute --1imt-burst
3 -] LOG\

--log-level DEBUG --1og-prefix "IPT I NPUT packet died: "
#

4.1.5 FORWARD chai n

#

#

Bad TCP packets we don't want

#

$I PTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$1 PTABLES -A FORWARD -p tcp --dport 21 -i $LAN | FACE -j
ACCEPT

$1 PTABLES -A FORWARD -p tcp --dport 80 -i $LAN | FACE -j
ACCEPT

$1 PTABLES - A FORWARD -p tcp --dport 110 -i $LAN | FACE -j
ACCEPT

$1 PTABLES -A FORWARD -m state --state ESTABLI SHED, RELATED
-j ACCEPT

#
Log weird packets that don't nmatch the above.
#

$I PTABLES -A FORMRD -mlimt --limt 3/mnute --limt-
burst 3 -j LOG\
--log-level DEBUG --1og-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#

Bad TCP packets we don't want.
#

Step by Step™ Linux Guide. Page 197

$I PTABLES -A QUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow
#

$I PTABLES -A QUTPUT -p ALL -s $LOIP -j ACCEPT
$I PTABLES - A QUTPUT -p ALL -s $LAN I P -j ACCEPT
$I PTABLES - A QUTPUT -p ALL -s $INET_IP -j ACCEPT

#
Log weird packets that don't nmatch the above.
#

$I PTABLES -A QUTPUT -mlimit --limt 3/mnute --limt-
burst 3 -j LOG\

--log-level DEBUG --1og-prefix "IPT QUTPUT packet died: "
HH#HH

4.2 nat table
#

#
4.2.1 Set policies
#

4.2.2 Create user specified chains

H* H H*

4.2.3 Create content in user specified chains

H* H H*

4.2.4 PRERQUTI NG chain

H H H*

4.2.5 POSTROUTI NG chai n

H*H H H*

#

Enabl e sinple | P Forwardi ng and Network Address
Transl ation

#

$I PTABLES -t nat -A POSTROUTING -o $I NET_I FACE -j SNAT --
to-source $INET_IP

#
Step by Step™ Linux Guide. Page 198

4.2.6 OUTPUT chain
#

HH#HH

4.3 nangle table

#

#

4.3.1 Set policies

#

#

4.3.2 Create user specified chains
#

#

4.3.3 Create content in user specified chains
#

#

4.3.4 PREROUTI NG chain
#

#

4.3.5 INPUT chain

#

#

4.3.6 FORWARD chain

#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTI NG chain
#

Step by Step™ Linux Guide. Page 199

|.4. Examplerc.DHCP.firewall script

#!/ bi n/ sh

#

rc.firewall - DHCP IP Firewall script for Linux 2.4.x
and i ptables

#

Copyright (C 2001 GOskar Andreasson

<bl uef | uxATkof f ei nDOTnet >

#

This programis free software; you can redistribute it
and/ or nodify

it under the terns of the G\NU General Public License as
publ i shed by

the Free Software Foundation; version 2 of the License.
#

This programis distributed in the hope that it will be
usef ul,

but W THOUT ANY WARRANTY; without even the inplied
warranty of

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE
See the

GNU General Public License for nore details.

#

You shoul d have received a copy of the GNU CGenera
Publ i c License

along with this programor fromthe site that you

downl oaded it

from if not, wite to the Free Software Foundation
Inc., 59 Tenple

Place, Suite 330, Boston, MA 02111-1307 USA

#

HAHHH R HAH BB HFH R T AR AR R R R R R R AR
HAHHH R HAH B R HAH AR

#

1. Configuration options.

#

#

1.1 Internet Configuration.
#

| NET_I FACE="et h0"

#
1.1.1 DHCP

Step by Step™ Linux Guide. Page 200

#

#

Information pertaining to DHCP over the Internet, if
needed.

#

Set DHCP variable to no if you don't get |IP from DHCP
If you get DHCP

over the Internet set this variable to yes, and set up
the proper IP

address for the DHCP server in the DHCP_SERVER vari abl e.
#

DHCP="no"
DHCP_SERVER="195. 22. 90. 65"

#
1.1.2 PPPoE
#

Configuration options pertaining to PPPoE

#

I f you have problemw th your PPPoOE connection, such as
| arge mails not

getting through while small mail get through properly
etc, you may set

this option to "yes" which may fix the problem This
option will set a

rule in the PREROUTI NG chain of the mangl e table which
will clanp

(resize) all routed packets to PMIU (Path Maxi num
Transmit Unit).

#

Note that it is better to set this up in the PPPoE
package itself, since

the PPPoE configuration option will give | ess overhead.
#

PPPOE_PMTU=" no"

#

1.2 Local Area Network configuration

#

your LAN s | P range and | ocal host IP. /24 means to only
use the first 24

bits of the 32 bit | P address. the sanme as net mask
255.255.255.0

#

LAN_| P="192. 168. 0. 2"
LAN_| P_RANGE="192. 168. 0. 0/ 16"

Step by Step™ Linux Guide. Page 201

LAN_| FACE="et h1"

#
1.3 DMZ Configuration.
#

#
1.4 Local host Configuration.
#

LO_| FACE="I o"
LO I P="127.0.0.1"

#
1.5 | PTabl es Configuration.
#

| PTABLES="/usr/ sbin/i pt abl es"

#

1.6 Other Configuration.

#

HAHHH R HAH B R HHH B R T AR AR R R R R R R AR
HER R

#

2. Mbdul e | oadi ng.

#

#

Needed to initially | oad nodul es
#

/ sbin/ depnod -a

#

2.1 Required nodul es
#

/ sbi n/ nodpr obe i p_conntrack

/ sbi n/ nodprobe i p_tables

/ sbi n/ nodprobe iptable filter
/ sbi n/ nodpr obe i pt abl e_nmangl e
/ sbi n/ nodpr obe i pt abl e_nat

/ sbi n/ nodpr obe i pt _LOG

/ sbi n/ nodprobe ipt_limt

/ sbi n/ nodpr obe i pt _MASQUERADE

2.2 Non-Required nodul es
#

Step by Step™ Linux Guide. Page 202

#/ sbi n/ nodpr obe i pt_owner

#/ sbi n/ modpr obe i pt _REJECT

#/ sbi n/ modprobe i p_conntrack_ftp
#/ sbi n/ nodprobe ip_conntrack_irc
#/ sbi n/ nodprobe ip_nat _ftp

#/ sbi n/ nodprobe ip_nat _irc

HAHHH R HHH B R HHH R TR AR R R R R R R AR
HERHR R

#

3. /proc set up.

#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipvd/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /[proc/sys/net/ipvd/confl/all/rp filter
#echo "1" > [proc/sys/net/ipvd/conf/all/proxy_arp
#echo "1" > [proc/sys/net/ipvd/ip_dynaddr

HAHHH R HAH BB HFH R T AR AR R R R R R R AR
HER R

#

4. rules set up

#

B
4.1 Filter table
#

#
4.1.1 Set policies
#

$I PTABLES - P | NPUT DROP
$I PTABLES - P QUTPUT DROP
$!| PTABLES - P FORWARD DRCP

#
4.1.2 Create userspecified chains
#

#
Step by Step™ Linux Guide. Page 203

Create chain for bad tcp packets
#

$1 PTABLES - N bad_t cp_packets

#
Create separate chains for 1CvWP, TCP and UDP to traverse
#

$1 PTABLES - N al | owed

$I PTABLES - N tcp_packets
$I PTABLES - N udp_packets
$I PTABLES - N i cnp_packet s

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$I PTABLES - A bad_tcp_packets -p tcp --tcp-flags SYN, ACK
SYN, ACK \

-mstate --state NEW-j REJECT --reject-with tcp-reset
$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j LOG\

--log-prefix "New not syn:"

$I PTABLES - A bad_tcp_packets -p tcp ! --syn -mstate --
state NEW-j DROP

#
all owed chain
#

$I PTABLES -A allowed -p TCP --syn -j ACCEPT
$I PTABLES -A allowed -p TCP -mstate --state
ESTABLI SHED, RELATED -j ACCEPT

$I PTABLES - A allowed -p TCP -] DROP

#
TCP rul es
#

$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 21 -j
al | oned
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 22 -j
al | owed
$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 80 -j
al | oned

Step by Step™ Linux Guide. Page 204

$I PTABLES - A tcp_packets -p TCP -s 0/0 --dport 113 -j
al | oned

#
UDP ports
#

$I PTABLES - A udp_packets -p UDP -s 0/0 --source-port 53 -j
ACCEPT

if [$DHCP == "yes"] ; then

$1 PTABLES - A udp_packets -p UDP -s $DHCP_SERVER --sport
67 \

--dport 68 -j ACCEPT
f

#$| PTABLES - A udp_packets -p UDP -s 0/0 --source-port 53 -
j ACCEPT
#$| PTABLES - A udp_packets -p UDP -s 0/0 --source-port 123
-j ACCEPT
$I PTABLES - A udp_packets -p UDP -s 0/0 --source-port 2074
-j ACCEPT
$I PTABLES - A udp_packets -p UDP -s 0/0 --source-port 4000
-j ACCEPT

#

In Mcrosoft Networks you will be swanped by broadcasts.
These |ines

will prevent them from showi ng up in the I ogs.

#

#$| PTABLES - A udp_packets -p UDP -i $I NET_I FACE \
#--destination-port 135:139 - DROCP

#

If we get DHCP requests fromthe Qutside of our network,
our logs wll

be swanped as well. This rule will block themfrom
getting | ogged.

#

#$| PTABLES - A udp_packets -p UDP -i $I NET_I FACE -d
255. 255. 255. 255 \
#--destination-port 67:68 -j DROP

#

I CWP rul es

#

$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 8 -j
ACCEPT

Step by Step™ Linux Guide. Page 205

$I PTABLES - A icnp_packets -p ICMP -s 0/0 --icnp-type 11 -j
ACCEPT

#
4.1.4 | NPUT chain
#

#
Bad TCP packets we don't want.
#

$I PTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rul es for special networks not part of the Internet
#

$I PTABLES -A INPUT -p ALL -i $LAN | FACE -s $LAN_| P_RANGE -
j ACCEPT
$I PTABLES -A INPUT -p ALL -i $LO | FACE -j ACCEPT

#

Special rule for DHCP requests from LAN, which are not
caught properly

ot herw se.

#

$1 PTABLES -A INPUT -p UDP -i $LAN | FACE --dport 67 --sport
68 -j ACCEPT

#
Rul es for incomng packets fromthe internet.
#

$I PTABLES -A INPUT -p ALL -i $INET_IFACE -mstate --state
ESTABLI SHED, RELATED \

-j ACCEPT

$I PTABLES -A INPUT -p TCP -i $I NET_I FACE -j tcp_packets
$I PTABLES -A INPUT -p UDP -i $I NET_I FACE -j udp_packets

$I PTABLES -A INPUT -p ICWP -i $INET_I FACE -j icnp_packets
#

I f you have a Mcrosoft Network on the outside of your
firewall, you may

al so get flooded by Miulticasts. W drop themso we do
not get fl ooded by

| ogs

#

#$| PTABLES - A I NPUT -i $INET_I FACE -d 224.0.0.0/8 -j DROP

Step by Step™ Linux Guide. Page 206

#
Log weird packets that don't nmatch the above.
#

$I PTABLES -A INPUT -mlimt --limt 3/mnute --limt-burst
3 -] LOG\

--log-level DEBUG --1og-prefix "IPT I NPUT packet died: "
#

4.1.5 FORWARD chai n

#

#

Bad TCP packets we don't want

#

$I PTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$1 PTABLES - A FORWARD -i $LAN | FACE -j ACCEPT
$1 PTABLES -A FORWARD -m state --state ESTABLI SHED, RELATED
-j ACCEPT

#
Log weird packets that don't match the above.
#

$I PTABLES -A FORWARD -m limit --limt 3/mnute --limt-
burst 3 -j LOG\
--log-level DEBUG --1og-prefix "IPT FORMRD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$I PTABLES -A QUTPUT -p tcp -j bad_tcp_packets
#

Special OUTPUT rules to decide which IP's to all ow
#

$I PTABLES -A QUTPUT -p ALL -s $LOIP -j ACCEPT
$I PTABLES -A QUTPUT -p ALL -s $LAN_IP -j ACCEPT
$! PTABLES - A OUTPUT -p ALL -o $I NET_I FACE -j ACCEPT

Step by Step™ Linux Guide. Page 207

#
Log weird packets that don't match the above.
#

$I PTABLES -A QUTPUT -mlimit --limt 3/mnute --limt-
burst 3 -j LOG\
--log-level DEBUG --1o0g-prefix "IPT QUTPUT packet died: "

HHHBHHA

4.2 nat table
#

4.2.1 Set policies

H H H*

4.2.2 Create user specified chains

H HH*

4.2.3 Create content in user specified chains

H* H H*

4.2.4 PRERQUTI NG chain

H* H H*

4.2.5 POSTROUTI NG chai n

H H H*

if [$PPPOE_PMIU == "yes"] ; then

$I PTABLES -t nat -A POSTROUTING -p tcp --tcp-fl ags
SYN, RST SYN \

-] TCPMSS --cl anp-nss-to-pntu
fi
$I PTABLES -t nat -A POSTROUTING -0 $I NET_I FACE -j
MASQUERADE

#
4.2.6 OUTPUT chain
#

HtHH
4.3 nangle table
#

#
4.3.1 Set policies

Step by Step™ Linux Guide. Page 208

#
4.3.2 Create user specified chains
#

Create content in user specified chains

H H H*
I
w
w

PRERQOUTI NG chai n

H H H#*
N
w
N

I NPUT chai n

H H H*
N
w
ul

4.3.6 FORWARD chain

QUTPUT chain

4. 3.8 POSTROUTI NG chai n

H H HHEH HHH
N
w
\l

|.5. Examplerc.flush-iptables script

#!/ bi n/ sh

#

rc.flush-iptables - Resets iptables to default val ues.
#

Copyright (C 2001 Oskar Andreasson

<bl uef | uxATkof f ei nDOTnet >

#

This programis free software; you can redistribute it
and/ or nodify

it under the ternms of the GNU General Public License as
publ i shed by

the Free Software Foundation; version 2 of the License.
#

This programis distributed in the hope that it will be
useful,

Step by Step™ Linux Guide. Page 209

but W THOUT ANY WARRANTY; without even the inplied
warranty of

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPGCSE
See t he

GNU General Public License for nore details.

#

You shoul d have received a copy of the GNU Ceneral
Publ i c Li cense

along with this programor fromthe site that you
downl oaded it

from if not, wite to the Free Software Foundati on,
Inc., 59 Tenple

Place, Suite 330, Boston, MA 02111-1307 USA

#

Configurations

#

| PTABLES="/usr/ sbin/i pt abl es"

#

reset the default policies in the filter table.
#

$I PTABLES - P | NPUT ACCEPT

$I PTABLES - P FORWARD ACCEPT

$I PTABLES - P OQUTPUT ACCEPT

#

reset the default policies in the nat table.
#

$I PTABLES -t nat -P PREROUTI NG ACCEPT

$I PTABLES -t nat -P POSTROUTI NG ACCEPT

$I PTABLES -t nat -P OUTPUT ACCEPT

#

reset the default policies in the mangle table.
#

$I PTABLES -t mangl e - P PREROUTI NG ACCEPT

$I PTABLES -t mangl e -P OUTPUT ACCEPT

#

flush all the rules in the filter and nat tables.
#

$! PTABLES -F

$!| PTABLES -t nat -F

$I PTABLES -t mangle -F

#

erase all chains that's not default in filter and nat
t abl e.

#

$1 PTABLES - X

$1 PTABLES -t nat -X

$I PTABLES -t mangle - X

Step by Step™ Linux Guide. Page 210

|.6. Examplerc.test-iptables script

#!/ bi n/ bash

#

rc.test-iptables - test script for iptables chains and
t abl es.

#

Copyright (C 2001 Oskar Andreasson

<bl uef | uxATkof f ei nDOTnet >

#

This programis free software; you can redistribute it
and/ or nodify

it under the terns of the GNU General Public License as
publ i shed by

the Free Software Foundation; version 2 of the License.
#

This programis distributed in the hope that it will be
usef ul,

but W THOUT ANY WARRANTY; without even the inplied
warranty of

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE
See the

GNU General Public License for nore details.

#

You shoul d have received a copy of the GNU Cenera
Publ i c License

along with this programor fromthe site that you

downl oaded it

from if not, wite to the Free Software Foundation
Inc., 59 Tenple

Place, Suite 330, Boston, MA 02111-1307 USA

#

#

Filter table, all chains

#

i ptables -t filter -AINPUT -p icnp --icnp-type echo-
request \

-] LOG --log-prefix="filter I NPUT:"

i ptables -t filter -AINPUT -p icnp --icnp-type echo-reply
\

-j LOG --log-prefix="filter INPUT:"

i ptables -t filter -A QUTPUT -p icnp --icnp-type echo-
request \

-j LOG --log-prefix="filter OUTPUT:"

Step by Step™ Linux Guide. Page 211

i ptables -t filter -A QUTPUT -p icnp --icnp-type echo-
reply \

-j LOG --log-prefix="filter OUTPUT:"

i ptables -t filter -A FORMRD -p icnp --icnp-type echo-
request \

-] LOG --log-prefix="filter FORWARD: "

i ptables -t filter -A FORMARD -p icnp --icnp-type echo-
reply \

-j LOG --log-prefix="filter FORWARD: "

#

NAT table, all chains except QUTPUT which don't work.

#

i ptables -t nat -A PREROUTING -p icnp --icnp-type echo-
request \

-] LOG --1o0g-prefix="nat PREROUTI NG "

i ptables -t nat -A PREROQUTING -p icnp --icnp-type echo-
reply \

-j LOG --1o0g-prefix="nat PREROUTI NG "

i ptables -t nat -A POSTROUTING -p icnp --icnp-type echo-
request \

-] LOG --1o0g-prefix="nat POSTROUTI NG "

i ptables -t nat -A POSTROUTING -p icnp --icnp-type echo-
reply \

-] LOG --1o0g-prefix="nat POSTROUTI NG "

i ptables -t nat -A QUTPUT -p icnp --icnp-type echo-request
\

-j LOG --1o0g-prefix="nat OUTPUT:"

i ptables -t nat -A OQUTPUT -p icnp --icnp-type echo-reply \
-] LOG --1o0g-prefix="nat OQUTPUT:"

#

Mangl e table, all chains

#

i ptables -t mangle -A PREROUTING -p icnp --icnp-type echo-
request \

-] LOG --1o0g-prefix="mngl e PREROUTI NG "

i ptables -t mangle -A PREROUTING -p icnp --icnp-type echo-
reply \

-] LOG --1o0g-prefix="mngl e PREROUTI NG "

i ptables -t mangle -1 FORWARD 1 -p icnp --icnp-type echo-
request \

-j LOG --1o0g-prefix="nmangl e FORWARD: "

i ptables -t mangle -1 FORWARD 1 -p icnp --icnp-type echo-

reply \

-] LOG --1o0g-prefix="nmangl e FORWARD: "

i ptables -t mangle -1 INPUT 1 -p icnp --icnp-type echo-
request \

-j LOG --1o0g-prefix="mangle | NPUT:"

i ptables -t mangle -1 INPUT 1 -p icnp --icnp-type echo-
reply \

Step by Step™ Linux Guide. Page 212

-] LOG --1o0g-prefix="mangl e | NPUT:"

i ptables -t mangle -A QUTPUT -p icnp --icnp-type echo-
request \

-j LOG --1o0g-prefix="nmangl e QUTPUT: "

i ptables -t mangle -A QUTPUT -p icnp --icnp-type echo-
reply \

-j LOG --1o0g-prefix="nmangl e OQUTPUT: "

i ptables -t mangle -1 POSTROUTING 1 -p icnp --icnp-type
echo-request \

-] LOG --1o0g-prefix="mngl e POSTROUTI NG "

i ptables -t nmangle -1 POSTROUTING 1 -p icnp --icnp-type
echo-reply \

-j LOG --1o0g-prefix="mngl e POSTROUTI NG "

Step by Step™ Linux Guide. Page 213

DNS BIND

How to set up your own domain

First do thislab and read the DNS concepts after this lab. Good Luck

Thisisnamed.conf in /etc/ folder

According to the following configuration | have created a zone called
suranga.com and in that zone im3 is a host. Therefore the full name of
that host would be im3.suranga.com. like that you can have any amount
of PCsin your domain. This will definitely works if you type following
according to your network. (// are comments)

options{
directory "/var/named";
/I query-source address * port 53;

};

zone"." IN { //The zone"." is shorthand for the root domain which trang ates to 'any
/l/domain not defined as either a master or slave in this named.conf file'.

type hint; // If aserver is going to provide caching services then it must provide
/Irecur sive queries and recursive queries need access to the root servers whichis
/lprovided viathe 'type hint' statement.

file "named.ca"; //named.cafile has the list of root servers

H
zone "localhost” IN {
type master;
file "localhost.zone";
allow-update { none; };
H
zone "0.0.127.in-addr.arpa’ IN {
type master;
file "named.local";
allow-update { none; };
H
zone "suranga.com” IN {

type master;

Step by Step™ Linux Guide. Page 214

file "suranga.com.zone";
allow-update { none; };

¥

zone "200.168.192.in-addr.arpa" IN {
type master;
allow-update { none; };

¥

Following files should be created in /var/named/ folder we do not need to
customize the default file named.cain the /var/named/ folder.

1. 0.0.127.in-addr.arpa.zone

2. 200.168.192.in-addr.arpa.zone

3. suranga.com.zone
4, localhost.zone
5 . named.|ocal

The contents of 0.0.127.in-addr .ar pa.zone as follows

$TTL 86400
@ IN SOA locahost. root.localhost (
1; seria
28800 ; refresh
7200 ; retry
604800 ; expire
86400 ; ttk
)

@ IN NS locahost.

1 IN PTR locahost.

Step by Step™ Linux Guide. Page 215

200.168.192.in-addr .ar pa.zonefile

$TTL 86400
@ IN SOA 192.168.200.8. root.localhost (
1; seriad
28800 ; refresh
7200 ; retry
604800 ; expire
86400 ; ttk
)

@ IN NS locahost.

1 IN PTR locahost.
2 IN PTR im3.

suranga.com.zonefile

$TTL 86400
@ IN SOA @ root.suranga.com (
1; seriad
28800 ; refresh
7200 ; retry
604800 ; expire
86400 ; ttl
)

IN NS suranga.com.

@ IN A 192.168.200.8
im3 IN A 192.168.200.250

Step by Step™ Linux Guide. Page 216

localhost.zone file

$TTL 86400
@ IN SOA @ root.localhost (
1; seriad
28800 ; refresh
7200 ; retry
604800 ; expire
86400 ; ttl
)

IN NS locahost.

@ IN A 127.0.0.1

named.localhost file

$TTL 86400

@ IN SOA locahost. root.localhost. (
1997022700 ; Serial
28800 ; Refresh
14400 ; Retry
3600000 ; Expire
86400) ; Minimum

IN NS locahost.

1 IN PTR locahost.

Now go to the prompt and type service named start and type nslookup
commands to verify your domain as follows.

Step by Step™ Linux Guide. Page 217

#nsl ookup

>suranga.com

Server: 192.168.200.8
Address: 192.168.200.8#53

Name: suranga.com
Address: 192.168.200.8

>im3.suranga.com
Server: 192.168.200.8
Address; 192.168.200.8#53

Name: im3.suranga.com
Address: 192.168.200.250

named configuration file (/etc/named.conf):
It basically defines the parameters that point to the sources of domain
database information, which can be local files or on remote servers.

Hint file (cache file)(/var/named/named.ca):

It actually provides the name of root server which gets activated in case
the machine name, which is to be searched, is not there in user defined
zone.

localhost file (/var/named.local):
All configuration have alocal domain Database for resolving address to
the host name local host.

Zone:
Basically a zone that keeps the information about the domain database.

@: It means from the origin to the lastname object that is suranga.com.
IN: Thisstands for Internet servers

SOA: This stands for "Start Of Authority’. It marks the beginning of a
zone's data and defines the parameter that affects the entire zone.

Followed by the current machine name where the DNS server is
maintai ned.

Step by Step™ Linux Guide. Page 218

20000011301;serial: Thisisthe seria number--a numeric value that tells
or notifies the dave server, that the database has been updated. So slave
server should also update it.

3600;refresh: Thisisthe refresh cycle in seconds. In every refresh cycle
the dlave server comes to master server and checks for the updated
database.

1800;retry: This particular line refers to the retry cycle which in turn
means that the slave server should wait before asking the master server
again in case master server doesn’t respond.

1209600; expire: Thisisthe time for slave server to respond to queries of
client for the expiration time if master server fails and has to be up and
not getting up. After this period slave server also fails to solve the
gueries of clients and sitsidle.

432100;default_ttl: This refers to the default time to leave, for this
domain to work for, when named is once started. Remember the user
doesn’t have to play with this unless he wants that the query time from
the dave server should be somewhat less or more. In case we want to
change, we should change only the refresh time in both master and save.
The best way is to make it 2, which means after each 2 seconds slave
server will query to master server.

Before begin just skim the following definitions you will understand all
later

Zonesand Zonefiles

A 'zong€' is convenient short-hand for that part of the domain name for
which we are configuring the DNS server (e.g. BIND) and is always an
entity for which we are authoritative.

Assume we have a'Domain Name' of suranga.com. This is comprised of
a domain-name (suranga) and a gTLD (Generic Top Level Domain
which will be discussed later) name (com). The zone in this case is

Step by Step™ Linux Guide. Page 219

'suranga.com’. If we have a sub-domain which has been delegated to
gayan called gayan.suranga.com then the zone is 'gayan.suranga.com'.

Zones are described in zone files (sometimes called master files)
(normally located in /var/named) which can contain Directives (used by
the DNS software e.g. BIND) and Resource Records which describe the
characteristics of the zone and individual hosts and services within the
zone. Both Directives and Resource records are a standard defined by
RFC 1035.

Example ZoneFile:-

suranga.com.zonefile

$TTL 86400
@ IN SOA @ root.suranga.com (
1; serid
28800 ; refresh
7200 ; retry
604800 ; expire
86400 ; ttl
)

IN NS suranga.com.

@ IN A 192.168.200.8
im3 IN A 192.168.200.250

Resour ce Records(RR)

Resource Records are defined by RFC 1035. Resource Records describe
global properties of azone and the hosts or services that are part of the
zone. Resource Records have a binary format, used internally by DNS
software and when sent across a network e.g. zone updates, and a text
format which isused in zonefiles.

Step by Step™ Linux Guide. Page 220

Resource Records include SOA Record, NS Records, A Records,
CNAME Records, PTR Records, MX Records.

Example of Resource Recordsin a ZoneFile:-

surangacom. IN SOA nsjic.com. root.suranga.com. (
2003080800 ; se = seria number
3h ; ref = refresh
15m ; ret = update retry

3w ; eX = expiry
3h ; min = minimum
)

IN NS nsl.suranga.com.

IN MX 10 mail.janashakthi.com.
jic IN A 192.168.254.3
WWw IN CNAME jic

Start of Authority Record (SOA)

Defined in RFC 1035. The SOA defines global parameters for the zone
(domain). Thereis only one SOA record allowed in a zonefile.

For mat

name ttl class rr name-server mail-address (seref ret ex min)
suranga.com. IN SOA ns.suranga.com. root.suranga.com. (
2003080800 ; se = serial number
18000 ; ref =refresh
900 ; ret = update retry
259200 ; ex =expiry
10800 ; min = minimum

)

Step by Step™ Linux Guide. Page 221

Name Server Record (NS)

Defined in RFC 1035. NS records define the name servers for the
domain. They are required because a DNS query can be initiated to find
the name servers for the domain.

Format
name ttl class rr name
suranga.com. IN NS nsl.suranga.com.

By convention name servers are defined immediately after the SOA
record, for an example in suranga.com.zone file refer the line just after
SOA record

IN NS suranga.com.

The name servers also need an A record if they are in the same zone.
While only one name server is defined in the SOA record any number of
NS records may be defined. Name servers are not required to be in the
same zone and in most cases probably are not.

The name field can be any of:

A Fully Qualified Domain Name (FQDN) e.g. suranga.com.
(with a dot)

An'@' (Origin)

a'space’ (thisis assumed to be an un-qualified domain name
and hence the domain name is substituted).

Step by Step™ Linux Guide. Page 222

Examples & Variations:-

; zone fragment for 'zone name' suranga.com
; name servers in the same zone
suranga.com. IN SOA nsl.suranga.com. root.suranga.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks+ 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)
IN NS nsl ;shortform
; the line above is functionally the same as the line below
suranga.com. IN NS nsl.suranga.com.
. any number of name servers may be defined

IN NS ns2
: the in-zone name server(s) need an A record
nsl IN A 192.168.0.3
ns2 IN A 192.168.0.3

; zone fragment for 'zone name' suranga.com

; name servers not in the zone

suranga.com. IN SOA nsl.jic.com. root.suranga.com. (
2003080800 ; seria number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)

; hame servers not in zone - no A records required
IN NS nsljic.com.
IN NS ns2jic.com.

|Pv4 Address Record (A)
Defined in RFC 1035. Enables a host name to |Pv4 address trandlation.
The only parameter is an IP address in dotted decimal format. The IP

addressin not terminated with a".' (dot).

Step by Step™ Linux Guide. Page 223

For mat

name ttl class rr ip
nsl IN A 192.168.254.3

If multiple address are defined with either the same name or without a
name then BIND will respond to queries with all the addresses defined
but the order will change The same IP may be defined with different
names (beware: in this case a reverse lookup may not give the result you
want). IP addresses do not have to be in the same class or range.

Examples & Variations:-

; zone fragment for suranga.com
jic IN A 192.168.0.3 ;jic & www =sameip
WWW IN A 192.168.0.3
tftp 3600IN A 192.168.0.4 ; ttl overrides SOA and $TTL default
ftp IN A 192.168.0.24 ; round robin with next
IN A 192.168.0.7
mail IN A 192.168.0.15 ; mail = round robin
mail IN A 192.168.0.32
mail IN A 192.168.0.3
im IN A 10.0.14.13 ; addressin another range & class

In the above example BIND will respond to queries for mail.mydomain.com
as follows (assuming you are using the default cyclic order):

1st query 192.168.0.15, 192.168.0.32, 192.168.0.3
2nd query 192.168.0.32, 192.168.0.3, 192.168.0.15
3rd query 192.168.0.3, 192.168.0.15, 192.168.0.32
4th query 192.168.0.15, 192.168.0.32, 192.168.0.3

Canonical Name Record (CNAME)

A CNAME record maps an alias or nickname to the real or Canonical
name. NS and MX records cannot be mapped using a CNAME RR since
they require names.

Step by Step™ Linux Guide. Page 224

For mat

name ttl class rr canonical name
WWw IN CNAME web ; = web.suranga.com

You can map other CNAME records to a CNAME record but this
considered bad practice since 'queries will look for the A record and this
will involve additional DNS transactions.

Examples & Variations:-

; zone file fragment for mydomain.com

web IN A 192.168.254.3

wWww IN CNAME web ;canonical nameisweb

WWwW IN CNAME web.suranga.com. ; exactly the same as above
ftp IN CNAME www.suranga.com. ; bad practice

; better practice to achieve same result as CNAME above

ftp IN A 192.168.254.3

; next line redirects test.suranga.com to preview.another.com

test IN CNAME preview.another.com.

Pointer Record (PTR)

Pointer records are the opposite of A Records and are used in Reverse
Map zone filesto map an IP address to a host name.

Format

namettl class rr name
15 IN PTR www.suranga.com.

The number '15' (the base IP address) is actually a name and because
there is no 'dot' BIND adds the $ORIGIN. The example below which
defines a reverse map zone file for the Class C address 192.168.23.0
should make this clearer:

Step by Step™ Linux Guide. Page 225

http://www.suranga.com
http://www.suranga.com

$TTL 12h
$ORIGIN 23.168.192.IN-ADDR.ARPA.

@ IN SOA nsl.suranga.com. root.suranga.com. (
2003080800 ; serial number
3h ; refresh
15m ; update retry
3w ; expiry
3h ; minimum
)

IN NS nsl.suranga.com.
IN NS ns2.suranga.com.

2 IN PTR web.suranga.com. ; qualified names
15 IN PTR www.suranga.com.

17 IN PTR mail.suranga.com.

74 IN PTR im.suranga.com.

Mail Exchange Record (M X)

Defined in RFC 1035. Specifies the name and relative preference of mail
serversfor the zone.

Format
name ttl class rr pref name
suranga.com. IN MX 10 mail.suranga.com.

The Preference field is relative to any other MX record for the zone
(value 0 to 65535). Low values are more preferred. The preferred value
10 you see al over the place is just a convention. Any number of MX
records may be defined. If the host is in the domain it requires an A
record. MX records do not need to point to a host in this zone.

Step by Step™ Linux Guide. Page 226

http://www.suranga.com

Examples & Variations:-

; zone fragment for 'zone name' suranga.com
; mail serversin the same zone
suranga.com. IN SOA nsl.suranga.com. root.suranga.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)
IN MX 10 mail ; short form
; the line above is functionaly the same as the line below
surangacom.IN MX 10 mail.suranga.com.
; any number of mail servers may be defined
IN MX 20 mail2.suranga.com.
; the mail server(s) need an A record
mail IN A 192.168.0.3
mail2 IN A 192168.0.3

; zone fragment for 'zone name' suranga.com

; mail serversnot in the zone

suranga.com. IN SOA nsl.suranga.com. root.suranga.com. (
2003080800 ; seria number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)

; mail serversnot in zone - no A records required
IN MX 10 mail.kalpa.com.
IN MX 20 mail2.kalpa.com.

Step by Step™ Linux Guide. Page 227

Resolvers

The generic term 'resolver' actually refers to a set of functions supplied
as part of the standard C network/socket libraries or supplied as part of a
package (e.g. BIND). These functions are used by applications to answer
guestions such as 'what is the IP address of this host'. The most common
method to invoke such resolver services, used by your browser among
many other applications, is to use the socket functions 'gethostbyname’
for name to IP and 'gethostbyaddr’ for IP to name.

There are anumber of ways your system can resolve a name and the
actual order will vary based on your configuration:

1. If you areusing alinux system with the GNU glibc libraries the
order of lookup is determined by the 'hosts' entry in the
/etc/nsswitch.conf file which will read something like:

hosts files nisplus dns

Indicating look at /etc/hosts, then use NIS (Network Information
Systems), then DNS (via resolv.conf)

2. The order of lookup is determined by the 'order’ entry in the
/etc/host.conf file which will read something like:

order hosts,bind

Indicating ook at /etc/hosts then DNS (using resolv.conf).

Step by Step™ Linux Guide. Page 228

DNS Concepts

Without a DNS there would simply not be Internet. DNS does the
following.

1. A DNS trandates (or maps) the name of a resource to its
physical IP address

2. A DNS can dso trandate the physical IP address to the
name of aresource by using reverse |look-up or mapping.

Internet works by alocating every point a physical IP address (which
may be locally unique or globally unique).

The Internet's Domain Name Service (DNS) is just a specific
implementation of the Name Server concept optimized for the prevailing
conditions on the Internet.

Name Server s need following

1. Theneed for ahierarchy of names

2. Theneed to spread the operational 1oads on our name
servers

3. The need to delegate the administration of our Name
servers

Domains and Delegation

The Domain Name System uses a tree (or hierarchical) name structure.
At the top of the tree is the root followed by the Top Level Domains
(TLDs) then the domain-name and any number of lower levels each
separated with a dot.

NOTE:

Step by Step™ Linux Guide. Page 229

The root is represented most of the time as a silent dot (*.") but there are
times when it isimportant.

Top Level Domains (TLDs) are split into two types:

1. Generic Top Level Domains (gTLD) .com, .edu, .net, .org,

.mil etc.
2. Country Code Top Level Domain (ccTLD) e.g. .Ik, .ca, .tv,
.UK etc.
Root Delegation
gTLD ccTLD
.edu
.a

Domain Structure and Delegation

What is commonly called a'Domain Name' is actually a combination of
a domain-name and a TLD and is written from left to right with the
lowest level in the hierarchy on the left and the highest level on the right.

domain-name.tld e.g.
suranga.com

So What is www.sur anga.com

We can see that www.suranga.com is built up from ‘www' and
'suranga.com’. The ‘www' part was chosen by the owner of the domain
since they are now the delegated authority for the 'suranga.com’ name.
They own EVERY THING to the LEFT of the delegated 'Domain Name'.

Step by Step™ Linux Guide. Page 230

http://www.suranga.com
http://www.suranga.com

The leftmost part, the 'www' in this case, is called a host name. By
convention web sites have the 'host name' of www (for world wide web)
but you can have a web site whose name is web.suranga.com - no-one
may think of typing this into their browser. Every computer that is
connected to the internet or an internal network has a host name, here
are some more examples:

WWW.suranga.com - the company web service
ftp.suranga.com - the company file transfer protocol server
pcl7.suranga.com - anormal PC

accounting.suranga.com - the main accounting system

A host name must be unique within the 'Domain Name' but can be
anything the owner of 'suranga.com’ wants.

Finally letslook at this name:

Www.mail.suranga.com

Its 'Domain Name' is suranga.com the ‘www' probably indicates a web
site which leaves the 'mail' part. The 'mail' part was alocated by the
owner of 'suranga.com (they are authoritative) and is called a sub-
domain.

To summarise the OWNER can delegate, IN ANY WAY THEY
WANT, ANYTHING to the LEFT of the 'Domain Name' they own
(were delegated). The owner is also RESPONSIBLE for administering
this delegation.

DNS Organization and Structure

The Internet's DNS exactly maps the 'Domain Name' delegation
structure described above. Thereis a DNS server running at each level in
the delegated hierarchy and the responsibility for running the DNS lies
with the AUTHORITATIVE control at that level.

Step by Step™ Linux Guide. Page 231

http://www.suranga.com
ftp://ftp.suranga.com
http://www.mail.suranga.com

Root Delegation
ccTLD

Root
DHS

i e

Domain ==

{User) -
DNS

The Root Servers (Root DNS) are operated by a consortium under a
delegation agreement. ICANN (Internet Corporation for Assigned
Numbers and Names) created the Root Servers Systems Advisory
Committee (RSSAC) to provide advice and guidance as to the operation
and development of this critical resource.

The TLD servers (ccTLD and gTLD) are operated by a variety of
agencies and registrars under a fairly complex set of agreements. In
many cases the root-servers also act as TLD servers.

The Authority and therefore the responsibility for the User (or 'Domain
Name') DNS servers lies with the owner of the domain. In the majority
of cases this responsibility is delegated by the owner of the Domain to
an ISP, Web Hosting company or increasingly aregistrar.

When any DNS cannot answer (resolve) a request for a domain name
from a host e.g. suranga.com the query is passed to a Root-Server which
will direct the query to the appropriate TLD DNS server which will in
turn direct it to the appropriate Domain (User) DNS server.

Step by Step™ Linux Guide. Page 232

DNS System Components

A Domain Name System (DNS) as defined by RFC 1034 includes three
parts:

1. Datawhich describes the domain(s)
2. Oneor more Name Server programs.
3. A resolver program or library.

A single DNS server may support many domains. The data for each
domain describes globa properties of the domain and its hosts (or
services). This data is defined in the form of textua Resource Records
organized in Zone Files. The format of Zone files is defined in RFC
1035 and is supported by most DNS software.

The Name Server program typically does three things:

1. It will read a configuration file which defines the zones for
which it isresponsible.

2. Depending on the Name Servers functionality the
configuration file may describe various behaviours e.g. to
cache or not. Some DNS servers are very specialized and
do not provide thislevel of control.

3. Respond to questions (queries) from local or remote hosts.

The resolver program or library is located on each host and provides a
means of trandlating a users request for, say, www.suranga.com into one
or more queries to DNS servers using UDP (or TCP) protocols.

The zone file formats which constitute the majority of the work
(depending on how many sites you operate) is standard and is typically
supported by al the DNS suppliers.

Step by Step™ Linux Guide. Page 233

http://www.suranga.com

Zonesand ZoneFiles

Zone files contain Resource Records that describe a domain or sub-
domain. The format of zone file is defined by RFC 1035 and isan IETF
standard. Almost any sensible DNS software should be able to read zone
files. A zonefilewill consist of the following types of data:

1 Data that describes the top of the zone (a SOA Record).
SOA: This stands for "Start Of Authority’. It marks the
beginning of a zone's data and defines the parameter that
affects the entire zone.

2 Authoritative data for al nodes or hosts within the zone
(typically A Records).

3 Data that describes global information for the zone
(typically MX Records and NS Records).

4 In the case of sub-domain delegation the name servers
responsible for this sub-domain (a NS Record).

5 In the case of sub-domain delegation a 'glue’ record that
allows this name server to reach the sub-domain (typicaly
one or more A Records) for the sub-domain name servers.

DNS Queries

The major task carried out by a DNS server is to respond to queries
(questions) from a local or remote resolver or other DNS acting on
behalf of aresolver. A query would be something like 'what is the IP
address of host=mail in domain=suranga.com'.

A DNS server may receive such a query for any domain. DNS servers
may be configured to be authoritative for some (if any) domains, slaves,
caching, forwarding or many other combination.

Most of the queries that a DNS server will receive will be for domains
for which it has no knowledge that is outside its own domain for which
it has no local zone files. The DNS system alows the name server to
respond in different ways to queries about which it has no knowledge.

There are three types of queries defined for
DNS:

Step by Step™ Linux Guide. Page 234

1.

A recursive query - the real answer to the question is
always returned. DNS servers are not required to support
recursive queries.

An lterative (or non-recursive) query - where the real
answer MAY be returned. All DNS servers must support
Iterative queries.

An Inverse query - where the user wants to know the
domain name given aresource record.

Recursive Queries

A recursive query is one where the DNS server will fully answer the
guery (or give an error). DNS servers are not required to support
recursive queries.

There are three possible responses to arecursive query:

The answer to the query accompanied by any CNAME
records (aliases) that may be useful.

An error indicating the domain or host does not
exist(NXDOMAIN). This response may also contain
CNAME records that pointed to the non-existing host.

An temporary error indication - e.g. can't access other
DNS's due to network error etc..

A simple query such as ‘'what is the IP address of a host=mail in
domain=suranga.com' to a DNS server which supports recursive queries
could look something like this:

1

Resolver on a host sends query ‘what is the IP address of a
host=mail in domain=suranga.com' to locally configured
DNS server.

DNS server looks up suranga.com in local tables - not
present

DNS sends request to a root-server for the IP of a name
server for suranga.com

Step by Step™ Linux Guide. Page 235

Using root-server supplied IP, the DNS server sends query
'what is the IP address of a host=mal in
domain=suranga.com' to suranga.com name Server.
Response is a CNAME record which shows mail is aliased
to mailserver.

DNS server sends another query 'what is the IP address of a
host=mailserver in domain=suranga.com' to authoritative
suranga.com name Sserver.

send response mailserver=192.168.1.1 (with CNAME
record mail=mailserver) to original client resolver.

|terative (non-recursive) Queries

An lterative (or non-recursive) query is one where the DNS server may
provide a partial answer to the query (or give an error). DNS servers
must support non-recursive queries.

There are four possible responses to a non-recursive query:

1

The answer to the query accompanied by any CNAME
records (aliases) that may be useful. The response will
indicate whether the data is authoritative or cached.

An error indicating the doman or host does not
exist(NXDOMAIN). This response may also contain
CNAME records that pointed to the non-existing host.

An temporary error indication - e.g. can't access other
DNS's due to network error.

A referral (an IP address) of a name server that is closer to
the requested domain name. This may or may not be the
authoritative name server.

A simple query such as ‘'what is the IP address of a host=mail in
domain=suranga.com' to a DNS server which supports Iterative (non-
recursive) queries could look something like this:

Step by Step™ Linux Guide. Page 236

1 Resolver on ahost sends query 'what is the IP address of a
host=mail in domain=suranga.com' to locally configured
DNS server.

2 DNS server looks up suranga.com in loca tables - not
present

3 DNS sends request to a root-server for the IP of a name
server for suranga.com

4 DNS server sends received IP as a referral to the original
client resolver.

5 Resolver sends another query 'what is the IP address of a
host=mailserver in domain= suranga.com' to referral IP
address obtained from DNS server.

6 Resolver receives aresponse with a CNAME which shows
mail is aliased to mailserver.

7 Resolver sends another query ‘what is the IP address of a
host=mailserver in domain=suranga.com' to referral IP
address obtained from DNS server.

8 Resolver getsresponse mailserver=192.168.1.1

| nverse Queries

An Inverse query maps a resource record to a domain. An example
Inverse query would be ‘'what is the domain name for this MX record'.
Inverse query support is optional and it is permitted from the DNS
server to return aresponse 'Not Implemented'.

Inverse queries are NOT used to find a host name given an IP address.
This process is called Reverse Mapping (Look-up) uses recursive and
Iterative (non-recursive) queries with the specia domain name IN-
ADDR.ARPA.

Step by Step™ Linux Guide. Page 237

Zone Updates

Full Zone Update (AXFR)

In DNS specifications the slave (or secondary) DNS servers would "poll’
the 'master’. The time between such 'polling' is determined by the
REFRESH value on the domain's SOA Resource Record

The polling process is accomplished by the 'dlave’ send a query to the
'master' and requesting the latest SOA record. If the SERIAL number of
the record is different from the current one maintained by the 'ave a
zone transfer (AXFR) is requested.

Zone transfers are always carried out using TCP on port 53 not UDP
(normal DNS query operations use UDP on port 53).

| ncremental Zone Update (I XFR)

Transferring very large zone files can take a long time and waste
bandwidth and other resources. This is especialy wasteful if only a
single record has been changed! RFC 1995 introduced Incremental Zone
Transfers (IXFR) which as the name suggests allows the 'slave’ and
'master’ to transfer only those records that have changed.

The process works as for AXFR. The 'dave sends a query for the
domain's SOA Resource Record every REFRESH interval. If the
SERIAL value of the SOA record has changed the 'slave’ requests a
Zone Transfer and indicates whether or not it is capable of accepting an
Incremental Transfer (IXFR). If both 'master' and 'slave’ support the
feature and incremental transfer takes place. Incremental Zone transfers
use TCP on port 53.

The default mode for BIND when acting as a'dave' isto use IXFR.

Step by Step™ Linux Guide. Page 238

The default mode for BIND when acting as a 'master’ is to use IXFR
only when the zone is dynamic. The use of IXFR is controlled using the
provide-ixfr parameter in the server or options section of the
named.conf file.

Notify (NOTIFY)

RFC 1912 recommends a REFRESH interval of up to 12 hours on the
REFRESH interval of an SOA Resource Record. This means that
changes to the 'master’' DNS may not be visible at the 'Slave’ DNS for up
to 12 hours. In a dynamic environment this is unacceptable. RFC 1996
introduced a scheme whereby the 'master’ will send a NOTIFY message
to the 'dlave’ DNS systems that a change MAY have occurred in the
domain records. The 'slave’ on receipt of the NOTIFY will request the
latest SOA Resource Record and if the SERIAL value is different will
attempt a Zone Transfer using either a full Zone Transfer (AXFR) or an
Incremental Transfer (IXFR).

NOTIFY behavior in BIND is controlled by notify, also-notify and
notify-source parameters in the zone or options statements of the
named.conf file.

Dynamic Update

The classic method of updating Zone Resource Records is to manually
edit the zone file and then stop and start the name server to propagate the
changes. When the volume of changes reaches a certain level this can
become operationally unacceptable - especially considering that in an
organization which handle large numbers of Zone Files, such as service
provider, BIND itself can take along time to restart at it plows through
very large numbers of zone statements.

DNS is to provide a method of dynamically changing the DNS records
while DNS continues to service requests.

Step by Step™ Linux Guide. Page 239

There are two architectural approaches to solving this problem:

1 Allow 'run-time' updating of the Zone Records from an external
source/application.

2 Directly feed BIND (say viaone of itstwo APIs) from a database
which can be dynamically updated.

RFC 2136 takes the first approach and defines a process where zone
records can be updated from an external source. The key limitation in
this specification is that a new domain cannot be added dynamically. All
other records within an existing zone can be added, changed or deleted.
In fact this limitation is also true for both of BIND's APIs as well.

As part of this specification the term 'Primary Master' is coined to
describe the Name Server defined in the SOA Resource Record for the
zone. The significance of this term is that when dynamically updating
records it is sensible (essential) to update only one server while there
may be multiple 'master' servers for the zone. In order to solve this
problem a 'boss' server must be selected, this 'boss server termed the
Primary Master has no special characteristics other than it is defined as
the Name Server in the SOA record and may appear in an allow-update
clause to control the update process.

While normally associated with Secure DNS features (TSIG - RFC
2845/TKEY - RFC 2930) Dynamic DNS (DDNS) does not REQUIRE
TSIG/TKEY. However there is a good reason to associate the two
specifications when you consider than by enabling Dynamic DNS you
are opening up the possibility of 'master' zone file corruption or
subversion. Simple IP address protection (acl) can be configured into
BIND but this provides at best l[imited protection. For that reason serious
users of Dynamic DNS will aways use TSIG/TKEY procedures to
authenticate incoming requests.

Dynamic Updating is defaulted to deny from all hosts. Control of
Dynamic Update is provided by the BIND allow-update (usable with
and without TSIG/TKEY) and update-policy (only usable with
TSIG/TKEY) clauses in the zone or options statements of the
named.conf file.

Step by Step™ Linux Guide. Page 240

Security Overview

DNS Security is a huge and complex topic. The critical point is to first
understand what you want to secure - or rather what threat level you
want to secure against. This will be very different if you run a root
server vs running a modest in-house DNS serving a couple of low
volume web sites.

The term DNSSEC is thrown around as a blanket term in a lot of
documentation. Thisis not correct. There are at least three types of DNS
security, two of which are - relatively - painless and DNSSEC whichiis -
relatively - painful.

Security is aways an injudicious blend of real threat and paranoia - but
remember just because you are naturally paranoid does not mean that
they are not after you!

Security Threats

To begin we must first understand the normal dataflowsin a DNS
system. Diagram below shows this flow.

Dynamic
Updates _|Network!

Ty Resolver
‘ (2) Admin (5)
Queries

: ueries
Primary |¢ Q Remaote

Mast Caching '—L'

M:ﬂ;’ Transfers (4) Resolver
M 4

Zone

Slave(s)
Files

SysAdmin TSIG DNSSEC

— S orver-Server

Stey ¥ ServerClient ot

Number Area Threat

(1) Zone Files File Corruption (malicious or accidental). Local
threat.
(2 Dynamic Unauthorized Updates, |P address spoofing
Updates (impersonating update source). Server to Server
(TSIG Transaction) threat.
3 Zone I P address spoofing (impersonating update
Transfers ~ source). Server to Server (TSIG Transaction)
threat.
4 Remote Cache Poisoning by IP spoofing, data
Queries interception, or asubverted Master or Slave.

Server to Client (DNSSEC) threat.

5 Resolver Data interception, Poisoned Cache, subverted
Queries Master or Slave, local 1P spoofing. Remote
Client-client (DNSSEC) threat.

The first phase of getting a handle on the problem is to figure (audit)
what threats are applicable and how seriously do YOU rate them or do
they even apply. As an example; if you don't do Dynamic Updates
(BIND's default mode) - there is no Dynamic Update threat! Finally in
this section a warning: the further you go from the Master the more
complicated the solution and implementation. Unless there is a very
good reason for not doing so, we would always recommend that you
start from the Master and work out.

Security Types

We classify each threat type below. This classification smply allows us
select appropriate remedies and strategies for avoiding or securing our
system. The numbering used below relates to the above diagram.

Step by Step™ Linux Guide. Page 242

1. Theprimary source of Zone datais normally the Zone Files
(and don't forget the named.conf file which contains | ots of
interesting data as well). This data should be secure and
securely backed up. This threat is classified asLocal and is
typically handled by good system administration.

2. If you run slave servers you will do zone transfers. Note:
You do NOT have to run with slave servers, you can run
with multiple masters and eliminate the transfer threat
entirely. This is classified as a Server-Server
(Transaction) threat.

3. The BIND default is to deny Dynamic Zone Updates. If
you have enabled this service or require to it poses a
serious threat to the integrity of your Zone files and should
be protected. This is classified as a Server-Server
(Transaction) threat.

4. The possibility of Remote Cache Poisoning due to IP
spoofing, data interception and other hacks is a judgement
call if you are running a simple web site. If the site is high
profile, open to competitive threat or is a high revenue
earner you have probably implemented solutions already.
Thisisclassified as a Server-Client threat.

5. We understand that certain groups are already looking at
the implications for secure Resolvers but as of early 2004
this was not standardised. This is classified as a Server-
Client threat.

Security — L ocal

Norma system administration practices such as ensuring that files
(configuration and zone files) are securely backed-up, proper read and
write permissions applied and sensible physical access control to servers
may be sufficient.

Step by Step™ Linux Guide. Page 243

Implementing a Stealth (or Split) DNS server provides a more serious
solution depending on available resources.

Server-Server (TSIG Transactions)

Zone transfers. If you have slave servers you will do zone transfers.
BIND provides Access Control Lists (ACLs) which allow simple IP
address protection. While IP based ACLs are relatively easy to subvert
they are a lot better than nothing and require very little work. You can
run with multiple masters (no slaves) and eliminate the threat entirely.
Y ou will have to manually synchronise zone file updates but this may be
asimpler solution if changes are not frequent.

Dynamic Updates. If you must run with this service it should be
secured. BIND provides Access Control Lists (ACLs) which allow
simple IP address protection but this is probably not adequate unless you
can secure the IP addresses i.e. both systems are behind a
firewal/DMZ/NAT or the updating host is using a private |P address.

TSIG/TKEY If al other solutions fail DNS specifications (RFCs 2845 -
TSIG and RFC 2930 - TKEY) provide authentication protocol
enhancements to secure these Server-Server transactions.

TSIG and TKEY implementations are messy but not too complicated -
simply because of the scope of the problem. With Server-Server
transactions there is a finite and normaly small number of hosts
involved. The protocols depend on a shared secret between the master
and the dlave(s) or updater(s). It is further assumed that you can get the
shared secret securely to the peer server by some means not covered in
the protocol itself. This process, known as key exchange.

The shared-secret is open to brute-for ce attacks so frequent (monthly
or more) changing of shared secrets will become a fact of life. What
works once may not work monthly or weekly. TKEY allows automation
of key-exchange using a Diffie-Hellman algorithm but seems to start
with a shared secret!

Step by Step™ Linux Guide. Page 244

Server-Client (DNSSEC)

The classic Remote Poisoned cache problem is not trivial to solve
simply because there may an infinitely large number of Remote Caches
involved. It is not reasonable to assume that you can use a shared
secret. Instead the mechanism relies on public/private key
authentication. The DNSSEC specifications (RFC 2535 augmented
with others) attempt to answer three questions:

1. Authentication - the DNS responding really is the DNS that
the request was sent to.

2. Integrity - the response is complete and nothing is missing.

3. Integrity - the DNS records have not been compromised.

T i chap3

Reverse Mapping Overview

A normal DNS query would be of the form ‘what is the IP of host=www
in domain=mydomain.com’. There are times however when we want to
be able to find out the name of the host whose IP address = x.X.X.X.
Sometimes thisis required for diagnostic purposes more frequently these
days it is used for security purposes to trace a hacker or spammer,
indeed many modern mailing systems use reverse mapping to provide
simple authentication using dual look-up, IP to name and name to IP.

In order to perform Reverse Mapping and to support normal recursive
and Iterative (non-recursive) queries the DNS designers defined a
gpecial (reserved) Domain Name called IN-ADDR.ARPA. This domain
allowsfor al supported Internet 1Pv4 addresses (and now [Pv6).

IN-ADDR.ARPA Reverse Mapping Domain

Step by Step™ Linux Guide. Page 245

Reverse Mapping looks horribly complicated. It is not. Aswith al things
when we understand what is being done and why - all becomes as clear
as mud!

We defined the normal domain name structure as a tree starting from
the root. We write anorma domain name LEFT to RIGHT but the
hierarchical structureis RIGHT to LEFT.

domain name = www.mydomain.com
highest nodein treeis=.com

next (lower) = .mydomain

next (lower) = www

An IPv4 address is written as:
192.168.23.17

This IPv4 address defines a host = 17 in a Class C address range
(192.168.23.x). In this case the most important part (the highest node) is
on the LEFT (192) not the RIGHT. This is a tad awkward and would
make it impossible to construct a sensible tree structure that could be
searched in asingle lifetime.

The solution is to reverse the order of the address and place the result
under the special domain IN-ADDR.ARPA (you will see this aso
written as in-addr.arpa which is OK since domains are case insensitive
but the case should be preserved so we will use IN-ADDR.ARPA).

Finally the last part of the IPv4 Address (17) is the host address and
hosts, from our previous reading, are typically defined inside a zone file
so we will ignore it and only use the Class C address base. The result of
our manipulations are:

IP address =192.168.23.17
Class C base = 192.168.23 ; omits the host address = 17
Reversed Class C base = 23.168.192
Added to IN-ADDR.ARPA domain = 23.168.192.IN-
ADDR.ARPA

Step by Step™ Linux Guide. Page 246

http://www.mydomain.com

Thisis show in figure 3.0 below.

Root Delegation
gTLD ccTLD ARPA

.edu
JN-BDDR

IN-ADDR.ARPA Reverse Mapping

Finally we construct a zone file to describe al the hosts (nodes) in the
Reverse Mapped zone using PTR Records. The resulting file will 1ook
some thing like this:

$ORIG N 23.168. 192. | N- ADDR. ARPA.
@ I N SOA nsl. f oo. com
root.foo.com (
2003080800 ; seri al
nunber
3h ; refresh
15m ; update
retry
3w ; expiry
3h ;. m ni mum
)
I N NS nsl. f oo. com
IN NS ns2. f 0o. com
1 IN PTR www. f 00. com
qualified name
2 I'N PTR j oe. foo.com
17 IN PTR bill.foo.com
74 IN PTR fred. f oo. com

Step by Step™ Linux Guide. Page 247

http://www.foo.com

We must use qualified names ending with a dot (in fact they are Fully
Qualified Domain Names FQDN) in this file because if we did not our
SORIGIN directive would lead to some strange results.

Reverse Map Delegation

Classless Reverse Map Delegation is defined by RFC 2317 which has
Best Current Practice status and should be regarded as a definitive
reference. Classless routing allows allocation of sub-nets on non-octet
boundariesi.e. less that 256 addresses from a Class C address may
be allocated and routed. The technique defined in the RFC is attributed
to Glen A. Herrmannsfel dt.

Normal domain name mapping as we have seen maps the domain name
to an IP address. This process is independent of the ISP or other
authority that allocated the IP name space. If the addresses were to
change then the owner of the domain that maps these addresses would
be able to make the necessary changes directly with either the relevant
registrar i.e. change the IP address of DNS's for the domain or change
the zone file(s) that describe the domain.

The rule is that entities can be delegated only once in the domain name
tree this includes IN-ADDR.ARPA. When a Class C subnet is assigned
by an ISP or other authority e.g. 192.168.23.64/27 (a 32 IP address
subnet) the responsibility for reverse mapping for the whole Class C
address has already been assigned to the ISP or Authority. If you want to
change the host names in the assigned subnet they must be notified to
the authority for that Class C address. Generally this is unacceptable
since such requests may encounter indifference, cost or questions. It is
most desirable that responsibility for reverse mapping be delegated when
the IP address subnet is assigned.

The technique defined in RFC 2317 provides for such delegation to take
place using CNAM E Resource Recor ds (rather than the more normal
PTR Resour ce Records) in an expanded IN-ADDR.ARPA name space.

Step by Step™ Linux Guide. Page 248

The following fragment shows our 192.168.23.64/27 subnet as a
fragment of the reverse mapping zone file located at the ISP or other
Authority that assigned the subnet:

$ORI G N 23. 168. 192. | N- ADDR. ARPA

@ IN SOA nsl.isp.com root.isp.com
(
2003080800 ; seri al
nunber
3h ; refresh
15m ; update
retry
3w ; expiry
3h ;o moni num

)

IN NS nsl.isp.com
IN NS ns2.isp.com
definition of other IP address 0 - 63

; definition of our target 192.168. 23. 64/ 27 subnet
; name servers for subnet reverse map

64/ 27 IN NS nsl.mydomai n.com

64/ 27 IN NS ns2.nmydonmai n. com

: I Ps addresses in the subnet - all need to be
defi ned
except 64 and 95 since they are the subnets
br oadcast and nul ti cast addresses not
host s/ nodes

65 I N CNAME

65. 64/ 27. 23. 168. 192. | N_ADDR. ARPA. ; qualified

66 IN CNAME 66.64/27 ;unqualified
nanme

67 IN CNAME 67.64/27

93 IN CNAME 93. 64/ 27

94 IN CNAME 94. 64/ 27

end of 192. 168. 23. 64/ 27 subnet

ot her subnet definitions

The 64/27 construct is an artificial (but legitimate) way of constructing
the additional space to allow delegation. Thisis not technically a domain
name and therefore can use '/' (which is not alowed in a domain name)
but could be replaced with say '-' which is alowed e.g. 64-27.

Step by Step™ Linux Guide. Page 249

The zone file at the DNS serving the Reverse Map (nsl.mydomain.com
in the above example) looks like this:

$ORI A N 64/27.23.168. 192. | N- ADDR. ARPA
@ IN SOQA nsl. nydomai n. com
root. nydomai n. com (
2003080800 ; serial nunber

3h ; refresh

15m ; update retry
3w ; expiry

3h ;. moni num

)

IN NS nsl. mydomai n. com

IN NS ns2. mydomai n. com
| Ps addresses in the subnet - all need to be defined
except 64 and 95 since they are the subnets

; broadcast and nulticast addresses not hosts/nodes

65 IN PTR fred. mydomain.com ;qualified
66 IN PTR joe.nydomai n.com

67 IN PTR bill.mydomain.com

93 IN PTR web. nydomai n. com

94 IN PTR ftp.nydonain.com

end of 192. 168. 23. 64/ 27 subnet

Now you have to change your reverse map zone names in the name.conf
file to reflect the above change. The following examples shows the
reverse map declaration before and after the change to reflect the
configuration above:

/1 before change the reverse map zone decl arati on woul d
| ook
/1 something like this
zone "23.168.192.i n-addr. arpa" in{
type master;
file "192.168. 23.rev";

}s

The above - normal - reverse map declaration resolves reverse lookups
for 192.168.23.x locally and without the need for access to any other
zone or DNS.

Change to reflect the del egated zone name.
Step by Step™ Linux Guide. Page 250

ftp://ftp.mydomain.com

/1 after change the reverse map zone decl arati on woul d
| ook
/1 sonmething like this
zone "64/27.23.168.192.in-addr. arpa" in{
type master;
file "192.169. 23.rev";

The above configuration will only resolve by querying the master zone
for 23.168.192.IN-ADDR.ARPA and following down the delegation
back to itself. If changes are not made at the ISP or issuing Authority or
have not yet propagated then this configuration will generate 'nslookup’
and 'dig’ errors.

DNS Configuration Types

Most DNS servers are schizophrenic - they may be masters
(authoritative) for some zones, slaves for others and provide caching or
forwarding for al others. Many observers object to the concept of DNS
types partly because of the schizophrenic behaviour of most DNS
servers and partly to avoid confusion with the name.conf zone parameter
type’ which only alows master, dlave, stub, forward, hint).
Nevertheless, the following terms are commonly used to describe the
primary function or requirement of DNS servers.

Master (Primary) Name Servers

A Master DNS contains one or more zone files for which this DNS is
Authoritative ('type master’). The zone has been delegated (via an NS
Resour ce Recor d) to this DNS.

The term 'master’ was introduced in BIND 8.x and replaced the term
‘primary’.

Step by Step™ Linux Guide. Page 251

Master status is defined in BIND by including ‘type master' in the zone
declaration section of the named.conf file) as shown by the following
fragment.

/1 nydonai n. com fragnent from named. conf
/Il defines this server as a zone naster
zone "nydonmai n. cont' i n{

type master;

file "pri.mydomain. cont;

1. The terms Primary and Secondary DNS entries in
Windows TCP/IP network properties mean nothing, they
may reflect the 'master' and 'slave’ name-server or they
may not - you decide this based on operational need, not
BIND configuration.

2. It is important to understand that a zone 'master’ is a
server which gets its zone data from a local source as
opposed to a 'dave’ which gets its zone data from an
external (networked) source (the ‘'master). This
apparently trivial point means that you can have any
number of 'master’ servers for any zone if it makes
operational sense. You have to ensure (by a manua or
other process) that the zone files are synchronised but
apart from this there is nothing to prevent it.

3. Just to confuse things still further you may run across the
term 'Primary Master' this has a special meaning in the
context of dynamic DNS updates and is defined to be
the name server that appearsin the SOA RR record.

When a master DNS receives Queries for a zone for which it is
authoritative then it will respond as 'Authoritative’ (AA bit is set in a

guery response).
When a DNS server receives a query for a zone which it is neither a

Master nor a Slave then it will act as configured (in BIND this behaviour
isdefined in the named.conf file):

Step by Step™ Linux Guide. Page 252

1 If caching behaviour is permitted and recursive queries
are alowed the server will completely answer the request
or return an error.

2. If caching behaviour is permitted and Iterative (non-
recursive) queries are allowed the server can respond
with the complete answer (if it is already in the cache
because of another request), areferral or return an error.

3. If caching behaviour NOT permitted (an "Authoritative
Only" DNS server) the server will return a referral or
return an error.

A master DNS server can export (NOTIFY) zone changes to defined
(typicaly dlave) servers. This ensures zone changes are rapidly
propagated to the slaves (interrupt driven) rather than rely on the slave
server polling for changes. The BIND default is to notify the servers
defined in NS recor ds for the zone.

If you are running Stealth Server s and wish them to be notified you will
have to add an also-notify parameter as shown in the BIND
named.conf file fragment below:

/I mydomain.com fragment from named.conf
/Il defines this server as a zone master
//192.168.0.2 is a stealth server NOT listed in aNS record
zone "mydomain.com” in{
type master;
also-notify {192.168.0.2;} ;
file "pri/pri.mydomain.com";

};

Y ou can turn off all NOTIFY operations by specifying ‘'notify no'" in the
zone declaration.

Example configuration files for a master DNS
areprovided.

Step by Step™ Linux Guide. Page 253

Slave (Secondary) Name Servers

A Slave DNS gets its zone file information from a zone master and it
will respond as authoritative for those zones for which it is defined to be
a'dave and for which it has a currently valid zone configuration.

The term 'slave’ was introduced in BIND 8.x and replaced the term
'secondary’.

Slave status is defined in BIND by including 'type slave' in the zone
declaration section of the named.conf file) as shown by the following
fragment.

/1 nydomai n. com fragnent from named. conf
// defines this server as a zone s| ave

zone "nydonmai n. cont' i n{
type sl ave;
file "sec/sec. mydonai n. cont';
masters {192. 168. 23. 17;};

The master DNS for each zone is defined in the 'masters zone section
and allows daves to refresh their zone record when the ‘expiry'
parameter of the SOA Record is reached. If a slave cannot reach the
master DNS when the 'expiry' time has been reached it will stop
responding to requests for the zone. It will NOT use time-expired data.

The file parameter is optional and alows the dave to write the
transferred zone to disc and hence if BIND is restarted before the ‘expiry’
time the server will use the saved data. In large DNS systems this can
save a considerable amount of network traffic.

Assuming NOTIFY is alowed in the master DNS for the zone (the
default behaviour) then zone changes are propagated to all the slave
servers defined with NS Recor ds in the master zone file. There can be
any number of dave DNS's for any given 'master’ zone. The NOTIFY
process is open to abuse. BIND's default behaviour is to only alow
NOTIFY from the 'master' DNS. Other acceptable NOTIFY sources can
be defined using the allow-notify parameter in named.conf.

Step by Step™ Linux Guide. Page 254

Example configuration filesfor aslave DNS are provided.

Caching Name Servers

A Caching Server obtains information from another server (a Zone
Master) in response to a host query and then saves (caches) the data
locally. On a second or subsequent request for the same data the Caching
Server will respond with its localy stored data (the cache) until the
time-to-live (TTL) value of the response expires at which time the
server will refresh the data from the zone master.

If the caching server obtains its data directly from a zone master it will
respond as ‘authoritative’, if the data is supplied from its cache the
response is 'non-authoritative'.

The default BIND behaviour is to cache and this is associated with the
recursion parameter (the default is ‘recursion yes). There are many
configuration examples which show caching behaviour being defined
using a 'type hint' statement in a zone declaration. These configurations
confuse two distinct but related functions. If a server is going to provide
caching services then it must provide recursive queries and recursive
gueries need access to the root servers which is provided via the 'type
hint' statement. A caching server will typically have a named.conf file
which includes the following fragment:

/1 options section fragnent of naned. conf
/1 recursion yes is the default and nmay be onmitted
options {
directory "/var/named";
version "not currently avail able";
recursi on yes;
1

// zone section

// the DOT indicates the root domain = all domai ns
zone "." IN{

type hint;

file "root.servers";

Step by Step™ Linux Guide. Page 255

1 BIND defaults to recursive queries which by definition
provides caching behaviour. The named.conf recursion
parameter controls this behaviour.

2. The zone ' is shorthand for the root domain which
translates to ‘any domain not defined as either a master or
slave in this named.conf fil€e'.

3. cache datais discarded when BIND is restarted.
The most common DNS server caching configurations are:

* A DNS server acting as master or slave for one or more
zones (domains) and as cache server for all other requests.
A general purpose DNS server.

* A caching only local server - typically used to minimise
external access or to compensate for slow external links.
Thisis sometimes called a Proxy server though we prefer to
associate the term with a Forwar ding server

To cache or not is a crucial question in the world of DNS. BIND is
regarded as the reference implementation of the DNS specification. As
such it provides excellent - if complex to configure - functionality. The
down side of generality is suboptimal performance on any single
function - in particular caching involves a non-trivial performance
overhead.

For general usage the breadth of BIND functionality typically offsets any
performance concerns. However if the DNS is being 'hit' thousands of
times per second performance is a major factor. There are now a number
of alternate Open Source DNS servers some of which stress
performance. These servers typically do NOT provide caching services
(they are said to be 'Authoritative only' servers).

Example configuration files for acaching DNS ar e provided.

Step by Step™ Linux Guide. Page 256

Forwarding (a.k.a Proxy) Name Servers

A forwarding (a.k.a. Proxy, Client, Remote) server is one which simply
forwards all requests to another DNS and caches the results. On its face
this look a pretty pointless exercise. However a forwarding DNS sever
can pay-off in two ways where access to an external network is slow or
expensive:

1 Local DNS server caching - reduces external access and
both speeds up responses and removes unnecessary
traffic.

2. Remote DNS server provides recursive query support -
reduction in traffic across the link - results in a single
guery across the network.

Forwarding servers also can be used to ease the burden of local
administration by providing a single point at which changes to remote
name servers may be managed, rather than having to update all hosts.

Forwarding can also be used as part of a Split Server configuration for
perimeter defence. BIND allows configuration of forwarding using the
forward and forwarders parameters either at a 'globa’ level (in an
options section) or on a per-zone basis in a zone section of the
named.conf file. Both configurations are shown in the examples below:

Global Forwarding - All Requests

/I options section fragment of named.conf
Il forwarders can have multiple choices
options {
directory "/var/named";
version "not currently available’;
forwarders {10.0.0.1; 10.0.0.2;};
forward only;
} .

/I zonefile sections

Step by Step™ Linux Guide. Page 257

Per Domain Forwarding

/I zone section fragment of named.conf
zone "mydomain.com” IN {
type forward;
file "fwd.mydomain.com";
forwarders{10.0.0.1; 10.0.0.2;};

Where dia-up links are used with DNS forwarding servers BIND's
general purpose nature and strict standards adherence may not make it
an optimal solution. A number of the Alternate DNS solutions
specifically target support for such links. BIND provides two parameters
dialup and heartbeat-interval (neither of which is currently supported by
BIND 9) as well as a number of others which can be used to minimise
connection time.

Example configuration files for aforwarding DNS are provided.

Stealth (a.k.a. DM Z or Split) Name Server

A stealth server is defined as being a name server which does not appear
in any publicly visible NS Recor ds for the domain. The stealth server is
normally used in a configuration called Split Severs which can be
roughly defined as having the following characteristics:

1. The organisation needs a public DNS to enable access to
its public services e.g. web, mail ftp etc..

2. The organisation does not want the world to see any of its
internal hosts either by interrogation (query or zone
transfer) or should the DNS service be compromised.

Step by Step™ Linux Guide. Page 258

A Split Server configuration is shown in following Figure

Stealth External
DNS{S) |3 5| DNS(s)
ki
= Multithomed =
= Firewall/NAT :
DMZ host
Private Private Public Public
Hosts Hosts

Split Server configuration

The external server(s) is(are) configured to provide Authoritative Only
responses and no caching (no recursive queries accepted). The zone file
for this server would be unique and would contain ONLY those systems
or services that are publicly visible e.g. SOA, NS records for the public
(not stealth) name servers, MX record(s) for mail servers and www and
ftp service A records. Zone transfers can be allowed between between
the public servers as required but they MUST NOT transfer or accept
transfers from the Stealth server. While this may seem to create more
work, the concern is that should the host running the external service be
compromised then inspection of the named.conf or zone files must
provide no more information than is already publically visible. If
'master’, ‘allow-notify','allow-transfer' options are present in named.conf
(each of which will contain a private IP) then the attacker has gained
more knowledge about the organisation - they have penetrated the 'veil
of privacy'.

There are a number of articles which suggest that the view statement
may be used to provide similar functionality using a single server but
this does not address the problem of the DNS host system being
compromised and by simple inspection of the named.conf file additional
data about the organisation could be discovered. In our opinion ‘view'
does not provide adequate security in a'Split DNS' solution.

Step by Step™ Linux Guide. Page 259

A minimal public zonefile is shown below:

; public zone master file

; provides minimal public visibility of external services

mydomain.com. IN SOA ns.mydomain.com. root.mydomain.com. (
2003080800 ; se = seria number
3h ; ref = refresh
15m ; ret = update retry

3w ; €X = expiry
3h ; min=minimum
)

IN NS nsl.mydomain.com.
IN NS ns2.mydomain.com.
IN NS 10 mail.mydomain.com.

nsl IN A 192.168.254.1
nsl IN A 192.168.254.2
mail IN A 192.168.254.3
WWW IN A 192.168.254.4
ftp IN A 192.168.254.5

The internal server (the Stealth Server) can be configured to make
visible internal and external services, provide recursive queries and all
manner of other services. This server would use a private zone master
file which could look like this:

; private zone master file used by stealth server(s)
; provides public and private services and hosts
mydomain.com. IN SOA ns.mydomain.com. root.mydomain.com. (
2003080800 ; se = serial number
3h ; ref = refresh
15m ; ret = update retry
3w ; X = expiry
3h ; min = minimum
)
IN NS nsl.mydomain.com.
IN NS ns2.mydomain.com.
IN NS 10 mail.mydomain.com.
; public hosts
nsl IN A 192.168.254.1

Step by Step™ Linux Guide. Page 260

nsl IN A 192.168.254.2

mail IN A 192.168.254.3
WWW IN A 192.168.254.4
ftp IN A 192.168.254.5

; private hosts

joe IN A 192.168.254.6
bill IN A 192.168.254.7
fred IN A 192.168.254.8

accounting IN A 192.168.254.28
payroll IN A 192.168.254.29

Using BIND 9's view statement can provide different servicesto internal
and external requests can reduce further the Stealth server'svisibility e.g.
forwarding all DNS internal requests to the external server.

Example configuration files for astealth DNS are provided.

Authoritative Only Server

The term Authoritative Only is normally used to describe two
concepts:

1. The server will deliver Authoritative Responses - it is a
zone master or slave for one or more domains.
2. The server will NOT cache.

There are two configurations in which Authoritative Only servers are
typically used:

1 Asthe public or external serverina Split (a.k.a. DM Z or
Stealth) DNS used to provide perimeter security.

Step by Step™ Linux Guide. Page 261

2. High Performance DNS servers. In this context general
purpose DNS servers such as BIND may not provide an
ideal solution and there are a number of Open Source
Alternatives some of which specialise in high
performance Authoritative only solutions.

Y ou cannot completely turn off caching in BIND but you can control it
and provide the functionality described above by simply turning off
recursion in the 'option’ section of named.conf as shown in the example
below.

/I options section fragment of named.conf
I recursion no = limits caching
options {
directory "/var/named";
version "not currently available’;
recursion no;
} .

/l zone file sections

BIND provides three more parameters to control caching ,max-cache-
size and max-cache-ttl neither of which will have much effect on
performance in this particular case and allow-recursion which uses a
list of hosts that are permitted to use recursion (all others are not).
Example configuration files for a authoritative-only DNS ar e provided.
This chapter provides a number of BIND configuration samples.

6.1 Sample Configuration Overview
6.1.1 Zone File Naming Convention

6.2 Master (Primary) DNS
6.3 Slave (Secondary) DNS

6.4 Caching only DNS

Step by Step™ Linux Guide. Page 262

6.5 Forwarding (a.k.a. Proxy, Client, Remote) DNS

6.6 Stealth (a.k.a. Split or DMZ) DNS

6.7 Authoritative Only DNS

6.8 Views based Authoritative Only DNS

6.1 Sample BIND Configuration Overview

This chapter provides samples configurations and descriptions for each
of the DNStypes previously described. A BIND systems consists of
the following parts:

1.

A named.conf file describing the functionality of the
BIND system. The entries in this file are fully
described.

Depending on the configuration one or more zone files
describing the domains being managed. The entries in
zone files are fully described. Zone files contain Resource
Records which are fully described.

Depending on the configuration one or more required
zone files describing the ‘localhost’ and root name
servers.

Many BIND/DNS configurations are schizophrenic in nature - they may
be 'masters for some zones, 'slaves for others, forward others and
provide caching services for all comers. Where possible we cover
alternate configurations or as least note the alternate configurations.

All the configuration files are deliberately kept simple - links are
provided to the various sections that will describe more 'advanced'
parameters as appropriate. Comments are included in the files to
describe functionality. The configuration used throughout is:

Step by Step™ Linux Guide. Page 263

1 Two name servers are used one internal (nsl) and one
external (ns2) to the domain

2. The mail serviceis external to the domain (provided by a
third party)

3. FTP and WWW services are provided by the same host

4, There are two hosts named bill and fred

5. The host address are all in the class C private address
range 192.168.0.0 (a dlightly artificial case)

6.1.1 Zone File Naming Convention

Everyone has their own ideas on a good naming convention and
thus something that is supposed to be useful becomes
contentious.

Hereisaconvention that isin daily use. Its sole merits are that it
isaconvention and makes sense to its authors.

1. All zonefiles are placed in /var/named/. The base
directory contains all the housekeeping zone files (e.g.
localhost, reverse-mapping, root.servers etc.) with a
subdirectory structure used as follows:

1l Ivar/named/pri - master zone files
LIl /var/named/sec - dave zones files
LI /var/named/views - where views are used
2. master files are named pri.mydomain.com (or

pri.mydomain.net etc.) if its a sub-domain it will be
pri.sub-domain.mydomain.com etc.

3. dave zone files are named sec.mydomain.com (or
sec.mydomain.ca etc.) if its a sub-domain it will be
sec.sub-domain.mydomain.com etc.

4, The root server zone file is called root.servers (typically
called named.ca or named.root in BIND distributions).

Step by Step™ Linux Guide. Page 264

5. The reverse mapping file name uses the subnet number
and .rev i.e.. if the zone is '23.168.192.IN-ADDR.ARPA"
thefileiscalled 192.168.23.rev.

6. The 'localhost' zone file is called pri.localhost (typically
called localhost.zone on BIND distributions). The reverse
mapping file is caled locahost.rev (typically caled
named.local in BIND distributions).

Note:

For most Linux distributions you have a small overhead at the beginning
to rename the supplied files but the author considers it worthwhile in the
long run to avaoid confusion.

Final point on this topic: Whatever your convention be rigorous in its
application!

6.2 Master (Primary) DNS Server

The functionality of the master name server was previously
described.

Master Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. 'master' DNS for mydomain.com
2. provides 'caching' services for all other domains
3. provides recursive query services for all resolvers

The BIND 'named.conf' is as follows (click to look at any file):

[/ MASTER & CACHI NG NAME SERVER for MYDOVAI N, | NC
/1 maintained by: me nysel f al one
/] CHANGELCG
/1 1. 9 july 2003 - did sonething
/[l 2. 16 july 2003 - did sonething el se
/1 3. 23 july 2003 - did something nore
/1
options {
directory "/var/naned";

Step by Step™ Linux Guide. Page 265

/1 version statement for security to avoid hacki ng known
weaknesses
version "not currently avail abl e";
/1 optional - disables transfers except from sl ave
transfer-allow {192. 168. 23.1);
1
/1
/1 log to /var/l og/ nanmed/ nydomain.log all events frominfo
UP in severity (no debug)
/1 defaults to use 3 files in rotation
/1 BIND 8.x logging MUST COVE FIRST in this file
/1 BIND 9.x parses the whole file before using the |og
/1 failure nessages up to this point are in (syslog)
/var/| og/ nessages
/1
| oggi ng{
channel mydomai n_| og{
file "/var/l og/ naned/ mydonai n. | og" versions 3;
severity info;
¥
cat egory defaul t{
nydomnai n_| og;
b
1
/1 required zone for recursive queries
zone "." {
type hint;
file "root.servers";
1
zone "mydomai n. cont' i n{
type naster;
file "pri/pri.nydomain.cont;
1
/1 required | ocal host donmain
zone "l ocal host" in{
type naster;
file "pri.local host";
al | ow updat e{ none; };
1
/1 | ocal host reverse map
zone "0.0.127.in-addr. arpa" in{
type naster;
file "local host.rev";
al | ow updat e{ none; };
1
/1 reverse map for class C 192.168.0.0
zone "0.168.192. | N- ADDR. ARPA" i n{
type naster;
file "192.168.0.rev";

};

Step by Step™ Linux Guide. Page 266

Sample root.server file

The root.servers file contains addresses of servers which can supply
a list of the root servers (this file is typically called named.ca or
named.root in a standard BIND distributions).

When BIND loads it uses this file (defined in a special zone 'type
hint") to contact a server to update its list of root-servers. If the
root.servers files has not been defined BIND has its own compiled list
of servers for class IN only.

This file will get out of data but as long as there is one operation
server, BIND will find what it is looking for. Unless you need very
quick load times you can leave this file alone. The root.servers file
tells you where to get an updated copy or you can get one fron
ICANN.

; Thisfileis made available by InterNIC registration services
; under anonymous FTP as file /Jdomai n/named.root

; on server FTP.RS.INTERNIC.NET

; -OR-under Gopher &t RS.INTERNIC.NET

; under menu InterNIC Registration Services (NSI)

; submenu InterNIC Registration Archives

; file named.root

; last update: Aug 22, 1997

; related version of root zone: 1997082200

3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERSNET. 3600000 A 1984104

3600000 NSB.ROOT-SERVERSNET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12

3600000 NSD.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.9

3600000 NSE.ROOT-SERVERS.NET.
E.ROOT-SERVERSNET 3600000 A 192.203.230.10

3600000 NSF.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241

3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
. 3600000 NSH.ROOT-SERVERS.NET.
Step by Step™ Linux Guide. Page 267

ftp://ftp.RS.INTERNIC.NET

H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53

3600000 NSI.ROOT-SERVERS.NET.
. ROOT-SERVERS.NET. 3600000 A 192.36.148.17

3600000 NSJROOT-SERVERS.NET.
JROOT-SERVERS.NET. 3600000 A 198.41.0.10

3600000 NSK.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129

3600000 NSL.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12

3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
; End of File

pri/pri.mydomain.com

This file (pri.mydomain.com) is the standard sample zone file used
throughout this Chapter and has the following characteristics. NOTE:
Both externally visible (public) services and internal hosts are defined
in this file.

1. Two name servers are used one internal
(nsl) and one external (ns2) to the domain

2. The mail service is external to the domain
(provided by a third party)

3. FTP and WWW services are provided by the
same host

4. There are two hosts named bill and fred

5. The host addresses are all in the class C
private address range 192.168.0.0 (a
slightly artificial case)

The Resource Records are all defined separately.

Step by Step™ Linux Guide. Page 268

$TTL 86400 ; 24 hours could have been witten as 24h
$ORI A N nydomai n. com
@ 1D IN SQA nsl. nydonmi n.com nynail . nydomai n. com
(

2002022401 ; seri al

3H ; refresh

15 ; retry

1w ; expire

3h ; m ni mum

)

IN NS nsl. mydomai n.com ; in the domain
IN NS ns2. snokeyj oe.com ; external to domain
IN MX 10 nmil.another.com ; external mail
provi der
; server host definitions
nsl IN A 192.168.0.1 ;nane server definition
VWY IN A 192.168.0.2 ;web server definition
ftp IN CNAME www. nydomain.com ;ftp server

definition

; non server donain hosts

bill IN A 192.168.0. 3
fred IN A 192.168.0. 4

Sample pri.localhost zone file

This file supplied with the standard distributions (this file is typically
called localhost.zone in BIND distributions) is a model of brevity and
very cryptic! Comments have been added to clarify the definitions.
This file should not need modification.

The pri.localhost file maps the name ‘localhost’ to the local or
loopback address (127.0.0.1). It is used by many system programs.

$TTL 86400 ; 24 hours could have been written as 24h
$ORIGIN localhost.
; line below = localhost 1D IN SOA localhost root.localhost
@ 1D IN SOA @ root (
2002022401 ; serial
3H ; refresh
15; retry
1w ; expire
3h; minimum
)
@ 1D IN NS@
1D IN A 127.0.0.1

Step by Step™ Linux Guide. Page 269

http://www.mydomain.com

Sample localhost Reverse Map zone file

The localhost reverse-mapping file which this guide calls locahost.rev
is supplied with the standard BIND distributions (this file is typically
called named.local in BIND distributions). This file should not need
modification. This file lacks an $ORIGIN directive which might help

clarify understanding.

The localhost.rev file maps the IP address 127.0.0.1 to the name

'localhost’.

$TTL 86400 ;

; could use $ORIGIN 0.0.127.IN-ADDR.ARPA.
@ IN SOA locahost. root.localhost. (
1997022700 ; Serial

3h ; Refresh
15 ; Retry
1w ; Expire

3h) ; Minimum

IN NS localhost.
1 IN PTR localhost.

192.168.0.rev

This file (192.168.0.rev) is the sample reverse map zone file used
throughout this Chapter and has the following characteristics.

1.

2.

3.

4.

Two name servers are used one internal
(nsl1) and one external (ns2) to the domain
The mail service is external to the domain
(provided by a third party)

FTP and WWW services are provided by the
same host

There are two hosts named bill and fred

Step by Step™ Linux Guide. Page 270

5. The host addresses are all in the class C
private address range 192.168.0.0 (a
slightly artificial case)

The Resource Records are all defined separately.

$TTL 86400 ; 24 hours could have been written as 24h
$ORIGIN 0.168.192.IN-ADDR.ARPA.

@ 1D IN SOA nsl.mydomain.com. mymail.mydomain.com. (
2002022401 ; serial
3H ; refresh
15; retry
1w ; expire

3h ; minimum
)

; server host definitions

1 IN PTR nsl.mydomain.com.

2 IN PTR www.mydomain.com.

: non server domain hosts

3 IN PTR bill. mydomain.com.

4 IN PTR fred.mydomain.com.

Hosts defined with CNAME Resource Records do not have PTR
records associated.

6.3 Slave (Secondary) DNS Server

The functionality of the slave name server was previously described.

Slave Name Server Configuration

The BIND DNS configuration provides the following
functionality:

1 'save’ DNS for mydomain.com

2. provides 'caching' services for
all other domains

3. provides recursive query

servicesfor all resolvers

Note:

Step by Step™ Linux Guide. Page 271

http://www.mydomain.com

Since we are defining the slave the alternate sample file is used
throughout this example configuration with all servers being
internal to the domain. The BIND 'named.conf' is as follows
(click to look at any file):

/I SLAVE & CACHING NAME SERVER for MYDOMAIN, INC.
/I maintained by: me myself alone
/l CHANGELOG:
//'1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
I/ 3. 23 july 2003 - did something more
1
options {
directory "/var/named";
Il version statement for security to avoid hacking known weaknesses
version "not currently available”;
Il dlows notifies only from master
allow-notify {192.168.0.1} ;
// disables all zone transfer requests
allow-transfer{ "none"};
b
1
/l'log to /var/log//named/mydomain.com all events from info UPin
severity (no debug)
/Il defaults to use 3 filesin rotation
/ BIND 8.x logging MUST COME FIRST in thisfile
/ BIND 9.x parses the whole file before using the log
/[failure messages up to this point are in (syslog) /var/log/messages
I
logging{
channel mydomain_log{
file "/var/log/named/mydomain.log” versions 3;
severity info;

i
category default{
mydomain_log;

I
e
I required zone for recursive queries
zone"." {

type hint;

Step by Step'™ Linux Guide. Page 272

file"root.servers”;
b
/I see notes below
zone "mydomain.com” in{
type dave;
file "sec/sec.mydomain.com";
masters (192.168.0.1;);
b
I required local host domain
zone "localhost” in{
type master;
file "pri.localhost";
allow-update{ none} ;
b
/I localhost reverse map
zone "0.0.127.in-addr.arpa’ in{
type master;
file "localhost.rev";
allow-update{ none} ;
b

I reverse map for class C 192.168.0.0 (see notes)
zone "0.168.192.IN-ADDR.ARPA" IN {

type dave;
file"sec.192.168.0.rev";
masters {192.168.0.1;};

b

Notes:

1. The dlave zone file 'sec/sec.mydomain.com' is optional
and alows storage of the current records - minimising
load when named is restarted. To create this file initially
just open and save an empty file. BIND will complain the
first time it loads but not thereafter.

2. The reverse map for the network (zone 0.168.192.IN-
ADDR.ARPA) is defined as a dave for administrative
convenience - you need to maintain only one copy - but it

Step by Step™ Linux Guide.

Page 273

could be defined as a'master' with a standard reverse map
format.

3. A single 'masters IP address is used specifying
nsl.mydomain.com.

6.4 Caching Only DNS Server

The functionality of the Caching Only name server was
previously described.

Caching Only Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. The name server is not a'master’ or 'slave’ for any domain
2. provides 'caching' services for all domains
3. provides recursive query services for all resolvers

The BIND 'named.conf' is as follows (click to look at any file):

/1 CACHI NG NAME SERVER for MYDOVAIN, |NC
/1 maintai ned by: ne nyself al one
/| CHANGELOG
/1 1. 9 july 2003 - did sonething
/1 2. 16 july 2003 - did sonething el se
/1 3. 23 july 2003 - did something nore
/1
options {
directory "/var/naned"
/] version statement for security to avoid hacki ng known
weaknesses
version "not currently avail abl e";
/1 disables all zone transfer requests
al l owtransfer{"none"};
1
/1
/1 log to /var/log/zytrax-naned all events frominfo UP in
severity (no debug)
/1 defaults to use 3 files in rotation
/1 BIND 8.x logging MUST COVE FIRST in this file

/1 BIND 9.x parses the whole file before using the |og
/1 failure nessages up to this point are in (syslog)
/var/| og/ nessages
/1

| oggi ng{

channel mydomai n_| og{

file "/var/l og/ naned/ mydomai n. | og" versions 3;
severity info;

b
cat egory defaul t{
nydomnai n_| og;

};
1
/1 required zone for recursive queries
zone "." {

type hint;

file "root.servers"”;
1
/1 required | ocal host donain
zone "l ocal host" in{

type nmaster;
file "pri.local host";

al | ow updat e{ none; };

};

/1 | ocal host reverse nmap

zone "0.0.127.in-addr. arpa" in{
type naster;

file "l ocal host.rev"

al | ow updat e{ none; };

};

Notes:

1. The Caching only name server contains no zones (other

than 'localhost’) with 'master’ or 'dave' types.

2. The reverse map zone has been omitted since it assumed
that an external body (ISP etc) has the master domain
DNS and is therefore also responsible for the reverse
map. It could be added if required for local operational

reasons.

Step by Step™ Linux Guide. Page 275

6.5 Forwarding (a.k.a. Proxy, Client, Remote)
DNS Server

The functionality of the Forwar ding name server was
previously described.

Forwarding Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. The name server is not a'master’ or 'slave’ for any domain
2. provides 'caching' services for all domains
3. forwards all queriesto aremote DNS from all local

resolvers (Global forwarding)

The BIND 'named.conf' is as follows (click to look at any file):

I FORWARDING & CACHING NAME SERVER for MYDOMAIN,
INC.
// maintained by: me myself aone
Il CHANGELOG:
/[1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
// 3. 23 july 2003 - did something more
I
options {
directory "/var/named";
Il version statement for security to avoid hacking known weaknesses
version "not currently available";
forwarders{10.0.0.1; 10.0.0.2;};
forward only;
/[disables all zone transfer requests
allow-transfer{ "none"};
I
//'log to /var/log/zytrax-named all events from info UP in severity (no
debug)
I defaultsto use 3 filesin rotation
// BIND 8.x logging MUST COME FIRST in thisfile

Step by Step™ Linux Guide. Page 276

// BIND 9.x parses the whole file before using the log

/I failure messages up to this point are in (syslog) /var/log/messages
logging{
channel mydomain_log{
file "/var/log/named/mydomain.log” versions 3;

severity info;

I
category default{
mydomain_log;

b

1

I required local host domain

zone "localhost” in{

type master;

file"pri.localhost";

allow-update{ none;} ;

1

/' localhost reverse map

zone "0.0.127.in-addr.arpa’ in{
type master;
file"localhost.rev";

allow-update{ none;} ;

1
Notes:
1 The Forwarding name server typicaly contains no zones
(other than 'localhost’) with 'master’ or 'slave’ types.
2. The reverse map zone has been omitted since it assumed

that an external body (ISP etc) has the master domain
DNS and is therefore also responsible for the reverse
map. It could be added if required for local operational
reasons.

3. The forward option must be used in conjunction with a
forwarders option. The value ‘only' will override
'recursive query' behaviour.

4, Since all queries are forwarded the root servers zone
(‘type hint’) can be omitted.
5. Forwarding can be done on a zone basis in which case the

values defined override the global options.

Step by Step™ Linux Guide. Page 277

6.6 Stealth (a.k.a. Split or DM Z) DNS Server

The functionality of the Stealth name server

was previously

described. The following diagram illustrates the conceptual view of a

Stealth (a.k.a. Split) DNS server system.

Stealth
DMNS(S)

Multi{thomed
4 Firewall/NAT =
DMZ host
Private Private Public Public
Hosts Hosts

External
DNS(s)

Figure 6.1 Split/Stealth Server configuration

The key issue in a 'Stealth’ (a.k.a. Split) DNS system is that there is a
clear line of demarcation between the 'Internal’ Stealth server(s) and the
'External’ or Public DNS servers(s). The primary difference in
configuration is the 'Stealth’ Servers will provide a comprehensive set of
services to internal users to include caching and recursive queries and
would be configured as a typical Master DNS, while the External
server may provide limited services and would typically be configured
asan Authoritative Only DNS server.

There are two critical points:

1.

Step by Step™ Linux Guide.

The zone file for the 'Stealth’ server will contain both
public and private hosts, whereas the 'Public’ server's
master zone file will contain only public hosts.

To preserve the 'Stealth’ nature it is vital that the PUBLIC
DNS configuration does not include options such as
'master’, ‘dlow-notify','allow-transfer’, etc. with
Page 278

references to the IP of the 'Stealth' server. If the Stealth
servers IP where to appear in the Public DNS server and
its file system were to be compromised the attacker could
gain more knowledge about the organisation - they can
penetrated the 'veil of privacy' by simply inspecting the
'named.conf file.

There are a number of articles which suggest that the view
statement may be used to provide similar functionality using a
single server. This does not address the problem of the DNS host
system being compromised and by simple 'named.conf' file
inspection additional data about the organisation being
discovered. In a secure environment 'view' does not provide a
'Stealth DNS' solution.

6.7 Authoritative Only DNS Server

The functionality of the Authoritative name server was previously
described. If security is not the primary requirement then the view
statement may be used to provide 'Authoritative only' services to
external users and more comprehensive services to internal users. An
example configuration is shown below.

Authoritative Only Name Server Configuration

The BIND DNS configuration provides the following functionality:

1 'master' DNS for mydomain.com

2. does NOT provide 'caching' services for any other
domains

3. does NOT provide recursive query services for all
resolvers (Iterative only)

4, optimised for maximum performance

Step by Step™ Linux Guide. Page 279

The BIND 'named.conf' is as follows (click to look at any file):

/1 AUTHORI TATI VE ONLY NAME SERVER for MYDOMAI N, | NC.
/1 maintai ned by: ne nyself al one
/| CHANGELOG
/1 1. 9 july 2003 - did sonething
/1 2. 16 july 2003 - did sonething el se
/1 3. 23 july 2003 - did somnething nore
/1
options {
directory "/var/naned"
/1 version statement for security to avoid hacki ng known
weaknesses
version "not currently avail abl e";
recursi on no;
/1 disables all zone transfer requests in this case
/1 for performance not security reasons
al l ow-transfer{"none"};
1
/1
/1 log to /var/log/zytrax-naned all events frominfo UP in
severity (no debug)
/] defaults to use 3 files in rotation
/1 BIND 8.x logging MUST COVE FIRST in this file
/1 BIND 9.x parses the whole file before using the |og
/1 failure nessages up to this point are in (syslog)
/var/| og/ nessages
/1
| oggi ng{
channel mydonmai n_| og{
file "/var/l og/ naned/ mydonai n. | og" versions 3;
severity info

¥

cat egory defaul t{
nydonai n_| og;

b

};
zone "rmydomai n. cont' i n{
type nmaster;
file "pri/pri.nydonain.cont
1
/1 required | ocal host domain
zone "l ocal host" in{

type master;

file "pri.local host";

al | ow updat e{ none; };

/1 | ocal host reverse map

zone "0.0.127.in-addr. arpa" in{
type naster;
file "l ocal host.rev";

Step by Step'"" Linux Guide. Page 280

al | ow updat e{ none; };

};

Notes:

1 The reverse mapping zone would typically not be present
on a performance oriented server and has been omitted.

BIND provides three more parameters to control caching ,max-cache-
size and max-cache-ttl neither of which will have much effect on
performance in the above case and allow-recursion which uses a list of
hosts that are permitted to use recursion (all others are not) - a kind of
poor man's 'view'.

6.8 View based Authoritative Only DNS
Server

The functionality of the Authoritative name server was previously
described. If security is not the primary requirement then the view
statement may be used to provide 'Authoritative only' services to
external users and more comprehensive servicesto internal users.

View based Authoritative Only Name Server
Configuration

The BIND DNS configuration provides the following functionality:

1. 'master' DNS for mydomain.com

2. does NOT provide ‘caching' services for any external
users

3. does NOT provide recursive query services for any
external resolvers (Iterative only)

4, provides 'caching' services for internal users

5. provides recursive query services for internal users

Step by Step™ Linux Guide. Page 281

The BIND 'named.conf' is as follows (click to look at any file):

/1 VI EW BASED AUTHORI TATI VE ONLY NAME SERVER for MYDOVAI N
I NC.

/1 maintai ned by: ne nyself al one

/| CHANGELOG

[/ 1. 9 july 2003 - did sonething

/[l 2. 16 july 2003 - did sonething el se

/1 3. 23 july 2003 - did sonething nore

/1
/1 gl obal options
options {

directory "/var/naned"
/1 version statenment for security to avoid hacki ng known
weaknesses
version "not currently avail abl e";
1
/1
/1 log to /var/log/zytrax-naned all events frominfo UP in
severity (no debug)
/1 defaults to use 3 files in rotation
/1 BIND 8.x logging MUST COME FIRST in this file
/1 BIND 9.x parses the whole file before using the |og
/1 failure nessages up to this point are in (syslog)
/var/| og/ nessages
/1
| oggi ng{
channel mydomai n_| og{
file "/var/l og/ naned/ mydonai n. | og" versions 3;
severity info;

};

cat egory defaul t{
nydonai n_| og;

b

1
/1 provide recursive queries and caching for our interna
users
vi ew "goodguys" {
match-clients { 192.168.0.0/24; }; // our network
recursion yes;
/] required zone for recursive queries
zone "." {
type hint;
file "root.servers";
b
zone "nydomai n. com' {
type naster;

Step by Step™ Linux Guide. Page 282

[l private zone file including | ocal hosts
file "internal/pri.nydomain.conm';
I -
/1 required |ocal host domain

zone "l ocal host" in{

type naster;

file "pri.local host";
al | ow updat e{ none; };
I -
/1 | ocal host reverse map

zone "0.0.127.in-addr. arpa" in{
type naster;

file "local host.rev";

al | ow updat e{none; };

}; }/ end vi ew

/] external hosts view
vi ew "badguys" {
match-clients {"any"; }; // all other hosts
/1 recursion not supported
recursi on no;
zone "nydonmai n. cont' {
type naster;
/1 only public hosts
file "external/pri.nydomain.conm';

}

}; }/ end vi ew

Notes:
1 All the required zones must be declared in each view.
2. The 'goodguys view contains the root.servers, ‘localhost'
and reverse mapping file.
3. The 'badguys' view contains only the required zone files
for which we will answer authoritatively.
4, The 'badguys' view may contain an edited version of the

reverse map file.

This chapter describes the BIND 9.x named.conf file which controls the
behaviour and functionality of BIND. named.conf is the only file which
is used by BIND - confusingly there are still many references to
boot.conf which was used by BIND 4 - ignore them.

Step by Step™ Linux Guide. Page 283

BIND releases include a list of the latest statements and options
supported. This list is available in /usr/share/docs/bind-
version/misc/options (redhat) or /usr/src/contrib/bind/doc/ (FreeBSD).
Supported list for BIND 9.2.1.

BIND allows a daunting list of configuration statements. You need a
small subset to get operational. Read the first two sections to get a feel
for the things you need, it identifies the MINIMAL values (depending
on your requirement). Check the samples section for configuration
specific examples.

named.conf format, structure and overview
named.conf required zonefiles

acl statements (or sections)
controls statements (or section)
include statements (or sections)
key statements (or section)

logging statement (or section)
options statements (section)

server statements (or section)
trusted-keys statements (or sections)
view statement (or section)

zone statements (or sections)

named.conf format, structure and overview

A named.conf file can contain comments and will contain a number of
statements which control the functionality and security of the BIND
server.

BIND provides a number of comment formats as follows:

/* C style comment format needs openi ng and cl osi ng
mar ker s

** put allows rmultiple lines or */

/* single lines */

/Il C++ style comments single line format no cl osing
required

PERL style comments single |lines no closing required

Step by Step™ Linux Guide. Page 284

The whole named.conf fileis parsed for completeness and correctness
before use (thisamgor change from previous releases of BIND), parse
failures use syslogd and are (depending on your syslog.conf file)
typically written to /var/log/messages. There are some rules defined for
the statement order for BIND 9. The general statement layout of a
named.conf fileis usually:

Il acl statementsif required

/I defining first avoids forward name references
acl "name" {...};

logging{...};

I/ usually requires at least adirectory option

// unless you are using the system log
options{...};
/I other statements (as required)
/I zones statements including 'required' zones
zone{...};

ééne{...};

If you are using view statements the order changes significantly as
follows:

/1 acl statements if required

/1 defining first avoids forward nane references
acl "nane" {...};

logging {...}

/1 usually requires at least a directory option
/1 unless you are using the system | og

options {...};

/1 other statenents (as required)
view "first" {

options{...};

/1 zones statenents including 'required zones

zone {...};

b

vi ew "second" {

options {...};

/] zones statenents including 'required zones
zone {...};

Step by Step™ Linux Guide. Page 285

};

zone {...};

BIND is very picky about opening and closing brackets/braces,
semicolons and all the other separators defined in the formal ‘'grammars
below, you will see in the literature various ways to layout statements.
These variations are smply attempts to minimise the chance of errors,
they have no other significance. Use the method you feel most
comfortable with.

The statements supported by BIND are:

acl

controls

include

key
logging

lwres

options

Access Control Lists. Together with view and options
statements these define what hosts are alowed to
perform which operations on the name server.

Allows inclusion of externa files into named.conf for
administrative convenience or security reasons.

Configures the location, level and type of logging that
BIND performs. Unless you are using syslogd you
need alogging statement for BIND.

Defines the properties of BIND when running as a
lightweight name resolver server.

Options control specific behaviours in BIND. options
may be 'global’ (they appear in an options statement) or
subsets can appear in a zone statement in which case
they define the behaviour only for that zone, a view
statement in which they define behaviour for that view
or a server statement in which case they define
behaviour only for that server. You need an options

Step by Step™ Linux Guide. Page 286

server

trusted-keys

view

Zone

statement with directory, and in certain zone statements
you will need file and masters.

Controls BIND functionality and behaviour based on
the host address(es).

Defines the specific zones that your name server will
support. In addition there are a number of special zones
that you may need to include.

named.conf required zonefiles

Depending on your requirements BIND needs a number of zone files to
allow it to function - these are in addition to any zones files that
explicitly describe master or slave zones:

root-servers

This file (called named.ca in most distributions but
renamed root.servers in this guide) defines a list of
locations where BIND can get the list of top level
servers (that's why its caled 'hint). When a name
server cannot resolve a query it uses information
obtained via this list to provide a referral (Iterative
guery) or to find an answer (a Recursive query). The
root server file is defined using a norma zone
statement with 'type hint' as in the example below:

zone"." {
type hint;
file "root.servers’;

};

The'zone "."" is short for the 'root' zone = any zone for
which there is no locally defined zone (dlave or

Step by Step™ Linux Guide. Page 287

master).

By convention this file is usually included as the first
zone statement but there is no good reason for this - it
may be placed anywhere suitable. If you are running
an internal name service on a closed network you do
not need the root.servers file or ‘hint' zone. If thefileis
not defined BIND has ainternal list which it uses.

The file supplied with any distribution will get out of
date and can be updated from a number of locations
including ICANN. You see numerous commentators
advise that this file be updated every three months or
so. Thisis not essential. The first thing that BIND does
when loaded with a 'hint' zon€' is to update the root-
server list from one of the locations in the root.server
file. It will log any discrepancies from the supplied file
but carry on using its retrieved list. Other than extra
log messages there seems little advantage in updating
the root.server file unless BIND load time is vital. If
you are curious to see a sample root.server file.

localhost This zone allows resolution of the name ‘'localhost' to
the loopback address 127.0.0.1 when using the DNS
server. Any query for 'localhost’ from any host using
the name server will return 127.0.0.1. 'localhost’ is
used by many applications. On its face this may seem
a little strange and you can either continue to treat the
process as magic or get some understanding of how
resolvers work., The localhost zone is defined as
shown below

zone "localhost” in{
type master;

file "pri.localhost";

b

In many examples and even the files supplied with
BIND 9 a zone specific option allow-update
statement is shown as 'allow-update (none));'. Since
thisis BIND 9's default mode it is not required and has
been omitted.

An example pri.localhost file may be seen here.

reverse-map Reverse mapping describes the process of trandating

Step by Step™ Linux Guide. Page 288

an IP address to a host name. This process uses a
special domain caled IN-ADDR.ARPA and, if itisto
be supported, requires a corresponding zone file.
Reverse Mapping and the required zone files are
described in detail.

0.0.127.IN- This special zone alows reverse mapping of the

ADDR.ARPA loopback address 127.0.0.1 to satisfy applications
which do reverse or double lookups. Any request for
the address 127.0.0.1 using this name server will
return the name 'localhost’. On its face this may seem a
little strange and you can either continue to treat the
process as magic or get some understanding of how
resolvers work and the unpleasant issue of reverse
mapping. The 0.0.127.IN-ADDR.ARPA zone is
defined as shown below

zone "0.0.127.in-addr.arpa’ in{
type master;
file"localhost.rev";

};

In many examples and even the files supplied with
BIND 9 a zone specific option allow-update
statement is shown as 'allow-update (none));'. Since
thisis BIND 9's default mode it is not required and has
been omitted.

An example localhost.rev file may be seen here.

Sample localhost Reverse Map zonefile

The localhost reverse-mapping file which this guide calls locahost.rev is
supplied with the standard BIND distributions (thisfileistypically called
named.local in BIND distributions). This file should not need
modification. This file lacks an $ORIGIN directive which might help
clarify understanding.

The locahost.rev file maps the IP address 127.0.0.1 to the name
localhost'.

Step by Step™ Linux Guide. Page 289

$TTL 86400 ;
; could use $ORIG N 0.0.127. | N- ADDR. ARPA.
@ IN SQA | ocal host. root.|ocal host. (
1997022700 ; Seri al
3h ; Refresh
15 ; Retry
1w ; Expire
3h) ;M ni mum
NS | ocal host .
PTR | ocal host .

DNS records have a binary representation which is used internally in a
DNS application e.g. BIND and when transferred between DNS servers.
They also also have atext format which isused in azonefiles.

Zone File Format

DNS Binary Record Formats

List of Record Types

A - IPv4 Address Record

A6 - IPv6 Address Record

CNAME - Host Alias Record

DNAME - Delegate Reverse Name Record
HINFO - System Information Record
KEY - DNSSEC Public Key Record

MX - Mail Exchanger Record

NS - Name Server Record

NXT - DNSSEC Content Record

PTR - Pointer Record

SIG - DNSSEC Signature Record
SOA - Start of Authority Record

SRV - Services Record

TXT - Text Record

Zone File Format

The DNS system defines a number of Resource Records (RRs). The text
representation of these records are stored in zone files.

Step by Step™ Linux Guide. Page 290

Zone file example

; zone file for mydomain.com

$TTL 12h ; default TTL for zone

@ IN SOA nsl.mydomain.com. root.mydomain.com. (
2003080800 ; se = seria number
3h ; ref = refresh
15m ; ret = update retry

3w ; €X = expiry
3h ; min = minimum
)

IN NS nsl.mydomain.com.

IN MX 10 mail.anotherdomain.com.
joe IN A 192.168.254.3
WWW IN CNAME joe

The above example shows avery simple but fairly normal zonefile. The
following notes apply to zonefiles:

1. Zone files consist of Commnents, Directives and
Resource Records
2. Comments start with *;" (semicolon) and are assumed to

continue to the end of the line. Comments can occupy a
whole line or part of a line as shown in the above
example.

3. Directives start with '$' and may be standard (defined in
RFC 1035) - $TTL, $SORIGIN and $SINCLUDE. BIND
additionally provides the non-standard $SGENERATE
directive.

4, There are a number of Resource Record types defined in
RFC 1035 and augmented by subsequent RFCs. Resouce
Records have the generic format:

5. namettl class rr parameter

The value of 'parameter’ is defined by the record
and is described for each Resource Record typein
the sections below.

6. The $TTL should be present and appear before the first
Resource Record (BIND 9).
7. The first Resource Record must be the SOA record.

Step by Step™ Linux Guide. Page 291

DNS Binary Record Format

The generic binary representation of each Resource Record is shown
below:

Note:

The record format shown below is as defined in the RFCs and is
used internally or when transferring information across a
network e.g. during a DNS XFER. Do not confuse this with the
format you use to define an entry in a zone source file.

NAME TYPE CLASS | TTL |RDLENGTH RDATA

Where:

NAME The name of the node to which this record belongs

TYPE The resource record type which determines the val ue(s)
of the RDATA field. Type takes one of the values below.

CLASS A 16 bit value which defines the protocol family or an
instance of the protocol. The normal valueisIN =
Internet protocol (other values are HS and CH both
historic MIT protocols).

TTL 32 bit value. Thetimeto Livein seconds (rangeis 1 to
X). The value zero indicates the data should not be
cached.

RDLENGTH Thetotal length of the RDATA records.

RDATA Data content of each record is defined by the TY PE and
CLASS values.

DNS Record Types

Step by Step™ Linux Guide. Page 292

The current DNS RFCs define the following Resource Record Types:

Note:

The value field shown below is used internally in the DNS application
e.g. BIND or when transferring data between DNS's and does not appear
in any textual zone file definition. There are a number of other record
types which were defined over the years and are no longer actively
supported these include MD, MF, MG, MINFO, MR, NULL. A full list
of DNS Record Types may be obtained from | ANA DNS Parameters.

RR Type

AAAA

A6

AFSDB

CNAME

DNAME

HINFO

ISDN

Value

28

38

18

39

13

20

Step by Step™ Linux Guide.

IPv4 Address record. An IP address
for a host within the zone. RFC
1035.

Obsolete IPv6 Address record. An IP
address for a host within the zone.

IPv6 Address record. An IP address
for a host within the zone. RFC2874.

Location of AFS servers.
Experimental - special apps only.
RFC 1183.

Canonical Name. An dias name for a
host. RFC 1035.

Delegation of reverse addresses.
RFC2672.

Host Information - optiona text data
about a host. RFC 1035.

ISDN address. Experimental =
special applications only. RFC 1183.

Page 293

KEY

LOC

MX

NS

NXT

PTR

RP

RT

SRV

SIG

TXT

25

29

15

30

12

17

21

33

24

16

Step by Step™ Linux Guide.

DNSSEC. Public key associated with
aDNS name. RFC 2535.

Stores GPS data. Experimental -
special apps only. RFC 1876.

Mail Exchanger. A preference value
and the host name for a mail
server/exchanger that will service
this zone. RFC 974 and 1035.

Name Server. Defines the
authoritative name server for the
domain defined in the SOA record.
May be more than 1 NS record. RFC
1035.

DNSSEC Next Domain record type.
RFC 2535.

A pointer to a sub domain. RFC
1035.

Information about responsible
person. Experimental - special apps
only. RFC 1183.

Through-route binding. Experimental
- specia appsonly. RFC 1183.

Start of Authority. Defines the zone
name, an email contact and various
time and refresh values applicable to
the zone. RFC 1035.

Information about wel known
network services. RFC 2782.

DNSSEC. Signature - contains data
authenticated in a secure DNS. RFC
2535.

Text information associated with a
name. RFC 1035.

Page 294

WKS 11 Well Known Services. Experimental
- specia apps only (replaced with
SRV). RFC 1035.

X25 19 X.25 address. Experimental - special
appsonly. RFC 1183.

Security Overview

DNS Security is a huge and complex topic. It is made worse by the fact
that almost all the documentation dives right in and you fail to see the
forest for al the d@!mned trees.

The critical point is to first understand what you want to secure - or
rather what threat level you want to secure against. This will be very
different if you run a root server vs running a modest in-house DNS
serving a couple of low volume web sites.

The term DNSSEC is thrown around as a blanket term in a lot of
documentation. Thisis not correct. There are at least three types of DNS
security, two of which are - relatively - painless and DNSSEC whichiis -
relatively - painful.

Security is aways an injudicious blend of real threat and paranoia - but
remember just because you are naturally paranoid does not mean that
they are not after you!

Security Threats

To begin we must first understand the normal data flows in a DNS
system. Diagram 1-3 below shows this flow.

Step by Step™ Linux Guide. Page 295

Dynamic

Updates _|Networks S
¥ Remote
(2) |Admin (5)
F'ri‘n:arv P Queries [Remote Queries
Master |+ (4)' Caching4—|_’
Master Transfers Resolver
(1) 1(3)
Slave(s)
Fone
Files
SysAdmin Trsla DNSSEC

Server-Server

» Server-Client

Diagram 1-3 DNS Data Flow

Every dataflow (each RED line above) is a potentia source of threat!.
Using the numbers from the above diagram here is what can happen at
each flow (beware you may not sleep tonight):

Number

€

@)

3)

4)

)

Area

Zone Files

Dynamic
Updates

Zone
Transfers

Remote
Queries

Resolver
Queries

Threat

File Corruption (malicious or accidental).
Local threat.

Unauthorized Updates, IP address spoofing
(impersonating update source). Server to
Server (TSIG Transaction) threat.

IP address spoofing (impersonating update
source). Server to Server (TSIG
Transaction) threat.

Cache Poisoning by IP spoofing, data
interception, or a subverted Master or
Slave. Server to Client (DNSSEC) threat.

Data interception, Poisoned Cache,
subverted Master or Slave, local IP
spoofing. Remote Client-client (DNSSEC)
threat.

Step by Step™ Linux Guide. Page 296

The first phase of getting a handle on the problem is to figure (audit)
what threats are applicable and how seriously do YOU rate them or do
they even apply. As an example; if you don't do Dynamic Updates
(BIND's default mode) - there is no Dynamic Update threat! Finally in
this section a warning: the further you go from the Master the more
complicated the solution and implementation. Unless there is a very
good reason for not doing so, we would always recommend that you
start from the Master and work out.

Security Types

We classify each threat type below. This classification simply allows us
select appropriate remedies and strategies for avoiding or securing our
system. The numbering used below relates to diagram 1-3.

1 The primary source of Zone data is normally the Zone
Files (and dont forget the named.conf file which
contains lots of interesting data as well). This data should
be secure and securely backed up. Thisthreat is classified
as Local and is typically handled by good system
administration.

2. If you run slave servers you will do zone transfers. Note:
You do NOT have to run with slave servers, you can run
with multiple masters and eliminate the transfer threat
entirely. This is classified as a Server-Server
(Transaction) threat.

3. The BIND default is to deny Dynamic Zone Updates. If
you have enabled this service or require to it poses a
serious threat to the integrity of your Zone files and
should be protected. Thisis classified as a Server-Server
(Transaction) threzat.

4 The possibility of Remote Cache Poisoning due to IP
spoofing, data interception and other hacks is a
judgement call if you are running a simple web site. If the
site is high profile, open to competitive threat or is a high
revenue earner you have probably implemented solutions
already. Thisisclassified as a Server-Client threat.

Step by Step™ Linux Guide. Page 297

5. We understand that certain groups are already looking at
the implications for secure Resolvers but as of early 2004
this was not standardised. This is classified as a Server-
Client threat.

Security — L ocal

Normal system administration practices such as ensuring that files
(configuration and zone files) are securely backed-up, proper read and
write permissions applied and sensible physical access control to servers
may be sufficient.

Implementing a Stealth (or Split) DNS server provides a more serious
solution depending on available resources.

Finally you can run BIND (named) in achroot jail.

Server-Server (TSIG Transactions)

Zone transfers. If you have slave servers you will do zone transfers.
BIND provides Access Control Lists (ACLs) which alow simple IP
address protection. While IP based ACLs are relatively easy to subvert
they are a lot better than nothing and require very little work. You can
run with multiple masters (no slaves) and eliminate the threat entirely.
Y ou will have to manually synchronise zone file updates but this may be
asimpler solution if changes are not frequent.

Dynamic Updates. If you must run with this service it should be
secured. BIND provides Access Control Lists (ACLs) which allow
simple IP address protection but this is probably not adequate unless you
can secure the IP addresses i.e. both systems are behind a
firewall/DMZ/NAT or the updating host is using a private | P address.

Step by Step™ Linux Guide. Page 298

TSIG/TKEY If al other solutions fail DNS specifications (RFCs 2845 -
TSIG and RFC 2930 - TKEY) provide authentication protocol
enhancements to secure these Server-Server transactions.

TSIG and TKEY implementations are messy but not too complicated -
simply because of the scope of the problem. With Server-Server
transactions there is a finite and normaly small number of hosts
involved. The protocols depend on a shared secret between the master
and the slave(s) or updater(s). It is further assumed that you can get the
shared secret securely to the peer server by some means not covered in
the protocol itself. This process, known as key exchange, may not be
trivial (typically long random strings of base64 characters are involved)
but you can use the telephone(!), mail, fax or PGP email amongst other
methods.

The shared-secret is open to brute-for ce attacks so frequent (monthly
or more) changing of shared secrets will become a fact of life. What
works once may not work monthly or weekly. TKEY allows automation
of key-exchange using a Diffie-Hellman algorithm but seems to start
with a shared secret!

Server-Client (DNSSEC)

The classic Remote Poisoned cache problem is not trivial to solve
simply because there may an infinitely large number of Remote Caches
involved. It is not reasonable to assume that you can use a shared
secret. Instead the mechanism relies on public/private key
authentication. The DNSSEC specifications (RFC 2535 augmented
with others) attempt to answer three questions:

1 Authentication - the DNS responding really is the DNS

that the request was sent to.

2. Integrity - the response is complete and nothing is
missing.

3. Integrity - the DNS records have not been compromised.

Step by Step™ Linux Guide. Page 299

DNS BIND "'named.conf' Zone Transfers and
Updates

This chapter describes all the options available in BIND 9.x named.conf
relating to zone transfers and Updates.

allow-notify
[allow-notify { address match_list };]

allow-notify applies to slave zones only and defines a match list eg. IP
address(es) that are allowed to update the zone in addition to those IPs
defined in the master s option for the zone. The default behaviour is to
allow zone updates only from the 'masters' 1P(s). This option may be
specified in a zone statement or in a'global’ options statement.

Il dlows notify from the defined IPs

allow-notify (192.168.0.15; 192.168.0.16; 10.0.0.1;);
/[dlows no notifies

allow-notify (none));

allow-transfer

[allow-transfer { address match_list };]

allow-transfer defines a match list e.g. IP address(es) that are allowed
to transfer (copy) the zone information from the server (master or slave
for the zone). The default behaviour is to allow zone transfers to any
host. To disable transfers the following should be placed in the global or
azone section.

alow-transfer ("none");
This option may be specified in a zone statement or in a'global’ options statement.
allow-update

[allow-update { address match _list };]
Step by Step™ Linux Guide. Page 300

allow-update defines a match list e.g. |P address(es) that are allowed to
submit dynamic updates for 'master' zones. The default in BIND 9 is to
disallow updates from all hosts. This option may be specified in a zone
statement or in a 'global’ options statement. Mutually exclusive with
update-policy and applies to master zones only.

allow-update-forwarding
[allow-update-forwarding { address match_list };]

allow-update-forwarding defines a match list e.g. IP address(es) that
are allowed to submit dynamic updates to a 'slave’ sever for onward
transmission to a 'master’. This option may be specified in a zone
statement or in a'global’ options statement.

also-notify
[also-notify { ip_addr [port ip_port] ; [ip_addr [portip _port] ;...]};]

also-notify is applicable to 'type master' only and defines a list of IP
address(es) (and optional port numbers) that will be sent a NOTIFY
when a zone changes (or the specific zone if the option is specified in a
zone statement). These IP(s)s are in addition to those listed in the NS
records for the zone. If a global notify option is'no' this option may be
used to override it for a specific zone, and conversely if the global
<>options contain a also-notify list, setting notify 'no’ in the zone will
override the global option. This option may be specified in a zone
statement or in a'global’ options statement.

dialup

[dialup dialup_option;]

Step by Step™ Linux Guide. Page 301

dialup controls the behaviour of BIND when used with dial-on-demand
links. This option may be specified in a zone, view or 'global’ options
statement. NOT YET IMPLEMENTED IN BIND 9.

max-r efresh-time, min-r efr esh-time

[max-refresh-time number ; |
[min-refresh-time number ;]

Only valid for 'type slave' zones. The refresh time is normally defined by
the SOA record 'refresh’ parameter. This alows the dave server
administrator to override the definition and substitute the values defined.
The values may take the normal time short-cuts. This option may be
specified in a zone statement or in a'global’ options statement.

max-retry-time, min-retry-time

[max-retry-time number ; |
[min-retry-time number ;]

Only valid for 'type slave' zones. The retry time is normally defined by
the SOA record 'updateretry' parameter. This allows the Slave server
administrator to override the definition and substitute the values defined.
The values may take the normal time short-cuts. This option may be
specified in a zone statement or in a'global’ options statement.

max-transfer-idle-in
[max-transfer-idle-in number ; |

Only valid for 'type dlave' zones. Inbound zone transfers making no
progress in this many minutes will be terminated. The default is 60
minutes (1 hour). The maximum value is 28 days (40320 minutes). This
option may be specified in a zone statement or in a 'global’ options
Statement.

Step by Step™ Linux Guide. Page 302

max-transfer-idle-out
[max-transfer-idle-out number ;]

Only valid for 'type master' zones. Outbound zone transfers running
longer than this many minutes will be terminated. The default is 120
minutes (2 hours). The maximum value is 28 days (40320 minutes). This
option may be specified in a zone statement or in a 'global’ options
statement.

max-transfer-time-in
[max-transfer-time-in number ; |

Only valid for 'type slave' zones. Inbound zone transfers running longer
than this many minutes will be terminated. The default is 120 minutes (2
hours). The maximum value is 28 days (40320 minutes). This option
may be specified in azone statement or in a 'global’ options statement.

max-tr ansfer -time-out
[max-transfer-time-out number ; |

Only valid for 'type master' zones. Outbound zone transfers running
longer than this many minutes will be terminated. The default is 120
minutes (2 hours). The maximum value is 28 days (40320 minutes). This
option may be specified in a zone statement or in a 'global’ options
statement.

Notify
[notify yes | no | explicit; |

notify behaviour is only applicable to zones with 'type master' and if set
to 'yes then, when zone information changes, NOTIFY messages are
sent from zone masters to the slaves defined in the NS records for the
zone (with the exception of the 'Primary Master' name server defined in
the SOA record) and to any IPslisted in also-notify options.

Step by Step™ Linux Guide. Page 303

If set to 'no’ NOTIFY messages are not sent.

If set to 'explicit’ NOTIFY is only sent to those IP(s) listed in a also-
notify option.

If a global notify option is 'no' an also-notify option may be used to
override it for a specific zone, and conversely if the globa options
contain an also-notify list, setting notify 'no’ in the zone will override the
global option. This option may be specified in a zone statement or in a
'global’ options statement.

notify-source
[notify-source (ip4_addr | *) [port ip_port] ;]

Only valid for 'type master' zones. notify-source defines the I1Pv4
address (and optionally port) to be used for outgoing NOTIFY
operations. The value *' means the IP of this server (default). This IPv4
address must appear in the masters or also-notify option for the
receiving slave name servers. This option may be specified in a zone
statement or in a'global’ options statement.

notify-sour ce-v6

[notify-source-v6 (ip6_addr | *) [port ip_port] ;]

Only used by ‘type master' zones. notify-source-v6 defines the 1Pv6
address (and optionally port) to be used for outgoing NOTIFY
operations. The value *' means the IP of this server (default). This IPv6
address must appear in the masters or also-notify option for the

receiving slave name servers. This option may be specified in a zone
statement or in a'global’ options statement.

provide-ixfr

[provide-ixfr yesjno ; |

Step by Step™ Linux Guide. Page 304

The provide-ixfr option defines whether a master will respond to an
incremental (IXFR) zone request (option = yes) or will respond with a
full zone transfer (AXFR) (option = no). The BIND 9 default isyes. This
option may be specified in a 'server' statement or in a 'global’ options
Statement.

request-ixfr

[request-ixfr yesino ; |

The request-ixfr option defines whether a server (acting as a slave or on
behalf of a dave zone) will request an incremental (IXFR) zone transfer
(option = yes) or will request a full zone transfer (AXFR) (option = no).

The BIND 9 default is yes. This option may be specified in a 'server’
statement or in a'global’ options statement.

transfers
[transfers number ; |
Limits the number of concurrent zone transfers from any given server. If

not present the default for transfers-per-nsis used. This option may be
specified only in aserver statement.

transfer-for mat
[transfer-format (one-answer | many-answers);]

Only used by 'type master' zones. transfer-format determines the format
the server uses to transfer zones. '‘one-answer' places a single record in
each message, 'many-answers packs as many records as possible into a
maximum sized message. The default is 'many-answers which is ONLY
KNOWN TO BE SUPPORTED BY BIND 9, BIND 8 and later BIND 4
releases. This option may be specified in a server statement or in a
‘global’ options statement.

transfer-in

[transfer-in number ; |

Step by Step™ Linux Guide. Page 305

Only used by 'type slave' zones. transfer-in determines the number of
concurrent inbound zone transfers. Default is 10. This option may only
be specified in a'global’ options statement.

transfer s-per-ns
[transfer-per-ns number ;]

Only used by 'type slave' zones. transfer -per -ns determines the number
of concurrent inbound zone transfers for any zone. Default is2. This
option may only be specified in a'globa’ options statement.

transfer-source
[transfer-source (ip4_addr | *) [port ip_port] ;]]

Only valid for 'type save' zones. transfer-source determines which
local I1Pv4 address will be bound to TCP connections used to fetch zones
transferred inbound by the server. It aso determines the source 1Pv4
address, and optionally the UDP port, used for the refresh queries and
forwarded dynamic updates. If not set, it defaults to a BIND controlled
value which will usually be the address of the interface "closest to" the
remote end. This address must appear in the remote end's alow-transfer
option for the zone being transferred, if one is specified. This option may
be specified in a zone statement or in a'global’ options statement.

transfer-sour ce-v6
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]]

Only valid for 'type slave' zones. transfer-source determines which
local 1Pv6 address will be bound to TCP connections used to fetch zones
transferred inbound by the server. It aso determines the source 1Pv4
address, and optionally the UDP port, used for the refresh queries and
forwarded dynamic updates. If not set, it defaults to a BIND controlled
value which will usually be the address of the interface "closest to" the
remote end. This address must appear in the remote end's allow-transfer
option for the zone being transferred, if one is specified. This option may
be specified in a zone statement or in a'global’ options statement.

Step by Step™ Linux Guide. Page 306

transfer-out

[transfer-out number ;]

Only used by 'type master' zones. transfer-out determines the number of
concurrent outbound zone transfers. Default is 10. Zone transfer requests

in excess of thislimit will be REFUSED. This option may only be
specified in a'global’ options statement.

update-policy

[update-policy { update policy rule]...] };]

Incomplete - to be supplied

update-policy defines the conditions (rules) by which Dynamic Zone
Updates may be carried out. This option may only be used with a key
(DNSSEC/TSIG/ITKEY) and may be specified only in a zone statement.
Mutually exclusive with allow-update and appliesto master zones only.
update policy_rule takes the following format:

permission identity matchtype name [rr]

Where:

Parameter Description

permission May be either grant or deny

identity To be supplied

matchtype Value M eaning
name To be supplied
subdomain
self To be supplied
wildcard To be supplied

Step by Step™ Linux Guide. Page 307

name to be supplied

[rr] Optional. Defines the Resource Record types that may be
updated and may take the value TXT, A, PTR, NS, SOA,
A6, CNAME, MX, ANY (any of TXT, A, PTR, NS, SOA,
MX). If omitted default allows TXT, PTR, A, A6, MX,
CNAME. Multiple entries may be defined using a space
separated entriese.g. A MX PTR

DNS BIND 'named.conf' acl statements

This section describes the use of the acl (Access Control List) statement
availablein BIND 9.x named.conf. The 'acl’ statement allows fine-
grained control over what hosts may perform what operations on the
name server.

acl statement grammer
acl acl-name {

‘ address match_list ‘

};

acl's define a match list e.g. IP address(es), which are then referenced
(used) in a number of options statements and the view statement(s). acl's
MUST be defined before they are referenced in any other statement. For
this reason they are usually defined first in the named.conf file. ‘acl-
name' is an arbitrary (but unique) quoted string defining the specific list.
The 'acl-name' is the method used to reference the particular list. Any
number of acl's may be defined. The following special ‘acl-name' values
are built into BIND:

"none" - matches no hosts

"any" - matches all hosts

"localhost" - matches all the IP address(es)
of the server on which BIND is running
"localnets’ - matches all the IP address(es)
and subnetmasks of the server on which
BIND isrunning

Step by Step™ Linux Guide. Page 308

acl Examples

The following examples show acls being created and used including the
'specid’ acl's.

//defining acl's

// ssimpleip address acl

acl "someips’ {

10.0.0.1; 192.168.23.1; 192.168.23.15;
}

/' ip address acl with /' format
acl "moreips’ {
10.0.0.1;
192.168.23.128/25;
1
Il nested acl
acl "alips' {
"someips’;
"moreips’;
1
I/ messy acl
acl "complex” {

"someips’;
10.0.15.0/24;
110.0.16.1/24; // negated
(10.0.17.1;10.0.18.2;); // nested

h

/[using acl's

zone "somedomain.com" {
type master;

file "pri.somedomain.com”;
also-notify {"moreips'};
i

zone "mydomain.com” {
type dave;

masters ("someips'};

file "sec.mydomain.com;
alow-transfer {"none"}; // thisis a'specia’ acl

};

Step by Step™ Linux Guide. Page 309

NoCatAuth Project

Installing Gateway
Step by Step™ Linux Guide. Page 310

1
J w § pd
e '
i i
y - ¥
= = '
: {I { L
H i
'|:-.. ,'.'. \
PR L
Gataway PC
Cowt)
1 182.168.1.1
e |sth D #
-
Booass Poimt 1TZ37 4534 | — g Switch
"“r wtn 1
i
N

17122.4320

This clleri ges 161168150
¥ dynamicaily from the DHCE
PTG e il

Networ k Configuration of Gateway

Network Configuration of ethO
IP Address 192.168.1.1
Subnet mask 255.255.255.0

Step by Step™ Linux Guide. Page 311

Network Configuration of ethl
IP Address 172.22.4.234
Subnet mask 255.255.255.0
Default gateway 172.22.4.245

DNS
Primary DNS 203.115.0.1
Secondary DNS 203.115.0.18

The first thing we should do is setting up DHCP server in gateway at
ethO interface

Y ou can edit /etc/dhcpd.conf as follows

ddns-update-style interim;

ignore client-update;

default-lease-time 600;

max-lease-time 7200;

option subnet-mask 255.255.255.0;

option brodcat-address 192.168.1.255;

option roters 192.168.1.1;

option domain-name-servers 203.115.0.1

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.100 192.168.1.200

}

Make sure to give the interface that the DHCP drags in
letc/sysconfig/dhcpd as follows
#command line option here
DHCPDRAGS = ethO

Now start the DHCP by executing the following command.
/shbin/service dhcpd start

Step by Step™ Linux Guide. Page 312

If you want to change the configuration of a DHCP server that was
running before, then you have to change the lease database stored in
/var/lib/dhcp/dhcpd.leases as follows,

mv dhcpd.leases~ dhcpd.leases

Say Yesto over write the file and restart the dhcpd.
service dhcpd restart

Download the NoCatAuth and put in /nocat directory if there isno such
directory create it by executing this command
mkdir /nocat

/nocat/NoCatAuth-0.82.tar.gz
cd /nocat

tar zvxf NoCatAuth-x.xx.tar.gz
cd NoCatAuth-x.xx

make gateway

Now go to /usr/local/nocat and edit the nocat.conf as follows.
GatewayMode Passive
AuthServiceAddress 172.22.4.1
ExternalDevice ethl
Internal Device ethO
LocalNetwork 192.168.1.0/255.255.255.0
DNS Address 203.115.0.1

+ Following steps should follow only after installing
the FreeRADIUS on the AuthServer

Step by Step™ Linux Guide. Page 313

Installing the Radius Patch

Download the patch from pogozon site and saveitin

/usr/local/nocat

cd /usr/local/nocat

execute the following command

patch —-p0 < NoCatAuth-0.82+RADIUS-20031015.patch

once we patch the gateway the configuration file (nocat.conf) changes.
We have to make some changes in nocat.conf of gateway as follows.

AccountingMethod RADIUS

RADIUS HOST 172.22.4.1:1646

RADIUS_Secret testing123

RADIUS TimeOut 5

Note:

Theradiusport of gateway is 1646 and radius port of authserver is
1645, because 1645 isthe port that freeradiuswork and 1646 isthe
port for accounting.

Other important configurations

Remove iptables rules

Put stats.fw into /usr/local/nocat/bin where the original is at
{usr/local/nocat/libexec/iptables/stats.fw and give the permission to

execute

Get the trustedkeys.gpg of the AuthServer and put it into the
/usr/local/nocat/pgp of the gateway.

Installing Authen Radius Module
perl -MCPAN —e shell
#install Authen::Radius

Step by Step™ Linux Guide. Page 314

Installing AuthServer

Networ k Configuration of AuthServer
Network Configuration of ethO

IP Address 172.22.4.1
Subnet mask 255.255.255.0
Default gateway 172.22.4.245

Setting up a SSL enable Web Server with Self-signed
Certificate

Thefirst thing we should do is setting up a SSL enable web server with
self-signed certificate. Thisis a pre-requisite of the AuthServer.

Install RedHat Linux 8 in AuthServer (asaLinux Server)
/sibn/service httpd start

cd /etc/https/conf

rm ssl.key/server.key

rm ssl.crt/server.crt

cd /usr/share/ssl/certs

make genkey

Enter the password (PEM pass phrase)

. Re-enter the password (PEM pass phrase)
10. make testcert

11. Enter the password

12. Then enter the following arguments

S|

central

clombo

dts

networking

suranga

suranga@dts.lk

©COoONO~WNE

13. /shin/service httpd restart
14. Enter password

Step by Step™ Linux Guide. Page 315

mailto:suranga@slts.lk

15. Check thisin the browser https://localhost

In stage 2 we connect our own SSL enabled web server (not an
AuthServer) asfollows

17223 4. 245

Galeway PC
]
183 1668.1.14
T |ethi
Access Polal 172224034 =
wth 1
",
] wih @
’ 17222420
This chemm gats 1501651000 ‘
P ynamecally Iromn s DHCP Mﬂ"& ¥
T This is 35L enabled web
garver onby, This is fill nol

an AulhServer

AuthServer Installation

Download the NoCatAuth and put in this directory
/nocat/NoCatAuth-0.82.tar.gz
cd /nocat
tar zvxf NoCatAuth-x.xx.tar.gz
cd NoCatAuth-x.xx
make authserv

Your selection ? 1
Keysize ? 1024 bits
Keyisvalid for 70

(Y/N) ?y

Real Name:? suranga
Emailad : suranga@slts.lk
Comments : good

Step by Step™ Linux Guide. Page 316

mailto:suranga@slts.lk

(N)(©O(E)O)Q) ?0

Enter passphrase : 8

Repeat passphrase : 8
(IMPORTANT —do not enter passprase)

#chown —R nobody:nobody /usr/local/nocat/pgp

I nstall relevant modulesfrom CPAN

#perl -mcpan —e shell

Cpan> install Digest::MD5

httpd.conf

ServerTokens OS
ServerRoot "/etc/httpd”
PidFile run/httpd.pid
Timeout 300

KeepAlive Off

MaxK egpAliveRequests 100
KeepAliveTimeout 15
<IfModule prefork.c>
StartServers 8
MinSpareServers 5
MaxSpareServers 20
MaxClients 150
MaxRequestsPerChild 1000
</IfModule>

<IfModule worker.c>
StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0
</IfModule>

<IfModule perchild.c>
NumServers 5
StartThreads 5
MinSpareThreads 5

Step by Step™ Linux Guide.

Page 317

MaxSpareThreads 10

MaxThreadsPerChild 20

MaxRequestsPerChild 0

</IfModule>

Listen 80

Include conf.d/*.conf

LoadModule access module modules/mod_access.so
LoadModule auth_ module modules/mod_auth.so

LoadModule auth_anon_module modules/mod_auth_anon.so
LoadModule auth_dbm_module modules/mod_auth_dbm.so
LoadModule auth_digest_ module modules/mod_auth_digest.so
LoadModule include_module modules/mod_include.so
LoadModule log_config_module modulessmod_log_config.so
LoadModule env_module modules'mod_env.so

LoadModule mime_magic_module modules/mod_mime_magic.so
LoadModule cern_meta_module modules/mod _cern_meta.so
LoadModul e expires_module modules/mod_expires.so
LoadModule headers module modules'mod _headers.so
LoadM odul e usertrack_module modules/mod_usertrack.so
LoadModule unique_id_module modules/mod_unique_id.so
LoadModul e setenvif_module modules/mod_setenvif.so
LoadModule mime_module modules/mod_mime.so
LoadModule dav_module modules'mod_dav.so

LoadModule status module modules/mod_status.so

L oadM odul e autoindex_module modules/mod_autoindex.so
LoadModule asis module modules/mod_asis.so

LoadModule info_module modules/mod_info.so

LoadModule cgi_module modules/mod_cgi.so

LoadModule dav_fs module modulessmod_dav_fs.so
LoadModule vhost_alias module modules'mod _vhost_alias.so
L oadM odul e negotiation_module modules/mod_negotiation.so
LoadModule dir_module modules/mod_dir.so

LoadModule imap_module modules/mod_imap.so
LoadModule actions_ module modules/mod_actions.so

LoadM odul e speling_module modules/mod_speling.so
LoadModule userdir_module modules/mod_userdir.so
LoadModule alias_ module modules/mod_alias.so
LoadModule rewrite_module modules/mod_rewrite.so
LoadModule proxy _module modules'mod_proxy.so
LoadModule proxy_ftp_module modules/mod_proxy_ftp.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so

Step by Step™ Linux Guide. Page 318

User nobody
Group nobody
ServerAdmin root@l ocal host
UseCanonicalName Off
DocumentRoot "/var/www/html"
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
<Directory "/variwww/html|">
Options Indexes FollowSymLinks
AllowOverride Options
Order allow,deny
Allow from all
</Directory>
<LocationMatch "/$>
Options -Indexes
ErrorDocument 403 /error/noindex.html
</LocationM atch>
<IfModule mod_userdir.c>
UserDir disable
</IfModule>
Directorylndex index.html index.html.var
AccessFileName .htaccess
<Files~"M\.ht">
Order alow,deny
Deny from all
</Files>
TypesConfig /etc/mime.types
DefaultType text/plain
<IfModule mod_mime_magic.c>
MIMEM agicFile conf/magic
</IfModule>
Hostnamel ookups Off
ErrorLog loggerror_log
LogLevel warn
LogFormat "%h %l %u %t \"%r\" %>s %b \"%({ Referer} i\" \"%{ User-
Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{ Referer}i -> %U" referer
LogFormat "%f{ User-agent}i" agent
CustomLog logs/access |og combined

Step by Step™ Linux Guide. Page 319

ServerSignature On
Alias /icond "/var/www/icons/"

<Directory "/var/www/icons'>
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

Alias /manual "/var/www/manual"

<Directory "/var/www/manual">
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
Allow from all
</Directory>

<IfModule mod_dav_fs.c>

DAV LockDB /var/lib/dav/lockdb
</IfModule>
ScriptAlias /cgi-bin/ " lvarlwww/cgi-bin/"

<IfModule mod_cgid.c>
</IfModule>
<Directory "/var/lwww/cgi-bin">
AllowOverride None
Options None
Order allow,deny
Allow from al
</Directory>

<Directory "/usr/local/nocat/cgi-bin">
Options +ExecCGl
</Directory>

IndexOptions Fancylndexing VersionSort NameWidth=*
AddlconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddlconByType (TXT,/icong/text.gif) text/*
AddiconByType (IMG,/icons/image2.gif) image/*
AddiconByType (SND,/icons/sound2.gif) audio/*
AddiconByType (VID,/icons/movie.gif) video/*

Step by Step™ Linux Guide.

Addicon /icong/binary.gif .bin .exe

Addlcon /icong/binhex.gif .hgx

Addicon /icong/tar.gif .tar

Addlcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
Addlcon /icons/compressed.gif .Z .z .tgz .gz .zip
Addlicon /icong/a.gif .ps.ai .eps

Addicon /icong/layout.gif .html .shtml .htm .pdf
Addlcon /icons/text.gif .txt

Addlcon /icons/c.gif .c

Addlcon /icons/p.gif .pl .py

Addlcon /icong/f.gif .for

Addlcon /icong/dvi.gif .dvi

Addlcon /icons/uuencoded.gif .uu

Addlcon /icong/script.gif .conf .sh .shar .csh .ksh .tcl
Addlcon /icong/tex.gif .tex

Addlcon /icons/bomb.gif core

Addlcon /icons/back.gif ..

Addlcon /iconsg/hand.right.gif README
Addlcon /icons/folder.gif *DIRECTORY ™M
Addicon /icong/blank.gif BLANKICON"M
Defaultlcon /icons/unknown.gif
ReadmeName README.html

HeaderName HEADER.html

IndexIgnore .7?* *~*# HEADER* README* RCSCVS*,v * t
AddEncoding x-compress Z

AddEncoding x-gzip gz tgz

AddLanguage da .dk

AddLanguagenl .nl

AddLanguage en .en

AddLanguage et .et

AddLanguage fr .fr

AddLanguage de .de

AddLanguage he .he

AddLanguage €l .el

AddLanguageit .it

AddLanguage ja.ja

AddLanguage pl .po

AddLanguage kr .kr

AddLanguage pt .pt

AddLanguage nn .nn

Step by Step™ Linux Guide. Page 321

AddLanguage no .no

AddLanguage pt-br .pt-br

AddLanguage Itz .Itz

AddLanguage ca.ca

AddLanguage es .es

AddLanguage sv .se

AddLanguage cz .cz

AddLanguageru .ru

AddLanguage tw .tw

AddLanguage zh-tw .tw

AddLanguage hr .hr

LanguagePriority endanl et fr de el it jakr no pl pt pt-br [tz caes sv tw
Forcel anguagePriority Prefer Fallback
AddDefaultCharset | SO-8859-1

AddCharset ISO-8859-1 .is08859-1 .latinl
AddCharset ISO-8859-2 .is08859-2 .latin2 .cen
AddCharset ISO-8859-3 .is08859-3 .latin3
AddCharset ISO-8859-4 .is08859-4 .latin4
AddCharset ISO-8859-5 .is08859-5 .latin5 .cyr .iso-ru
AddCharset ISO-8859-6 .is08859-6 .latin6 .arb
AddCharset ISO-8859-7 .is08859-7 .latin7 .grk
AddCharset ISO-8859-8 .is08859-8 .latin8 .heb
AddCharset 1SO-8859-9 .is08859-9 .latin9 .trk
AddCharset 1SO-2022-JP .is02022-jp .jis
AddCharset 1SO-2022-KR .is02022-kr kis
AddCharset 1SO-2022-CN .is02022-cn .cis
AddCharset Bigb .Bigb .bigh
AddCharset WINDOWS-1251 .cp-1251 .win-1251
AddCharset CP866 .cp866

AddCharset KOI8-r .koi8-r .koi8-ru
AddCharset KOI8-ru .koi8-uk .ua
AddCharset 1SO-10646-UCS-2 .ucs2
AddCharset 1SO-10646-UCS-4 .ucs4
AddCharset UTF-8 .utf8

AddCharset GB2312 .gb2312.gb
AddCharset utf-7 .utf7

AddCharset utf-8 .utf8

AddCharset big5 .big5 .b5

AddCharset EUC-TW .euc-tw

AddCharset EUC-JP .euc-jp

AddCharset EUC-KR .euc-kr

AddCharset shift_jis .gis

Step by Step™ Linux Guide. Page 322

AddType application/x-tar .tgz
AddHandler cgi-script .cgi .pl
AddHandler imap-file map
AddHandler type-map var
AddOutputFilter INCLUDES .shtml
Alias/error/ " /variwwwi/error/"

<IfModule mod_negotiation.c>
<IfModule mod_include.c>
<Directory "/var/www/error">
AllowOverride None
Options IncludesNoExec
AddOutputFilter Includes html
AddHandler type-map var
Order allow,deny
Allow from al
LanguagePriority en es de fr
Forcel.anguagePriority Prefer Fallback
</Directory>

ErrorDocument 400 /error/HTTP_BAD_REQUEST .html.var

ErrorDocument 401 /error/HTTP_UNAUTHORIZED.html.var

ErrorDocument 403 /error/HTTP_FORBIDDEN.html.var

ErrorDocument 404 /error/HTTP_NOT _FOUND.html.var

ErrorDocument 405
lerror/HTTP_METHOD_NOT_ALLOWED.html.var

ErrorDocument 408 /error/HTTP_REQUEST _TIME_OUT .html.var

ErrorDocument 410 /error/HTTP_GONE.html.var

ErrorDocument 411 /error/HTTP_LENGTH_REQUIRED.html.var

ErrorDocument 412
lerror/HTTP_PRECONDITION_FAILED.html.var

ErrorDocument 413
lerror/HTTP_REQUEST_ENTITY_TOO_LARGE.html.var

ErrorDocument 414
lerror/HTTP_REQUEST_URI_TOO_LARGE.html.var

ErrorDocument 415
lerror/HTTP_SERVICE_UNAVAILABLE.html.var

ErrorDocument 500
lerror/HTTP_INTERNAL_SERVER _ERROR.html.var

ErrorDocument 501 /error/HTTP_NOT _IMPLEMENTED.html.var

ErrorDocument 502 /error/HTTP_BAD_GATEWAY .html.var

Step by Step™ Linux Guide. Page 323

ErrorDocument 503
lerror/HTTP_SERVICE_UNAVAILABLE.html.var

ErrorDocument 506
lerror/HTTP_VARIANT_ALSO VARIES.html.var

</IfModule>

</IfModule>

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "M SIE 4\.0b2;" nokeepalive downgrade-1.0 force-
response-1.0

BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

BrowserMatch "Microsoft Data Access Internet Publishing Provider”
redirect-carefully

BrowserMatch ""WebDrive" redirect-carefully

sgl.conf

LoadModule ssl_module modules/mod_ssl.so

Listen 443

AddType application/x-x509-ca-cert .crt

AddType application/x-pkcs7-crl .crl

SSL PassPhraseDialog builtin

SSL SessionCache dbm:/var/cache/mod_ssl/scache
SSL SessionCacheTimeout 300

SSLMutex filerlogs/ssl_mutex

SSL RandomSeed startup builtin

SSLRandomSeed connect builtin

<VirtualHost _default_:443>

DocumentRoot "/var/www/html"

ServerName 203.94.84.205:443

ServerAdmin you@your.address

ErrorLog logs/ss_error_log

TransferLog logs/ss_access |og

SSLENgineon

SSL CipherSuite
ALL:!ADH:'EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv
2:+EXP:+eNULL

Step by Step™ Linux Guide. Page 324

SSL CertificateFile /etc/httpd/conf/sdl.crt/server.crt
SSL CertificateK eyFile /etc/httpd/conf/ssl .key/server.key
<Files ~ "\.(cgi|shtml|phtml |php3?)$">
SSLOptions +StdEnvVars
</Files>
<Directory "/usr/local/nocat/cgi-bin">
SSLOptions +StdEnvVars
</Directory>
SetEnvif User-Agent " *MSIE.*" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

CustomLog logs/ssl_request_log \
"%t %h %{ SSL_PROTOCOL} x %{ SSL_CIPHER} x \"%r\" %b"

</VirtuaHost>
ScriptAlias /cgi-bin/ /usr/local/nocat/cgi-bin/

<Directory /usr/local/nocat/cgi-bin>
SetEnv PERL5LIB /ust/local/nocat/lib
SetEnv NOCAT /usr/local/nocat/nocat.conf
</Directory>
SetEnvif User-Agent " *MSIE.*" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

Use ‘passwd’ file for NoCatAuth user authentication

Run bin/admintool to create a new users and group admins.
Eg: Set the password for the user “sura’
[root@mail nocat]#bin/admintool —c sura surabest
Adding the user “sura” to the group “members’
[root@mail nocat]#bin/admintool —a sura members

After this copy the trustedkeys.gpg from authserver
(user/local/nocal) and paste it in gateway /usr/local/nocat/pgp

Step by Step™ Linux Guide. Page 325

Note:

| got error 500 premature and of script headers:login in wireless
client PC’s |E browser. | overcome that problem by changing user
and group to nobody as mentioned in the configuration previously.

We need to edit NoCatAuth configuration file
(/usr/local/nocat/nocat.conf) to change authentication section:

Aut hservi ce aut henticati on source.

#

Dat aSource -- specifies what to authenticate against.
Possi bl e val ues are DBI, Passwd, LDAP, RADI US, PAM
Sanba, | MAP, NI S.

Dat aSour ce Passwd

Al ternately, you can use the Passwd data source.

UserFile /usr/1local / nocat/etc/passwd
GroupUserFile /usr/1ocal / nocat/etc/group
GroupAdm nFil e /usr/local /nocat/etc/groupadm

The format of these files is as foll ows:

1n UserFile, each line is of the form

<user nane>: <passwor d>, where the

password is an MD5 di gest of the user's actual
passwor d.

In GoupUserFile and G oupAuthFile, each line is of the
form

<gr oup>: <user 1>, <user 2>, <user 3>, . ..

The UserFile may be updated with the bin/adm ntool

script included in this
distribution.

NoCatAuth 0.82 + MySQL for usersrepository

Step by Step™ Linux Guide. Page 326

Running MySQL
[etc/init.d/mysgld start

Assigning password to user “root” for MySQL Server
#mysgladmin password your-password

Creating the nocat DB
#mysgladmin create nocat —p

Adding the nocat DB structure to MySQL
Copy nocat.shemafile to /etc from /nocat/NoCatAuth-0.82/etc
mysgl nocat < /etc/nocat.shema—p

Making the nocat DB isa property of the user “nocat”
with password “nocatauth”

Login to the MySQL as root
mysgl —u root 4

Assign permissions
mysgl > grant all on nocat.* to nocat@localhost identified by
“nocatauth”;
mysqgl > flush privileges;
mysgl> quit

Verifying that we have granted the privileges to the user “nocat”
(-ppassword is without space character)

#mysgl —u nocat —pnocatauth

mysgl > use nocat

mysgl > show tables

We need to edit NoCatAuth configuration file
(/usr/local/nocat/nocat.conf) to change authentication section:

Aut hservice authenticati on source.
#
DataSource -- specifies what to authenticate against.

Step by Step™ Linux Guide. Page 327

Possi bl e val ues are DBI, Passwd, LDAP, RADI US, PAM
Sanba, | MAP, NI S.

#

Dat aSource DBl

##t

Auth service database settings.

#

| f you select DataSource DBI, then Database, DB User,
and DB _Password

are required.

#

Dat abase is a DBI-style data source specification.
#

For postgres support:

Dat abase dbi: Pg: dbname=nocat

#

For nysqgl support:

Dat abase dbi : nysql : dat abase=nocat

DB _User nocat
DB _Passwd nocat aut h

We add users to our new nocat data base with admintool NoCatAuth utility.
usr/local/nocat/bin/admintool —c toni password
usr/local/nocat/bin/admintool —atoni members

We can verify that we have added the user correctly to members tables.
mysgl —u nocat —pnocatauth
mysgl > use nocat;
mysgl > select * from member;
mysgl > exit

NoCatAuth 0.82 + FreeRADIUS

Step by Step™ Linux Guide. Page 328

Installing FreeRADIUS

Download the FreeRADIUS from www.fr eer adius.or g.

rar —zxvf freeradius.tar.gz

cd /freeradius

#./configure --local statedir=/var --sysconfdir=/etc

make
makeinstall

Then you have to modify the etc/raddb/clientsfile. Thisfile lists
the hosts authorized to hit the FreeRADIUS server with requests
and secret key those will use in their requests. Also, add the IP
address of a desktop console machine with which you can test
your setup using RADIUS ping utility. (This can refer to our

gateway that is 172.22.4.234)

EQ:
Cdient Nanme

#portmasterl.isp.com
#portmaster2.isp. com
#proxyradi us. i sp2. com
| ocal host

172.22. 4. 238
tc-clt. hassel |l tech. net

testingl23
testingl23
Thei r Key
testingl23
testingl23
oreilly

Next you have to add the IP address of the gateway into the

etc/raddb/nadlist file.

EQ:

#portmasterl.isp. com

| ocal host

172.22.4.238
tc-clt. hassel |l tech. net

Short Nane
pril. NY

| ocal

| ocal

tc. char

Configuring FreeRADIUS to use MySQL

Step by Step™ Linux Guide.

Type

I'ivingston

portsl ave

portsl ave
tc

Page 329

http://www.freeradius.org

Edit the /etc/raddb/sgl.conf and enter the server name and
password details to connect to your MySQL server and the
RADIUS database.

Edit the /etc/raddb/radiusd.conf and add aline saying ‘sql’ to the
authorize{} section (which is towards the end of the file). The
best place to put it is just before the ‘files' entry. Indeed, if you
will just be using MySQL, and not falling back to text files, you
could comment out or lose the ‘files’ entry altogether.

The end of your radiusd.conf should then look something like this:

aut hori ze {
pr epr ocess
chap
nschap
#count er
#attr _filter
#eap
Suf fix
Sql
#files
#et c_snbpasswd

}

aut henticate {
aut ht ype PAP {

} pap
aut ht ype CHAP {
chap
}
aut ht ype Ms- CHAP {
nms chap
}
#pam
#uni x
#aut ht ype LDAP {
| dap
#}
}
preact {
pr epr ocess
suffix
#files
}

Step by Step™ Linux Guide. Page 330

accounting {

}

acct _uni que
det ai |
#count er
uni x

sq

radut np
#sradut np

session {

}

radut np

M odify the nocat.conf

Note:

DataSource RADIUS
RADIUS Host localhost: 1645
RADIUS_Secret testing123
RADIUS TimeOut 5

Theradiusport of gateway is 1646 and radius port of authserver is
1645, because 1645 isthe port that freeradiuswork and 1646 isthe
port for accounting.

Populating MySQL

Y ou should now create some dummy data in the database to test against.
It goes something like this:

In usergroup, put entries matching a user account nameto a
group name.

In radcheck, put an entry for each user account name with a
'Password' attribute with avalue of their password.

In radreply, create entries for each user-specific radius reply
attribute against their username

Step by Step™ Linux Guide. Page 331

In radgroupreply, create attributes to be returned to all group
members

Here's adump of tables from the 'radius database from mysgl on my test
box (edited slightly for clarity). This example includes three users, one
with adynamically assigned IP by the NAS (fredf), one assigned a static
IP (barney), and one representing a dial-up routed connection
(dialrouter):

mysqgl > sel ect * from usergroup;

e S U +
| id | UserNane | G oupNane |
s S +
| 1| fredf | dynanic |
| 2| barney | static |
| 2| dialrouter | netdi al |
e S U +

3 rows in set (0.00 sec)

nmysqgl > sel ect * from radcheck;

T R B S [----+
id | UserNane | Attribute | Val ue | Op |
T o e e oo Fom e e e e e oo F--- -+
| 1| fredf | Password | wilnma | == |
| 2| barney | Password | betty | == |
| 2| dialrouter| Password | dialup | == |
T o e e oo Fom e e e e e oo F--- -+

3 rows in set (0.02 sec)

nysql > sel ect * from radgroupcheck;

B e Fom e e e e oo RS |----+
| id| GoupNane | Attribute | Val ue | Op
S B S Fomm e e a oo |----+
| 1| dynamc | Auth-Type | Local | = |
| 2| static | Auth-Type | Local | = |
| 3| netdial | Auth-Type | Local | = |
B e Fom e e e e oo RS |----+

3 rows in set (0.01 sec)

nmysqgl > select * fromradreply;

Step by Step™ Linux Guide. Page 332

| 1| barney | Franmed-1P-Address | 1.2.3.4 | := |

| 2| dialrouter| Franmed-1P-Address | 2.3.4.1 = |

| 3| dialrouter| Framed-IP-Netmask | 255.255.255.255 | = |

| 4| dialrouter| Franmed-Routing | Broadcast - Li sten| := |

| 5| dialrouter| Franmed-Route |2.3.4.0 255.255.255.248 |:= |

| 6 | dialrouter| Idle-Timeout | 900 | := |
+-- - - - R o e e oo oo T [------ +

6 rows in set (0.01 sec)
mysqgl > sel ect * from radgroupreply;
Fom e e oo o e e e e oo oo oo o e e e oo [---+
| id | GoupName | Attribute | Val ue | Op |
S o e e e e e e oo B | -- -+
| 34 | dynamic | Framed-Conpression | Van-Jacobsen-TCP-IP |:= |
| 33 | dynamic | Framed- Protocol | PPP |: =
| 32 | dynamic | Service-Type | Franmed- User | :=
| 35 | dynamic | Framed-MIU | 1500 | :=
| 37 | static | Framed- Prot ocol | PPP | :=
| 38 | static | Service-Type | Franmed- User | :=
| 39 | static | Franmed- Conpression | Van-Jacobsen-TCP-1P | : 5|
| 41 | netdial | Service-Type | Franmed- User | :=
| 42 | netdial | Framed-Protocol | PPP | :=
S o e e e e e e oo B | -- -+
12 rows in set (0.01 sec)
nysql >

Installing Authen Radius Module

perl -MCPAN —e shell
#install Authen::Radius

Getting Started with FreeRADIUS

Step by Step™ Linux Guide.

Page 333

I ntroduction

[RADIUS covers, among other things,] the theoretical underpinnings of
both the authentication-authorization-accounting (AAA) architecture as
well as the specific implementation of AAA characteristics that is the
RADIUS protocol. [In this excerpt from Chapter 5], | will now focus on
practical applications of RADIUS: implementing it, customizing it for
your specific needs, and extending its capabilities to meet other needsin
your business. First, though, | need a product that talks RADIUS.

Enter FreeRADIUS.

Introduction to FreeRADIUS

The developers of FreeRADIUS speak on their product and its
development, from the FreeRADIUS Web site:

FreeRADIUS is one of the most modular and featureful [sic] RADIUS
servers available today. It has been written by a team of developers who
have more than a decade of collective experience in implementing and
deploying RADIUS software, in software engineering, and in Unix
package management. The product is the result of synergy between
many of the best-known names in free software-based RADIUS
implementations, including several developers of the Debian GNU/Linux
operating system, and is distributed under the GNU GPL (version 2).

FreeRADIUS is a complete rewrite, ground-up compilation of a
RADIUS server. The configuration files exhibit many similarities to the
old Livingston RADIUS server. The product includes support for:

Limiting the maximum number of simultaneous logons, even on
aper-user basis

More than one DEFAULT entry, with each being capable of "falling
through" to the next

Permitting and denying access to users based on the hunt gr oup
to which they are connected

Setting certain parametersto be hunt gr oup specific

Step by Step™ Linux Guide. Page 334

Intelligent "hints" files that select authentication protocols based
on the syntax of the username

Executing external programs upon successful login

Using the $I NCLUDE filename format with configuration, users,
and dictionary files

V endor-specific attributes

Acting asaproxy RADIUS server

FreeRADIUS supportsthe following popular NAS equipment:
3Com/USR Hiper Arc Total Control
3Com/USR NetServer
3Com/USR Total Control
Ascend Max 4000 family
Cisco Access Server family
Cistron PortSlave
Computone PowerRack
Cyclades PathRAS
Livingston PortMaster
Multitech CommPlete Server
Patton 2800 family
FreeRADIUS is available for awide range of platforms, including Linux,

FreeBSD, OpenBSD, OSF/Unix, and Solaris. For the purposes of this
book, I will focus on FreeRADIUS running under Linux. Also, as of this

Step by Step™ Linux Guide. Page 335

printing, a stable Version 1.0 of the product had not been released.
However, development of the server is very stable, careful, and
somewhat slow, so changes to the procedures mentioned are unlikely. In
the event a procedure does change, it's likely to be a relatively small
modification. Always check the FreeRADIUS Web site for up-to-date
details.

Installing FreeRADIUS

At present, the FreeRADIUS team doesn't offer precompiled binaries.
The best way to start off is to grab the latest source code, compressed
using tar and gzp, from the FreeRADIUS Web site. Once the file is on
your computer, execute the following command to uncompress the file:

tar -zxvf freeradius.tar.gz

Next, you'll need to compile FreeRADIUS. Make sure your system at
least has gcc, glibc, binutils, and gmake installed before trying to
compile. To begin compiling, change to the directory where your
uncompressed source code lies and execute ./configure from the
command line. You can also run ./configure -flags and customize the
settings for the flagsin Table 5-1.

Table 5-1: Optional configuration flagsfor FreeRADIUS

Flag Purpose Default

--enabl e-

shar ed[=PKGS] Builds shared libraries. Yes

- -enabl e-

stati c[=PKGS] Builds static libraries. Yes

Optimizes the resulting

--enable-fast - filesfor fastest installation. | Yes

i nstal | [=PKGS]

Makes the procedure
--with-gnu-1d assume the C compiler No
uses GNU ID.

Step by Step™ Linux Guide. Page 336

Avoids locking problems.
This may break parallel Not applicable

--di sabl e-11i bt ool -
| ock

builds.

with-logdir=pir | SPecifiesthedirectory for |\ o\ sratepi R/ og
log files.

--with- Specifies the directory for

radacct di r=DI R detail files. LOGDI R/ v adacct

Specifies the directory for

--wi th-raddbdi r=DI R . . .
configuration files.

SYSCONFDI R/ r addb
Makes the dictionary case

--wi th-di ct-nocase . ..
Insensitive.

Yes

Includes support for
--wi t h- ascend- bi nary | attributes provided with Yes
the Ascend binary filter.

Usesthreadsif they're

S-with-threads supported and available. ves
e Compiles SNMP support
W th-snmp into the binaries. ves
i th | Specifies where the
|n\(/:V: ud'e%is?:bl R includefilesfor MySQL Not applicable
can be found.
i th -lib Specifies where the
;j[J‘rM:Dl [Q”ysq e dictionary filesfor MySQL 'Not applicable
can be found.
Specifieswhere MySQL is
--wi t h-nysql -di r- DI R|installed on the local Not applicable
system.
mglt Z?lbl e-ltdl- Doesnotinstall 1'i bl tdl . | Not applicable

“-with-static- Compilesthe list of

dul es= ED- . [
m),, ,ODU, LE_SL%?T modules statically. Not applicable
- - enabl e- devel oper Turns on extra.devel oper Not applicable

warnings in the compiler.

Commonly, the following locations are used when installing aRADIUS
product (these practices go back to the Cistron RADIUS server):
Step by Step™ Linux Guide. Page 337

Binaries: /usr/local/bin and /usr/local/sbin
Manual (man) pages: /usr/local/man
Configuration files: /etc/raddb

Log files: /var/log and /var/log/radacct

To make the compiler use these locations automatically, execute:

./lconfigure --local statedir=/var --sysconfdir=/etc

The programs will then be configured to compile. The rest of this chapter
will assume that you installed FreeRADIUS in these locations.

Next, type make. This will compile the binaries. Finally, type make
install. Thiswill place all of the files in the appropriate locations. It will
aso install configuration filesif this server has not had a RADIUS server
installed before. Otherwise, the procedure will not overwrite your
existing configuration and will report to you on what files it did not
install.

At this point, your base FreeRADIUS software is installed. Before you
begin, though, you'll need to customize some of the configuration files so
that they point to machines and networks specific to your configuration.
Most of these files are located in /etc/raddb. The following files are
contained by default:

radius:/etc/raddb # Is -a
total 396

dr wxr - Xr - X 2 root r oot 4096 Apr 10 10: 39

dr wxr - Xr - X 3 root r oot 4096 Apr 10 10:18 .

STWTr--1-- 1 root r oot 635 Apr 10 10: 18 acct_users
STWr--T1-- 1 root r oot 3431 Apr 10 10: 18 attrs

STWr--r-- 1 root r oot 595 Apr 10 11:02 clients
STW-r--r-- 1 root r oot 2235 Apr 10 10:39 clients. conf
STW-r--r-- 1 root r oot 12041 Apr 10 10:18 dictionary
“FTWTr--7-- 1 root r oot 10046 Apr 10 10:39 dictionary. acc
STWr--r-- 1 root r oot 1320 Apr 10 10:39 dictionary.aptis
STW-r--r-- 1 root r oot 54018 Apr 10 10: 39 dictionary. ascend
STWr--r-- 1 root r oot 11051 Apr 10 10: 39 dictionary. bay
STWr--r-- 1 root r oot 4763 Apr 10 10: 39 dictionary.cisco

Step by Step™ Linux Guide.

Page 338

STWr--r-- 1 root r oot 1575 Apr 10 10: 39 dictionary. conpat
STWr--r-- 1 root r oot 1576 Apr 10 10:39 dictionary.erx
STWr--1-- 1 root r oot 375 Apr 10 10: 39

di ctionary. foundry

STWr--r-- 1 root r oot 279 Apr 10 10: 39

di ctionary. freeradius

STWr--r1-- 1 root r oot 2326 Apr 10 10: 39

di ctionary.!livingston

STWTr--1-- 1 root r oot 2396 Apr 10 10: 39

di ctionary. m crosoft

STWr--r-- 1 root r oot 190 Apr 10 10: 39

di ctionary. nonadi X

STWr--1-- 1 root r oot 1537 Apr 10 10: 39

di ctionary. qui ntum

STWr--r1-- 1 root r oot 8563 Apr 10 10: 39

di ctionary. redback

STWr--r-- 1 root r oot 457 Apr 10 10: 39 dictionary.shasta
STW-r--r-- 1 root r oot 2958 Apr 10 10: 39 dictionary. shiva
STW-r--r-- 1 root r oot 1274 Apr 10 10:39 dictionary.tunne
STWr--r-- 1 root r oot 63265 Apr 10 10: 39 dictionary. usr
STWr--r1-- 1 root r oot 2199 Apr 10 10: 39

di ctionary. ver sanet

STW-r--r-- 1 root r oot 1767 Apr 10 10:18 hints

STWTr--1-- 1 root r oot 1603 Apr 10 10: 18 hunt groups
STWr--r-- 1 root r oot 2289 Apr 10 10:39 | dap.attrnap
STWr--r-- 1 root r oot 830 Apr 10 10:18 nasli st
STWr--r1-- 1 root r oot 856 Apr 10 10: 18 naspasswd
STW-r--r-- 1 root r oot 9533 Apr 10 10: 39 postgresqgl . conf
STWTr--1-- 1 root r oot 4607 Apr 10 10: 39 proxy. conf
STWr--r-- 1 root r oot 27266 Apr 10 10: 57 radi usd. conf
STWr--r-- 1 root r oot 27232 Apr 10 10: 39 radiusd.conf.in
STWr--r1-- 1 root r oot 1175 Apr 10 10:18 real ns
STWTr--1-- 1 root r oot 1405 Apr 10 10: 39 snnp. conf
STW-r--r-- 1 root r oot 9089 Apr 10 10: 39 sql.conf
STWr--r1-- 1 root r oot 6941 Apr 10 10:18 users

STWr--r1-- 1 root r oot 6702 Apr 10 10: 39 x99. conf
STWr--r-- 1 root r oot 3918 Apr 10 10: 39 x99passwd. sanpl e

Theclients File

First, take a look at the /etc/raddb/clients file. This file lists the hosts
authorized to hit the FreeRADIUS server with requests and the secret
key those hosts will use in their requests. Some common entries are
already included in the /etc/raddb/clients file, so you may wish to simply

Step by Step™ Linux Guide. Page 339

uncomment the appropriate lines. Make sure the secret key that is listed
in the clients file is the same as that programmed into your RADIUS
client equipment. Also, add the IP address of a desktop console machine
with which you can test your setup using a RADIUS ping utility. A
sample ‘clients filelookslikethis:

Cient Nane Key

=
#portmasterl.isp.com testingl23
#portmaster2.isp. com testingl23
#proxyradi us.isp2.com TheirKey

| ocal host testingl23
192.168. 1. 100 testingl23

tc-clt.hasselltech.net oreilly

TIP: It's recommended by the FreeRADIUS developers that users
move from the clients file to the clients.conf file. The clients.conf
file is not addressed in this chapter, but for the sake of simplicity
and startup testing, | will continue using the plain clients file in
thisintroduction.

While it may seem obvious, change the shared secrets from the defaults
in the file or the samples listed previoudly. Failing to do so presents a
significant security risk to your implementation and network.

Thenadist File

Next, open the /etc/raddb/nadlist file. Inside this file, you should list the
full canonical name of every NAS that will hit this server, its nickname,
and the type of NAS. For your test console, you can simply use the
"portsave” type. Table 5-2 lists the FreeRADIUS-supported NAS
eguipment and the type identifier needed for the nadlist file.

Table 5-2: Supported NAS equipment and itstype identifier

NAS equipment Typeidentifier
3Com/USR Hiper Arc Total Control ' usr hi per

Step by Step™ Linux Guide. Page 340

3Com/USR NetServer net server

3Com/USR Total Control Tc

Ascend Max 4000 family nmax40xx
Cisco Access Server family ci sco
Cistron PortSlave portsl ave
Computone PowerRack conput one
Cyclades PathRAS pat hr as
Livingston PortMaster l'i vi ngston
Multitech CommPlete Server mul titech
Patton 2800 family patton

A sample /etc/raddb/nadlist file looks like this:

NAS Nane Short Nane Type

= [
#portmasterl.isp. com pmil. NY ['ivingston
| ocal host | ocal port sl ave
192.168. 1. 100 | ocal port sl ave
tc-clt. hasselltech.net tc.char tc

The naspasswd File

If you have 3Com/USR Tota Control, NetServer, or Cyclades PathRAS
equipment, you may need to edit the /etc/raddb/naspasswd file. This lets
the checkrad utility log onto your NAS machine and check to see who is
logged on at what port--which is commonly used to detect multiple
logins. Normally, the SNMP protocol can do this, but the equipment
listed previously needs a helping hand from the checkrad utility. A

sample /etc/raddb/naspasswd file looks like this:
206. 229. 254. 15 !root JoNAThaNHasSELI
206. 229.254.5 Iroot FoOBaR

ThehintsFile

Progressing along with the FreeRADIUS setup you will come to the
/etc/raddb/hints file. This file can be used to provide "hints' to the

Step by Step™ Linux Guide. Page 341

RADIUS server about how to provision services for a specific user based
on how his login name is constructed. For example, when you've
configured your default service to be a SLIP connection, then a SLIP
connection will be set up if a user logs in with her standard username
(e.g., meis). However, if that same user wanted a PPP connection, she
could alter her username to be Prneis, and the RADIUS server (knowing
about that convention from the /etc/raddb/hints file) would set up a PPP
connection for her. Suffixes on the end of the username work in the same
way. More on the hints file will be provided later in the chapter. You
shouldn't need to edit this file initialy since we're just testing, but if
you'd like to check it out, a sample /etc/raddb/hints file looks like this:

DEFAULT Prefix = "P", Strip-User-Nane = Yes
H nt = "PPP",
Servi ce- Type = Franed- User,
Framed- Prot ocol = PPP

DEFAULT Prefix = "S", Strip-User-Nane = Yes
Hnt = "SLIP",
Servi ce- Type = Franed- User,
Framed- Prot ocol = SLIP

DEFAULT Suffix = "P", Strip-User-Nane = Yes
Hint = "PPP",
Servi ce-Type = Franed- User,
Franed- Protocol = PPP

DEFAULT Suffix = "S", Strip-User-Nane = Yes

Hnt = "SLIP",
Servi ce- Type = Franed- User,
Franed- Protocol = SLIP

The huntgroups File

Step by Step™ Linux Guide. Page 342

Let's move on to the /etc/raddb/huntgroups file, where you define certain
huntgroups. Huntgroups are sets of ports or other communication outlets
on RADIUS client equipment. In the case of FreeRADIUS, a huntgroup
can be a set of ports, a specific piece of RADIUS client equipment, or a
set of calling station 1Ds that you want to separate from other ports.

Y ou can filter these defined huntgroups to restrict their access to certain
users and groups and match a username/password to a specific
huntgroup, possibly to assign a static |P address. Y ou define huntgroups
based on the IP address of the NAS and a port range. (Keep in mind that
a range can be anywhere from 1 to the maximum number of ports you
have.) To configure this file, you first specify the terminal servers in
each POP. Then, you configure a stanza that defines the restriction and
the criteria that a potential user must satisfy to pass the restriction. That
criteriais most likely a Unix username or groupname.

Again, you shouldn't have to configure this file to get basic functionality
enabled for testing; if you would like to peruse the file and its features,
however, I've provided a sample /etc/raddb/huntgroups file. It's for an
ISP with a POP in Raleigh, North Carolina that wants to restrict the first
five ports on its second of three terminal servers in that POP to only
premium customers:

ral ei gh NAS- | P- Address == 192.168. 1. 101
ral ei gh NAS- | P- Address == 192.168. 1. 102
ral ei gh NAS- | P- Address == 192.168. 1. 103
preni um NAS- | P- Address == 192.168. 1. 101, NAS- Port -
Id == 0-4
Group = prenium
Goup = staff

TheusersFile

Step by Step™ Linux Guide. Page 343

FreeRADIUS allows several modifications to the original RADIUS
server's style of treating users unknown to the users file. In the past, if a
user wasn't configured in the usersfile, the server would look in the Unix
password file, and then deny him access if he didn't have an account on
the machine. There was only one default entry permitted. In contrast,
FreeRADIUS alows multiple default entries and can "fall through™" each
of them to find an optima match. The entries are processed in the order
they appear in the users file, and once a match is found, RADIUS stops
processing it. The Fall-Through = Y es attribute can be set to instruct the
server to keep processing, even upon a match. The new FreeRADIUS
users file can also accept spaces in the username attributes, either by
escaping the space with a backslash (\) or putting the entire username
inside quotation marks. Additionally, FreeRADIUS will not strip out
spaces in usernames received from PortMaster equipment.

Since we won't add any users to the users file for our testing purposes,
FreeRADIUS will fall back to accounts configured locally on the Unix
machine. However, if you want to add a user to the usersfile to test that
functionality, a sample /etc/raddb/users file looks like this:

steve Auth-Type := Local, User-Password == "testing"
Servi ce- Type = Franed- User,
Fr amed- Prot ocol = PPP,
Franed-| P- Address = 172.16. 3. 33,
Framed- | P- Net mask = 255. 255. 255. 0,
Franed- Routi ng = Broadcast - Li sten,
Franed-Filter-1d = "std. ppp",
Framed- MTU = 1500,
Fr aned- Conpr essi on = Van-Jacobsen- TCP-| P
DEFAULT Servi ce- Type == Franed- User
Franed- | P- Address = 255. 255. 255. 254,
Franed- MTU = 576,
Servi ce-Type = Franed- User,
Fal | - Through = Yes
DEFAULT Franed- Prot ocol == PPP
Franed- Prot ocol = PPP,
Fr aned- Conpr essi on = Van-Jacobson- TCP-| P

There will be much more about the usersfile later in this chapter.
Theradiusd.conf File

This file is much like Apache's httpd.conf file in that it lists nearly every
directive and option for the basic functionality of the FreeRADIUS

Step by Step™ Linux Guide. Page 344

product. You will need to edit the Unix section of this file to make sure
that the locations of the passwd, shadow, and group files are not
commented out and are correct. FreeRADIUS needs these locations to
start up. The appropriate section looks like this:

uni x {
(sone content renoved)

Define the locations of the nornal passwd, shadow
and group files.

#

'shadow is comented out by default, because not
al |

systenms have shadow passwords.

#

To force the nodule to use the system passwd
fnctns,

instead of reading the files, coment out the
' passwd’

and 'shadow configuration entries. This is

required
for sone systens, |ike FreeBSD
#
passwd = /etc/passwd
shadow = /et c/ shadow

group = /etc/group
(some content renoved)

}

| will cover the radiusd.conf file in more detail later in this chapter.

With that done, it's now time to launch the r adi usd daemon and test
your setup. Executer adi usd from the command line; it should look
similar to this:

radi us:/etc/raddb # radiusd
radi usd: Starting - reading configuration files ..
radi us:/etc/raddb #

If you receive no error messages, you now have a functional
FreeRADIUS server. Congratulations!

Testing the Initial Setup

Once you have FreeRADIUS running, you need to test the configuration
to make sure it is responding to requests. FreeRADIUS starts up

Step by Step™ Linux Guide. Page 345

listening, by default, on the port specified either in the local /etc/services
file or in the port directive in radiusd.conf. While RFC 2138 defines the
standard RADIUS port to be 1812, historically RADIUS client
equipment has used port 1645. Communicating via two different portsis
obviously troublesome, so many users start the FreeRADIUS daemon
with the -p flag, which overrides the setting in both the /etc/services file
and anything set in radiusd.conf. To do this, run the following from the
command line:

radius:/etc/raddb # radiusd -p 1645
radi usd: Starting - reading configuration files ...
radi us:/etc/raddb #

The server is now running; it islistening for and accepting requests on
port 1645.

So, what is an easy way to test your configuration to seeif it functions
properly? It's easier than you might think, in fact. MasterSoft, Inc. has
released a Windows desktop RADIUS server testing tool called
NTRadPing, available at http://www.dialways.com. The latest version
asof thiswriting is 1.2, and it's afreeware tool. Download and install
this utility on a Windows machine, and then run it. The initial application
window should look much like Figure 5-1.

Figure 5-1. The NTRadPing 1.2 application window

Step by Step™ Linux Guide. Page 346

http://www.dialways.com

Sa-

Llpay-H ame:
Fapowont

Freqquest Ipge

Radius ':-H-.el-'pn'l.'l IE Lbttp: /fwnr dialways com/

Foiplp o o | | R |B : | ot l'-:- JaLE |
the best 820105 server far ¥ ws T

RADILIS Sec ke [

Fddoral HaDIS Allbubes

NTRadPing 1.2 - RADIUS Serser Tesdng Tool
€ 1999-2000 Master Soft - Movara (1taly) - Al rights resarved

| FRADMLIS S iy
| I CHEP

[ustericason Fieguest =

Agd | Flemaye | Sl I Hidgs Chiss

To do aquick test, follow these steps:

1.

Enter the IP address of your FreeRADIUS machine in the
RADIUS Server/port box, and then the port number in the
adjacent box. For this example, I've used I[P address
192.168.1.103 and port 1645.

Type in the secret key you added in /etc/raddb/clients for this
Windows console machine. For this example, | used the key
"testing123."

In the User-Name field, enter root, and in the Password field,
enter the root password for your FreeRADIUS machine.

Select Authentication Request from the Request Type drop-down
list box.

Click Send.

If your server is working properly, and you entered a valid root
password, you should see the reply in the RADIUS Server reply box to
the right of the NTRadPing window. Y ou should see something like:

Step by Step™ Linux Guide. Page 347

Sendi ng aut hentication request to server
192.168. 1. 103: 1645

Transmitting packet, code=1 id=1 | engt h=47

Recei ved response fromthe server in 15 milliseconds
Reply packet code=2 id=1 | engt h=20

Response: Access-Accept

Now, change the password for root inside NTRadPing to something
incorrect, and resend the request. You should get an Access-Reject
message much like the one shown here:

Sendi ng aut hentication request to server
192.168. 1. 103: 1645

Transmtting packet, code=1 id=3 | engt h=47

No response from server (tinmed out), new attenpt (#1)
Recei ved response fromthe server in 3516 nilliseconds
Reply packet code=3 id=3 | ength=20

Response: Access- Rej ect

Next, you'll need to test accounting packets. The old standard for
RADIUS accounting used port 1646. Change the port number in
NTRadPing accordingly, and select Accounting Sart from the Request
Type drop-down list box. Make sure the root password is correct again,
and send your request along. The response should be similar to the
following:

Sendi ng aut hentication request to server
192.168. 1. 103: 1646

Transmitting packet, code=4 id=5 | engt h=38

Recei ved response fromthe server in 15 nmilliseconds
Reply packet code=5 id=5 | engt h=20

Response: Accounti ng- Response

Finally, stop that accounting process by changing the Request Type box
selection to Accounting Stop and resending the request. You should
receive aresponse like this:

Sendi ng aut hentication request to server
192. 168. 1. 103: 1645

Step by Step™ Linux Guide. Page 348

Transmtting packet, code=4 id=6 | ength=38

Recei ved response fromthe server in 16 nilliseconds
Reply packet code=5 i d=6 | ength=20

Response: Accounti ng- Response

If you received successful responses to all four ping tests, then
FreeRADIUS is working properly. If you haven't, here's a quick list of
things to check:

Is FreeRADIUS running? Use
ps -aux | grep radiusd
to determine whether the process is active or not.
Is FreeRADIUS listening on the port you're pinging? If necessary, start
radiusd with an explicit port, i.e.,
radiusd -p 1645

Have you added your Windows console machine to the list of
authorized clients that can hit the RADIUS server? Do thisin the
[etc/raddb/clientsfile.

Are you using the correct secret key? This as well is configured
in the /etc/raddb/clientsfile.

Have you double-checked the locations of the group, passwd, and
shadow files inside the radiusd.conf file? These locations are
specified in the Unix section. Make sure they're not commented
out and that the locations are correct.

Can FreeRADIUS read the group, passwd, and shadow files? If
you're running FreeRADIUS as root, this shouldn't be a problem,
but check the permissions on these files to make sure the
user/group combination under which radiusd is running can
access thosefiles.

Step by Step™ Linux Guide. Page 349

Is there any port filtering or firewalling between your console
machine and the RADIUS server that is blocking
communications on the ping port?

Is the daemon taking along time to actually start up and print a
ready message (if you're running in debugging mode)? If so, your
DNS configuration is broken.

To assist in diagnosing your problem, you may want to try running the
server in debugging mode. While operating in this mode, FreeRADIUS
outputs just about everything it does, and by simply sifting through al of
the messages it prints while running, you can identify most problems.

To run the server in debugging mode, enter the following on the
command line to start radiusd:

radiusd -sfxxyz -| stdout

It should respond with a ready message if al is well. If it doesn't, then
look at the error (or errors as the case may be) and run through the
checklist above.

You can aso check the configuration of FreeRADIUS using the
following command:

radiusd -c

This command checks the configuration of the RADIUS server and alerts
you to any syntax errors in the files. It prints the status and exits with
either a zero, if everything is correct, or aoneif errors were present. This
command is also useful when you're updating a production server that
cannot be down: if there were a syntax error in the files, radiusd would
fail to load correctly, and downtime would obviously ensue. With the
check capability, this situation can be avoided.

In-depth Configuration

At this point, you've compiled, installed, configured, started, and tested a
simple FreeRADIUS implementation that is functional. However, 99.5%
Step by Step™ Linux Guide. Page 350

of the RADIUS/AAA implementations around the world are just not that
simple. In this section, I'll delve into the two major configuration files
and discuss how to tweak, tune, customize, and effect change to the
default FreeRADIUS installation.

Configuring radiusd.conf

radiusd.conf file is the central location to configure most aspects of the
FreeRADIUS product. It includes configuration directives as well as
pointers and two other configuration files that may be located el sewhere
on the machine. There are aso genera configuration options for the
multitude of modules available now and in the future for FreeRADIUS.
The modules can request generic options, and FreeRADIUS will pass
those defined options to the module through its API.

Before we begin, some explanation is needed of the operators used in the
statements and directives found in these configuration files. The =
operator, as you might imagine, sets the value of an attribute. The : =
operator sets the value of an attribute and overwrites any previous value
that was set for that attribute. The == operator compares a state with a set
value. It's critical to understand how these operators work in order to
obtain your desired configuration.

In this chapter, I'll look at several of the general configuration options
inside radiusd.conf.

Pidfile

This file contains the process identification number for the radi usd
daemon. You can use this file from the command line to perform any
action to a running instance of FreeRADIUS. For example, to shut
FreeRADIUS down without any protests, issue:

kill -9 “cat /var/run/radiusd. pid
Usage:

pidfile = [path]

Suggestion:

pidfile = ${run_dir}/radiusd. pid

user and group

Step by Step™ Linux Guide. Page 351

These options dictate under what user and group r adi usd runs. It is not
prudent to allow FreeRADIUS to run under a user and group with
excessive permissions. In fact, to minimize the permissions granted to
FreeRADIUS, use the user and gr oup "nobody." However, on systems
configured to use shadow passwords, you may need to set the user to
"nobody” and the group to "shadow" so that radi usd can read the
shadow file. This is not a desirable idea. On some systems, you may
need to set both the user and group to "root," although it's clear why that
isan even worse idea.

Usage:
user = [usernane]; group = [groupnane]
Suggestion:

user = nobody; group = nobody
max_request _tine

This option specifies the maximum number of seconds a request will be
processed by FreeRADIUS. If the handling of arequest takes longer than
this threshold, the process can be killed off and an Access-Reject
message returned. This value can range from 5 to 120 seconds.

Usage:

max_request _tine = 30

Suggestion:

nmax_request _tine = 60

del et e_bl ocked_requests

This directive is paired with the max_r equest _ti me directive in that it

controls when requests that exceed the time threshold should be killed.
Most of the time, this value should be set to "no."

Usage:

del et e_bl ocked requests = [yes/ no]

Suggestion:

del et e_bl ocked requests no
Step by Step™ Linux Guide. Page 352

cl eanup_del ay

When FreeRADIUS sends a reply to RADIUS client equipment, it
generally caches that request internally for a few seconds to ensure that
the RADIUS client will receive the message (sometimes network
problems, offline servers, and large traffic loads might prevent the client
from picking up the packet). The client receives a quick reply on its
prompting for a second copy of the packet, since the interna cache
mechanism for FreeRADIUS is much quicker than processing the
request again. This value should be set between 2 and 10: this range is
the happy medium between treating every request as a new request and
caching so many processed requests that some new requests are turned
away.

Usage:

cl eanup_del ay = [val ue]
Suggestion:

cl eanup_delay = 6

max_requests

This directive specifies the maximum number of requests FreeRADIUS
will keep tabs on during operation. The value starts at 256 and scales
with no upper limit, and ideally this is set at the number of RADIUS
clients you have multiplied by 256. Setting this value too high causes the
server to eat up more system memory, while setting it too low causes a
delay in processing new reguests once this threshold has been met. New
requests must wait for the cleanup delay period to finish before they can
be serviced.

Usage:

max_requests = [val ue]

Suggestion:

max_requests = [256 * x nunber of clients]

bi nd_addr ess

This directive specifies the address under which radi usd will accept
requests and reply to them. The "address’ can be an IP address, fully

Step by Step™ Linux Guide. Page 353

qualified domain name, or the * wildcard character (to instruct the
daemon to listen on all interfaces).

Usage:
bi nd_address = [val ue]

Suggestion:

]
*

bi nd_addr ess
port

This setting instructs FreeRADIUS to listen on a specific port. While the
RADIUS RFC gpecifies that the official RADIUS port is 1812,
historically NAS equipment and some RADIUS servers have used port
1645. Y ou should be aware of the port your implementation uses. While
you can specify a certain port here, you can also instruct r adi usd to use
the machine's /etc/services file to find the port to use. Additionally, using
the - p switch when executing r adi usd will override any port setting
provided here.

Usage:

port = [val ue]
Suggestion:

port = 1645
host name_| ookups

This directive tells FreeRADIUS whether to look up the canonical names
of the requesting clients or simply log their IP address and move on.
Much like with Apache, DNS queries take a long time and, especially on
highly loaded servers, can be a detriment to performance. Turning this
option on also causes r adi usd to block the request for 30 seconds while
it determines the CNAME associates with that IP address. Only turn this
option on if you are sure you need it.

Usage:

Step by Step™ Linux Guide. Page 354

host nanme_| ookups = [yes/ no]
Suggestion:
host nanme_I| ookups = no

al | ow_core_dunps

This directive determines whether FreeRADIUS should dump to core
when it encounters an error or simply silently quit with the error. Only
enable this option if you're developing for FreeRADIUS or attempting to
debug a problem with the code.

Usage:
al | ow _core_dunps = [yes/ no]
Suggestion:

al l ow_core_dunps = no
regular and extended expressions

This set of controls configures regular and extended expression support.
Redlistically, you shouldn't need to alter these as they're set when
running the ./configure command upon initial install.

Usage:

regul ar _expressions = [yes/ no]; extended expressions =
[yes/ no]

Suggestion:

regul ar _expressi ons = yes; extended _expressi ons = yes
| og

These directives control how access to and requests of the FreeRADIUS
server are logged. The 1og_stripped_nanes control instructs
FreeRADIUS whether to include the full User-Nane attribute as it
appeared in the packet. The | og_aut h directive specifies whether to log
authentication requests or simply carry them out without logging. The
| og_aut h_badpass control, when set to yes, causes r adi usd to log the

Step by Step™ Linux Guide. Page 355

bad password that was attempted, while the | og_aut h_goodpass logs
the password if it's correct.

Usage:

| og_stripped nanes = [yes/no]; log auth = [yes/no];

| og_aut h_badpass = [yes/no]; |og auth_goodpass = [yes/no]
Suggestion:

| og_stripped nanes = no; log auth = yes;
| og_aut h_badpass = yes; |og_auth_goodpass = no
| ower _user and | ower _pass

To eliminate case problems that often plague authentication methods
such as RADIUS, the FreeRADIUS developers have included a feature
that will attempt to modify the User - Name and User - Passwor d attributes
to make them all lowercase; this is done either before an authentication
request, after a failed authentication request using the values of the
attributes as they came, or not at all.

Clearly setting the | ower _user directiveto af t er makes the most sense:
it adds processing time to each request, but unless this particular machine
normally carries a high load, the reduced troubleshooting time is worth
the extra performance cost. However, a secure password often makes use
of a combination of uppercase and lowercase letters, so security dictates
leaving the password attribute alone.

Usage:

| ower _user = [before/after/no]; |ower_pass =
[bef ore/ after/ noj

Suggestion:

| ower _user = after; |ower_pass = no
nospace_user and nospace_pass

Much like the | ower _user and | ower pass controls, these directives
preprocess an Access- Request packet and ensure that no spaces are
included. The available options are the same: before, after, Or no.
Again, the most obvious choice isto set nospace_user to after to save
helpdesk time. Some administrators have a tendency to not allow spaces
in passwords; if this is the case, set nospace_pass to before (since
Step by Step™ Linux Guide. Page 356

there is a system-wide policy against spaces in passwords, testing a
request as-isis not required).

Usage:

nospace_user = [before/after/no]; nospace password =
[before/ after/ noj

Suggestion:

nospace_user = after; nospace_password = before

Configuring the usersFile

The users file, located at /etc/raddb/users, is the home of all
authentication security information for each user configured to access the
system. Each user has an individual stanza, or entry. The file has a
standard format for each stanza:

1. Thefirst field isthe username for each user, up to 253 characters.

2. On the same line, the next criteria are a list of required
authentication attributes such as protocol type, password, and
port number.

3. Following the first line, each user has a set of defined
characteristics that allow FreeRADIUS to provision a service best
for that user. These characteristics are indented under the first
line and separated into one characteristic per line. For example,
you might find a Login-Host entry, a dial-back configuration, or
perhaps PPP configuration information.

The users file also comes with a default username of--you guessed it--
DEFAULT, which is generaly the catchall configuration. That is to say,
if there is no explicit match for a particular user, or perhaps the attribute
information for a user is incomplete, radiusd will configure the session
based on the information in the DEFAULT entry.

FreeRADIUS processes this file in the order in which the entries are
listed. When information received from the RADIUS client equipment
matches an entry in the users file, FreeRADIUS stops processing and
sets the service up based on that users file entry. However, you can alter

Step by Step™ Linux Guide. Page 357

this behavior by setting the Fall-Through attribute to yes in an entry.
When radiusd encounters a positive fall-through entry, it will continue
processing the users file and then select the best match for the particular
session. The DEFAULT user can also have a Fall-Through attribute,
which means you can have multiple DEFAULT entries for various
connection scenarios.

If you don't want to issue a password for each user viatheir entry in the
users file, then simply set Auth-Type := System on the first line for each
user. FreeRADIUS will then query the system password database for the
correct password, which saves some administrative headache.

A sample complete entry

The following is a complete entry for the user jhassell, dialing into a
NAS server using PPP. Note that (a) there is no Fall-Through attribute
set, so FreeRADIUS will stop processing when it encounters this entry,
and (b) no DEFAULT entry will be used to add attribute information to
this connection:

j hassel | Aut h- Type : = System
Servi ce- Type = Franed- User,
Fr amed- Prot ocol = PPP,
Franmed- | P- Address = 192.168. 1. 152,
Framed- | P- Net mask = 255. 255. 255. 0,
Framed- Routi ng = Broadcast-Li sten
Framed-Filter-1d = "20nodun”,
Framed- MTU = 1500
Fr amed- Conpr essi on = Van-Jacobsen-TCP- | P

Next, here's a complete entry for the user Anna Watson. She has a space
in her user-name and she also has a password specified in her entry. She
also gets a positive fall-through so that she can use some of the DEFAULT
user's attributes with her connection:

"Anna WAt son” Aut h- Type : = Local, User-Password == "yes123"
Repl y- Message = "Hell o, %"
Servi ce-Type = Franed- User,
Franed- Routi ng = Broadcast - Li sten,
Franed-Filter-1d = "20nodun",
Fal | - Through = Yes

Step by Step™ Linux Guide. Page 358

DEFAULT entries

These DEFAULT user configurations match with all usernames that can get
to them (i.e., the individual users must have a positive Fal | - Thr ough
attribute). Recall from the earlier discussion that DEFAULT entries may
also haveFal | - Thr ough attributes.

First, let's make sure that all users are checked against the system
password file unless they have a password explicitly assigned in the
entry.

DEFAULT Aut h- Type : = System
Fal | - Through = Yes

Now, include a DEFAULT entry for all users connecting via a framed
protocol, such as PPP or SLIP. Note that | tell the RADIUS client to
assign the IP address viathe Fr amed- | P- Addr ess attribute's value.

DEFAULT Servi ce- Type = Franed- User
Franed- | P- Address = 255. 255. 255. 254,
Framed- MTU = 576,
Servi ce- Type Franed- User,
Fal | - Thr ough Yes

Finally, set the DEFAULT entry for PPP users. I've aready told
FreeRADIUS to assign framed protocol users with a dynamic IP address,
so all | need to do is set the compression method and explicitly designate
PPP as the framed protocol for this default.

DEFAULT Framed- Prot ocol == PPP
Framed- Prot ocol = PPP,
Fr amed- Conpr essi on = Van-Jacobsen-TCP- I P

If auser attempts to connect and matches neither any of the explicit user
entries nor any of the DEFAULT entries, then he will be denied access.
Notice that with the last DEFAULT entry, Fall-Through isn't set: this
ensures the user is kicked off if he doesn't match any of the scenarios.

Pr efixes and suffixes

You can use prefixes and suffixes appended to the user name to
determine what kind of service to provison for that particular

Step by Step™ Linux Guide. Page 359

connection. For example, if auser adds .shell to their username, you add
the following DEFAULT entry to the users file to provision a shell
service for her. FreeRADIUS authenticates her against the system
password file, telnets to your shell account machine, and logs her in.

DEFAULT Suffix == ".shell", Auth-Type := System
Servi ce- Type = Logi n- User,
Logi n- Servi ce = Tel net,
Logi n- | P- Host shel | acct 1. rdui nternet.com

Similarly, you can set up an entry in the users file where if a user
connects with a prefix of "s.", then you can provision SLIP service for
him. FreeRADIUS can authenticate him against the system passwords,
and then fall through to pick up the SLIP attributes from another
DEFAULT entry. Hereis an example:

DEFAULT Prefix == "s.", Auth-Type := System
Servi ce- Type = Franed- User,
Framed- Prot ocol = SLIP,
Fal | - Through = Yes]

Using RADIUS callback

The callback feature of the RADIUS protocol is one of the most
interesting and useful security measures that you, as an administrator,
can enforce. Y ou can configure FreeRADIUS to call a specific user back
via his individual entry in the users file. (Of course, you could make a
DEFAULT entry that calls every user back, but the application of that
technique is more limited and requires many more resources than a
standard implementation.) The following is an example of a callback
configuration for user rneis. she dias in, is then called back, is
authenticated, and then given a session on the shell account machine.

rneis Aut h- Type : = System
Servi ce-Type = Cal | back- Logi n- User,
Logi n- Servi ce = Tel net,
Logi n-1 P-Host = shell acctl. rdui nternet.com
Cal | back- Nunber = "9, 1-919-555-1212"

Completely denying accessto users

Step by Step™ Linux Guide. Page 360

Y ou can set up a specific user entry to deny access to him. For example,
you may have an automated script that takes input from your billing
system (alist of usernames that have not paid their bills, possibly) and
re-writes user entries to deny access. They would write something like
the following, for the user aslyter:

asl yter Aut h- Type : = Rej ect
Repl y- Message = "Account di sabled for nonpaynent."

Alternatively, you could also set up a group on your system called
"suspended,” and FreeRADIUS could detect whether an individual
username was contained within that group and reject access as necessary.
To do this, create aDEFAULT entry much like the following:

DEFAULT Group == "suspended", Auth-Type := Reject

Repl y- Message = "Account suspended for |ate paynent."

Troubleshooting Common Problems

In this section, I'll take alook at some of the most frequently occurring
problems with a new FreeRADIUS setup and how to fix them.

Linking Errors When Starting FreeRADIUS

If you receive an error similar to the following:

Modul e: Loaded SQL

rimsql: Could not link driver rimsql_nysqgl: file not

f ound

rimsql: Make sure it (and all its depend libraries!) are
in the search path

radi usd. conf[50]: sql: Module instantiation fail ed.

It means that some shared libraries on the server are not available. There
are a couple of possible causes from this.

First, the libraries that are needed by the module listed in the error

messages couldn't be found when FreeRADIUS was being compiled.
However, if a static version of the module was available, it was built at

Step by Step™ Linux Guide. Page 361

compile time. This would have been indicated with very prominent
messages at compile time.

The other cause is that the dynamic linker on your server is not
configured correctly. This would result in the libraries that are required
being found at compile time, but not run time. FreeRADIUS makes use
of standard calls to link to these shared libraries, so if these calls fail, the
system is misconfigured. This can be fixed by telling the linker where
these libraries are on your system, which can be done in one of the
following ways:

Write a script that starts FreeRADIUS and includes the variable
LD_LI BRARY_PATH. This sets the paths where these libraries can
be found.

If your system allowsiit, edit the /etc/Id.so.conf file and add the
directory containing the shared libraries to the list.

Set the path to these libraries inside radiusd.conf using the libdir
configuration directive. The radiusd.conf file has more details on
this.

Incoming Request Passwords Are Gibberish

Gibberish is usualy indicative of an incorrectly formed or mismatched
shared secret, the phrase shared between the server and the RADIUS
client machine and used to perform secure encryption on packets. To
identify the problem, run the server in debugging mode, as described
previously. The first password printed to the console screen will be
inside a RADIUS attribute (e.g., Password = "rneis\dfkjdf7482odf") and
the second will be in a logged message (e.g., Login failed
[rneis/dfkjdf 74820df]). If the data after the slash is gibberish--ensure it's
not just areally secure password--then the shared secret is not consistent
between the server and the RADIUS client. This may even be due to
hidden characters, so to be completely sure both are the same, delete and
re-enter the secret on both machines.

The gibberish may also result from a shared secret that is too long.
FreeRADIUS limits the secret length to 16 characters, since some NAS

Step by Step™ Linux Guide. Page 362

equipment has limitations on the length of the secret yet don't make it
evident in error logs or the documentation.

NAS Machinelgnoresa RADIUS Reply

You may be seeing duplicate accounting or authentication requests
without accompanying successful user logins. In this case, it's likely that
you have a multi-homed RADIUS server, or at least a server with
multiple IP addresses. If the server receives a request on one IP address,
but responds with a different one, even if the reply comes from the
machine for which the original packet was destined, the NAS machine
will not accept it. To rectify this, launch FreeRADIUS with the -i
command-line switch, which binds the daemon to one specific IP
address.

CHAP Authentication Doesn't Work Correctly

If PAP authentication works normally, but users authenticating with the
CHAP protocol receive errors and denials, you do not have plain text
passwords in the users file. CHAP requires this, while PAP can take
passwords from the system or from any other source. For each user who
needs CHAP authentication, you must add the Password = changeme
check item to his individual entry, of course changing the value of the
password as appropriate.

Some people may say using CHAP is much more secure, since the user
passwords are not transmitted in plain text over the connection between
the user and the NAS. This is simply not true in practice. While hiding
the password during transmission is beneficial, the CHAP protocol
requires you to leave plain text passwords sitting in a file on a server,
completely unencrypted. Obvioudly, it's much more likely that a cracker
will gain access to your RADIUS server, grab the users file with al of
these plainly available passwords, and wreak havoc and harm on your
network than it is that the same cracker would intercept one user's
password during the establishment of the connection.

FreeRadiusand MySQL

Step by Step™ Linux Guide. Page 363

Scott Bartlett (scott@frontios.com). Last updated February 10th 2003.
FreeRadiusiscurrently at version 0.8.1.

This page is an update on my original notes, hopefully now with thingsin
a more readable order to make life easier. The original notes can be
found here.

I ntroduction

In September 2001 | started playing around with FreeRadius (then at
verson 0.2!) and storing user authorisation details in a MySQL
database. | had previously been using a proprietary RADIUS solution
and wanted rid of it. Lots of people seemed to be posting to the
freeradius-users list that they were trying to do the same and found it
tricky due to the lack of documentation. Thus, to help anyone out there
who needed it, | wrote down al the snippets of info, tips I'd received,
and steps I'd used to make it work. Thisisthe result.

This document assumes that you are familiar with:
*nix system admin and networking
What RADIUS is and should do
MySQL administration

The basics of how to compile and install open source software.

I'm not going to describe any of the above stuff, especialy the latter as
I'm far from an expert on it. This document focuses on getting
FreeRadius running with MySQL. It does NOT describe a basic
FreeRadius installation in detail (e.g. getting it up and running with a
'users text file or other FreeRadius configurations), nor does it cover
using multiple authentication methods, fall-through's or any of that stuff.
Just plain-old-MySQL-only. If you don't know about RADIUS itself, go

Step by Step™ Linux Guide. Page 364

mailto:scott@frontios.com

do some background reading... the O'Reilly book ('RADIUS) is pretty
good and covers FreeRadius too.

Please note: This isn't official documentation. It's not even UNofficial
documentation. It's not documentation of any type by any stretch of the
imagination. So far, it's just my own persona notes, written on the fly.
Little editing, little detail. Y ou takes your chances. | will try to improve
when | can, or have additional information - don't hold your breath
though, as life can get busy around here. The notes focus on the SQL
element, NOT generally on getting FreeRadius installed and configured
and operational with text files (maybe later!) although there is a little bit
on that.

Also note: I'm not a programmer - editing low-level code and compiling
stuff is not something I'm particularly familiar with. Ask me to read C
code and I'll probably panic. My background and experience on Linux
(and other stuff) puts me in the system admin/networking bracket (I'm a
network builder and web app developer by day), so please bear that in
mind here. Feel free to mail me, especialy with suggestions and any info
useful to add here, but please don't ask me 'how to | compile' stuff.
Thanks.

Lastly for this bit : a big thank you to all those that helped, emailed and
generally contributed to me getting this up and going, and thus to the
creation of these notes.

System

| did my original testing on SuSe Linux 7.0 on Intel with FreeRadius 0.2
and MySQL 3.23.42 using a Cisco 3640 acting as a test NAS unit. The
final deployment was to RedHat 7.1. Today I'm running FreeRadius
0.8.1. If you're running an older version you are strongly recommended
to upgrade.

Before You Start

Before starting with FreeRadius, make sure your box is up and
configured on your network, that you have MySQL installed and
running, and that your NAS is configured to point to your server.

Step by Step™ Linux Guide. Page 365

If you're using Cisco kit as your NAS, here's a quick example snippet of
how to configure 10S to authenticate PPP (e.g. dial, DSL etc) usersto a
RADIUS server:

aaa new-model

aaa authentication ppp default if-needed group radius local
aaa authorization network default group radius

aaa accounting update newinfo

aaa accounting exec default start-stop group radius

aaa accounting network default wait-start group radius
aaa accounting connection default start-stop group radius

radius-server host a.b.c.d auth-port 1645 acct-port 1646
radius-server host e.f.g.h auth-port 1645 acct-port 1646
radius-server key YOUR-RADIUS-KEY

[ab.c.d and ef.g.h are the IP's of your primary and secondary RADIUS
servers. YOUR-RADIUS-KEY isyour RADIUS secret key as defined in
clients.conf (see below).]

Make SURE you have included the development headers in your
MySQL installation otherwise the FreeRadius installation/compilation
will barf. To make my own life easy, | just instaled MySQL to the
default location.

Just to clarify: ABSOLUTELY MAKE SURE you have the mysgl-devel
(headers and libraries) package installed with your MySQL, otherwise
freeradius won't compile with MySQL support properly. Many people
seem to miss having this.

Oh yep, did | mention about having the MySQL development headers
installed? No? Make sure you do... ;-)

Getting Started

First off, you should get FreeRadius compiled, installed and running in a
basic text file configuration (e.g. using the ‘users file) on your box. This

Step by Step™ Linux Guide. Page 366

I'm not going to describe in details (read the stuff in /docs, etc), but it
should basically be the following:

1. Getthelatest FreeRadius source code tarball from
ftp://ftp.freeradius.or g/pub/radiug/freeradius.tar.gz. If you're
so minded, get the latest CV S instead.

2. Unpack the tarball and install it. On my own system the basic
steps were all that was needed, and everything got dumped in the
standard places:

tar xvf freeradius.tar.gz
cd freeradius
Jconfigure

make

make install

Note that you might need to add options to ./configure if you installed
MySQL to a non-standard place, or want FreeRadius to a non-standard
place, or want or need any other odd bits and pieces. | was keeping it
simple and didn't need to.

Then you should configure FreeRadius appropriately. It's best to start
with a simple config using the standard text files, if at least only to test
that FreeRadius installed OK and will work. To very briefly summarise
getting the text files configured :

1. Edit /usr/local/etc/raddb/clients.conf and enter the details of your
NAS unit(s). There are examples here, so it should be easy. Tip:
You'll also want to enter 'localhost' here for testing purposes (i.e.
SO you can use radtest).

2. Edit /usr/local/etc/raddb/users and create an example user
account. The file is commented on how to do this. I'm not going
to repeat that here. If you've previously used another RADIUS
server with text-file configuration (e.g. Livingston, Cistron) you'll
know what goes here...

3. Edit /usr/loca/etc/raddb/realms. | just put a single line
'DEFAULT LOCAL'" and that was sufficient to strip any suffix
domain names in given user names - if you're using realms or
proxing you'll doubtless need to do something else here, but |

Step by Step™ Linux Guide. Page 367

ftp://ftp.freeradius.org/pub/radius/freeradius.tar.gz

recommend you start with this then come back to setting up
realms/ proxying when you know MySQL is working. If you're
not using realms, just ignore this.

4. Edit /usr/local/etc/raddb/radiusd.conf and change as needed. For
my own installation | changed the default port to run on 1645
(old port) to match what our existing boxes use (but otherwise
make sure your NAS and FreeRadius are using the same) and
said 'yes to all the logging options (I'd strongly recommend you
do switch on all the logging to start with). At this point | also said
'no’ to using proxy to keep stuff simple. | then told it to run under
the 'radius’ user and group (I'd initialy installed FreeRadius as
root and didn't want to run it as such, so | created a user account
called 'radius in a group called 'radius and then just blanket
chown'd and chgrp'd the various radius directories to that user
just to be sure the account can access al the right stuff. A bit of a
dedgehammer there, but it was quick! I'm sure there's a better
and/or more elegant way of doing thisl). The rest of the
radiusd.conf file was left alone.

At this point you should be able to manualy fired up
lusr/local/shin/radiusd. You should do this with the debug turned on so
you can see what happens:

lusr/local/sbin/radiusd -X
Lots of stuff will scroll to the screen, and it should tell you it's ready to
accept requests. If you get an error, READ THE DEBUG, then check the
docs, check the above and try again.

Y ou should now be able to use FreeRadius. Y ou can use radtest to test an
account from the command line;

radtest username password servername port secret

So, if your example user is 'fred' with password 'wilma, your server is
called 'radius.domain.com’, is using port 1645, and you put localhost (or

Step by Step™ Linux Guide. Page 368

your localhost's IP) in clients.conf with a secret of 'mysecret’, you should
use:

radtest fred wilma radius.domain.com 1645 mysecret
And you should get back something like:

Sending Access-Request of id 226 to 127.0.0.1:1645
User-Name = 'fred'
User-Password = '\304\2323\326B\017\376\322?K\332\350Z;} '
NAS-IP-Address = radius.domain.com
NAS-Port = 1645

rad_recv : Access-Accept packet from host 127.0.0.1:1645,id=226,
length=56
Framed-IP-Address = 80.84.161.1
Framed-Protocol = PPP
Service-Type = Framed-User
Framed-Compression = Van-Jacobson-TCP-1P
Framed-IP- Netmask = 255.255.255.255

You should get an 'Access Accept' response. If you don't, do not pass
Go, do not collect £200. Go back and check everything. Read the docs,
READ THE DEBUG!

Personally, | used NTradPing (downloadable from Master Soft) on a
desktop Windows PC to send test packets towards the radius server -
very handy tool. If you do this, or test from any other machine,
remember your PC (or other machine) needs to be in your NAS list in
clients.conf too!

OK, so at this point you should have text-file authentication working in
FreeRadius...

Setting up the RADIUS databasein MySQL
Step by Step™ Linux Guide. Page 369

First, you should a new empty 'radius' database in MySQL and login user
with permissions to that database. Y ou could of course call the database
and the user anything you like but we'll stick to 'radius for both for the
purposes of this discussion

Next up, you need to create the schema for the database. There is afile
which describes this and is actually a SQL script file. It can be found at
/src/modules/rim_sql/drivers/rim_sgl_mysgl/db_mysgl.sgl where you
untar'd FreeRadius. This is the bit that, at least at the time | originally
wrote these notes, wasn't really documented anywhere and was the thing
most people seemed to be asking.

How you run that script is up to you and how you like to admin MySQL.
The easiest way isto:

mysgl -uroot -prootpass radius < db_mysqgl.sql

...where 'root' and 'rootpass are your mysgl root name and password
respectively.

| happened to run it using MacSQL 2.0 on my Powerbook G4/0S X
machine (Cooal...). You could do it on the server, or use aMySQL admin
tool from a Windows PC (e.g. MySQL CC, SQLion, dbtools etc) or
whatever.

Now you have the database running, albeit empty.

Configuring FreeRadiusto use MySQL

Edit /usr/local/etc/raddb/sgl.conf and enter the server, name and
password details to connect to your MySQL server and the RADIUS
database. The database and table names should be left at the defaults if
you used the default schema. For testing/debug purposes, switch on
sgltrace if you wish - FreeRadius will dump all SQL commands to the
debug output with this on.

If you're stripping al realm names (i.e. you want user | oe@domain.com
to authenticate as just ‘jo€), then in sgl.conf, under the 'query config:
username’ section, you MAY need to adjust the ling(s) referring to

Step by Step™ Linux Guide. Page 370

mailto:joe@domain.com

sgl_user_name. | needed to do this originally because we want to dump
al reams, but you probably won't need to do this with the latest
FreeRadius. For example, in our case | needed to uncomment the line:

sgl_user_name = '%{ Stripped-User-Name}'

...and comment out the following line referring to just User-Name. If you
want to see what's happening here, switch on all the logging options in
radiusd.conf and run radiusd in debug mode (-X) to see what's happening
- you'll see™ user@domain” being passed to MySQL when using User-
Name, but just "user" when using Stripped-User-Name. Using the latter,
realms worked for me (basically, | strip everything, as all user names are
unique on the server anyway). Of course, set all your other SQL options
as needed (database login details, etc)

Edit /usr/local/etc/raddb/radiusd.conf and add a line saying 'sql' to the
authorize{} section (which is towards the end of the file). The best place
to put it is just before the 'files entry. Indeed, if you'll just be using
MySQL, and not falling back to text files, you could comment out or
lose the 'files entry altogether.

Also add aline saying 'sgl’ to the accounting{} section too between 'unix’
and 'radutmp’. FreeRadius will now do accounting to MySQL as well.

The end of your radiusd.conf should then look something like this:

authorise {
preprocess
chap
mschap
#counter
#attr filter
#eap
suffix
sql
#files
#etc_smbpasswd

}

authenticate {
authtype PAP {

pap
Step by Step™ Linux Guide. Page 371

}
authtype CHAP {

chap
}

authtype MS-CHAP{
mschap
}

#pam
#unix
#authtype LDAP{
Idap
#
}

preacct {
preprocess
suffix
#files

}

accounting {
acct_unique
detal
#counter
unix
Sl
radutmp
#sradutmp

}

session {
radutmp
}

Populating MySQL

Step by Step™ Linux Guide.

Page 372

You should now created some dummy data in the database to test
against. It goes something like this:

In usergroup, put entries matching a user account name to a
group name.

In radcheck, put an entry for each user account name with a
'Password' attribute with avalue of their password.

In radreply, create entries for each user-specific radius reply
attribute against their username

In radgroupreply, create attributes to be returned to all group
members

Here's a dump of tables from the ‘radius’ database from mysgl on my test
box (edited dlightly for clarity). This example includes three users, one
with a dynamically assigned IP by the NAS (fredf), one assigned a static
IP (barney), and one representing a dial-up routed connection
(dialrouter):

nysqgl > sel ect * from usergroup;

s S +
| id | UserNane | G oupNane |
oo o +
| 1| fredf | dynamic |
| 2| barney | static |
| 2| dialrouter | netdi al |
s S +

3 rows in set (0.00 sec)

mysqgl > sel ect * from radcheck;

Fom e e e e e e oo Fom e e e e oo o B Fomm e - - +
| id | UserNane | Attribute | Val ue | Op |
oo N L Fommm - +
| 1| fredf | Password | wilm | == |
| 2| barney | Password | betty | == |
| 2| dialrouter | Password | dialup | == |
oo S S Fommm - +
3 rows in set (0.02 sec)
nysql > sel ect * from radgroupcheck;
oo S R Fommm - +

Step by Step™ Linux Guide. Page 373

| id | G oupNane | Attribute | Val ue | Op |

oo e e oo +
| 1] dynamc | Auth-Type | Local | :=
| 2| static | Auth-Type | Local | :=
| 3| netdial | Auth-Type | Local | :=
e e e oo +

3 rows in set (0.01 sec)

nysql > sel ect * fromradreply;

oo S oo

| id | UserName | Attribute | Val ue

T Fom e e e e e e Fom e e e e e e e e e oo

| 1| barney | Franed-1P-Address| 1.2.3.4

| 2| dialrouter | Franmed-1P-Address| 2.3.4.1

| 3| dialrouter | Franed-IP-Netmask| 255.255.255.255

| 4| dialrouter | Franed-Routing | Broadcast - Li st en

| 5| dialrouter | Franed-Route | 2.3.4.0 255.255.255.248

| 6| dialrouter | 1dle-Tinmeout | 900

oo e oo
6 rows in set (0.01 sec)
mysqgl > sel ect * from radgroupreply;

L JSpup IR oo oo

| id| GoupNane | Attribute | Val ue

T o e e e e e oo Fom e e e e e e e e e oo

| 34 | dynamc | Fr amed- Conpr essi on | Van-Jacobsen- TCP-1 P

| 33 | dynamc | Framed- Protocol | PPP

| 32 | dynamc | Service-Type | Franmed- User

| 35| dynamc | Franmed- MIU | 1500

| 37 | static | Framed- Protocol | PPP

| 38 | static | Service-Type | Franmed- User

| 39 | static | Franmed- Conpression| Van-Jacobsen-TCP-I|P

| 41 | netdial | Service-Type | Franmed- User

| 42 | netdial | Framed- Protocol | PPP

T o e e e e e oo Fom e e e e e e e e e oo
12 rows in set (0.01 sec)

nysql >

In this example, 'barney’ (who is a single user dialup) only needs an
attribute for IP address in radreply so he gets his static IP - he does not
Step by Step™ Linux Guide. Page 374

need any other attributes here as all the others get picked up from the
'static’ group entries in radgroupreply.

‘fred' needs no entriesin radreply as he is dynamically assigned an IP via
the NAS - so hell just get the 'dynamic’ group entries from
radgroupreply ONLY .

'dialrouter’ is a dial-up router, so as well as needing a static IP it needs
route and mask attributes (etc) to be returned. Hence the additional
entries.

'dialrouter’ also has an idle-timeout attribute so the router gets kicked if
it's not doing anything - you could add this for other users too if you
wanted to. Of course, if you feel like or need to add any other attributes,
that's kind of up to you!

Note the operator (‘op") values used in the various tables. The password
check attribute should use ==. Most return attributes should have a :=
operator, although if you're returning multiple attributes of the same type
(e.g. multiple Cisco- AVpair's) you should use the += operator instead
otherwise only the first one will be returned. Read the docs for more
details on operators.

If you're stripping all domain name elements from usernames via realms,
remember NOT to include the domain name elements in the usernames
you put in the MySQL tables - they should get stripped BEFORE the
database is checked, so name@domain will NEVER match if you're
realm stripping (assuming you follow point 2 above) — you should just
have 'name' as a user in the database. Once it's working without, and if
you want more complex realm handling, go back to work out not
stripping (and keeping name@domain in the db) if you really want to.

Auth-Type Note, Feb 2003: At the time of writing (i.e. up to and
including FreeRadius 0.8.1), FreeRadius will default to an Auth-Type of
'local’ if oneis not found. This means that you do not need to include this
(i.e. the radgroupcheck table above could actually be empty, and indeed
is on my own box), but you probably should include it for clarity and for
future-proofing in case FreeRadius changes. Please note that a previous
version of this page indicated that Auth-Type should be included in the
rad(group)reply tables. It appears that this is incorrect and that Auth-
Type should be in the rad(group)check tables. Other than Auth-Type, for

Step by Step™ Linux Guide. Page 375

simple setups, you probably need nothing in radgroupcheck - unless you
want users dialing certain nases, etc etc.

Using FreeRadius and MySQL

Fire up radiusd again in debug mode. The debug output should show it
connecting to the MySQL database. Use radtest (or NTradPing) to test
again - the user should authenticate and the debug output should show
FreeRadius talking to MySQL.

You're donel

Additional Snippets:

To use encrypted passwords in radcheck use the attribute 'Crypt-
Password', instead of 'Password’, and just put the encrypted password in
the valuefield. (i.e. UNIX crypt'd password).

To get NTradPing to send test accounting (e.g. stop) packets it needs
arguments, namely acct-session-time. Put something like "Acct-Session-
Time=99999' into the 'Additional RADIUS Attributes box when sending
stops. Thanksto JL for thetip.

If you have a Cisco nas, set the cisco-vsa-hack

Running a backup FreeRadius server and need to replicate the RADIUS
database to it? | followed Colin Bloch's basic instructions at
http://www.ls-I.net/mysgl/ and got replication setup between two
MySQL servers. Rea easy. Read the MySQL docs on replication for
more details. Note that MySQL replication is one-way-only.

On the subject of backup servers. If you want to run TWO MySQL
servers and have FreeRadius fall over between them, you'll need to do
something like this: duplicate your sgl.conf and edit the second copy to
reflect connecting to your backup server ; then name the files something
like sgl1.conf and sgl2.conf ; in radiusd.conf change and duplicate the
include line for sgl.conf to include sgll.conf and sgl2.conf instead ; in

Step by Step™ Linux Guide. Page 376

http://www.ls-l.net/mysql/

the "authorize' section of radiusd.conf change the 'sgl' entry to a 'group’
one, likethis:

group {

sql1{
fal =1
notfound = return
noop =2
ok =return
updated = 3
reject = return
userlock =4
invalid=5
handled = 6

}

sq12 {
fal =1
notfound = return
noop =2
ok =return
updated = 3
reject = return
userlock =4
invalid=5
handled = 6

}

}

Note that if FreeRadius fails over to the second MySQL server and tries
to update the accounting table (radacct), nasty things might possibly
happen to your replication setup and database integrity as the first
MySQL server won't have got the updates...

Installing PhpMyAdmin

Step by Step™ Linux Guide. Page 377

Quick Install:

1. Untar or unzip the distribution (be sure to unzip the subdirectories): tar -
xzvf phpMyAdmin_x.x.x.tar.gz in your webserver's document root. If you
don't have direct access to your document root, put the files in a directory
on your local machine, and, after step 3, transfer the directory on your web
server using, for example, ftp.

2. Open the file config.inc.php in your favorite editor and change the values
for host, user, password and authentication mode to fit your environment.
Here, "host" means the MySQL server. Also insert the correct value for
$cfg['PmaAbsoluteUri’]. Have a look at Configuration section for an
explanation of al values.

3. It is recommended that you protect the directory in which you installed
phpMyAdmin (unless it's on a closed intranet, or you wish to use HTTP or
cookie authentication), for example with HTTP-AUTH (in a .htaccess file).
See the multi-user sub-section of the FAQ for additiona information,
especially FAQ 4.4.

4. Open the file <www.your-host.com>/<your-install-dir>/index.php in your
browser. phpMyAdmin should now display a welcome screen and your
databases, or alogin dialog if using HTTP or cookie authentication mode.

5. For awhole set of new features (bookmarks, comments, SQL-history, PDF-
generation, field contents transformation, etc.) you need to create a set of
tables in your database. Please look at your scripts/ directory, where you
should find a file called create tables.sgl. (If you are using a Windows
server, pay specia attention to FAQ 1.23). You can dready use your
phpMyAdmin to create the tables for you. Please be aware that you may
have to have specia (administrator) privileges to create the database and
tables. After having imported the create tables.sql file, you should specify
the table names in your config.inc.php file. The directives used for that can
be found in the Configuration section.

Importing and Exporting MySQL DB using PhpMyAdmin

Step by Step™ Linux Guide. Page 378

http://www.your-host.com

Exporting
Under export select all databases or the databases you want to export.
Select the following options.

o - phglyAdmin 755901 - Mogills

Ll radius renni=g on ecal

1'Elh'p E,H_I !.'_I_w L ﬂm.l:l'.? ;[I:ﬂﬁ hl_l'l‘.luw]:Ilﬂ_p |
o] T3 -

i' T .‘i - h?“ ﬁ’ !.‘:.I'.IEII“'I.E}JEH:;IIII;"!II"II'IIF g

Eci D).
T Home wfHeimarts gFRad Hat, Inc. g et Hal awark 24 Suppant 1 5hon @ Pmduct: @ Traning
- View dump (schema) of database =
ol ~ B oplione (CxcumantaRan
friuu- 1] = " Shachia
= A ‘drop fab i
e I it AT INCREMENT vk
0 kst F2 G e tali B a7 §2K) Names: WR Dadhipines
E e ipteny Al i
E reederk Feiaet A ¢ iseledt A1 ™ Crestian/UpdaisThack dabes
Coo o [B e e v b L SR I (R R SRR AR AR
&2l =
— v Dada
" LaTai I Congicke i
© CEY R bk Bl ol _ Exandad intarty
I Up delwped ingerds
© CEW dala Espont typa: | IMSERT =]
1 WL
r = sowe e
Filp e Biplan D ¢ [% tamerbies o plaky
o pressin
| = Howe 7 ipped® © Cprpped” T zippad I

o]
" Uag DB for delabars nemw, _ TAELE Tor lable reafie e rve siming o e Rar brw spechi; allon, aodeemion wil e sdomagicaly eidel,
LAy wAnd Any plher bastwili b presersed

[% O & i) & | Docun Dore 1424 10cs)

(8

Click Go and save the localhost.sql file.

Importing

Step by Step™ Linux Guide. Page 379

In PhpMyAdmin go to the database that you want to export
Select “SQL”

Click Brows and select the localhost.sql file

Click Go.

Nagios

"Nagiosis a system and network monitoring application. It watches hosts
and services that you specify, aerting you when things go bad and when
they get better" (from nagios.org <http://www.nagios.org>). This is the
same tool that used to be called NetSaint until recently. Although the
NetSaint siteis till up, al future development will be done on Nagios.

Nagios has an impressive list of features that include:

Monitoring of network services such asHTTP, SMTP, SSH,
Telnet, etc.

Monitoring of server resources, such as disk usage and load
averages.

Real time notification of failures viaemail, pager, etc.

A very informative Web interface that makes it very easy to
identify problem hosts.

Licensed under the GNU GPL.
Nagios runs on Unix and its variants and optionally requires a Web
server to beinstalled (for the Web interface).
Installing and Configuring Nagios

Download the latest Nagios package and the latest Nagios plugins to a
temporary location. For this article we will be using ~/tmp/nagios.

Step by Step™ Linux Guide. Page 380

http://www.nagios.org

root@ducati:~/tmp/nagios# |s

nagios-1.0b5.tar.gz nagiosplug-1.3-betal.tar.gz

First we will install the main Nagios application. Start by decompressing
the tar.gz archive.

root@ducati:~/tmp/nagios# tar xfvz nagios-1.0b5.tar.gz

Thiswill decompress the archive and we will end up with a nagios-1.0b5
directory. (The filename and the name of the directory created will
differ, depending on when and which version you download.) Go into
this new directory:

root@ducati:~/tmp/nagios# cd nagios-1.0b5
root@ducati:~/tmp/nagios/nagios-1.0b5#

At this point, we need to decide where on our system we want to install
Nagios. You can install Nagios anywhere, but the best approach to
selecting the location is to stick with the default installation directory
(/usr/local/nagios), because the documentation always refers to this
directory. Thiswill make it easier to solve problems that we might have.
Create the directory where you would like to install Nagios.
root@ducati:~/tmp/nagios/nagios-1.0b5# mkdir /usr/local/nagios

At this point, we need to create a user and a group that our Nagios
application will run as. You can use "root" for this purpose, but since it's
not required, we might as well not use it, for better security. In order to
make maintaining Nagios easier, we will dedicate a new username and
group to it. The user and the group that we will create are both called
"nagios.”

root@ducati:~/tmp/nagios/nagios-1.0b5# useradd nagios

If you don't have the useradd command on your system, try the adduser
command. On some systems, adduser is an interactive command that
expects you to answer a few questions before creating the account.
Please refer to the man page for the command you're using for more
information.

root@ducati:~/tmp/nagios/nagios-1.0b5# groupadd nagios

On some systems, adduser will create the matching group; on other
systems you will need to edit the /etc/group file to add the group by
hand. Please refer to the documentation on your system for more
information.

Once we have created the user and the group, we can now start the actual
installation process. First we need to specify some parameters and create
the Makefile that will be used to compile and install the software.

Type the following script on asingle line without line breaks:
root@ducati: ~/tmp/nagios/nagios-1.0b5# Jconfigure -
prefix=/usr/local/nagios

Step by Step™ Linux Guide. Page 381

--with-cgiurl=/nagios/cgi-bin --with-htmurl=/nagios/ --with-nagios-
user=nagios

--with-nagios-grp=nagios

If you have opted to install Nagios in /usr/local/nagios and the user and
group you have created are both "nagios,” you might as well just run
Jconfigure with no parameters, since the above values are the default
values configure will assume. Y ou can also run configure --help to see a
lot more options you can use.

Once configure completes, it will display a summary of all parameters
that were used during the configuration. Make sure everything is OK,
and run configure again with the correct options, if necessary.

There's also a very high chance of getting a warning about the lack of
GD libraries from Boutell <http://www.boutell.com>. You can go back
and install GD if it's not installed. If you already have it on your system
and configure can't find it, you can use the --with-gd-lib and --with-gd-
inc options to specify the exact directories where your gd include and
library files are located. If, after trying al of these, you're still getting the
warning about GD, the configuration script suggests just giving up on
using the components that require GD and living with it. | believe thisis
a good approach if you're installing Nagios for the first time. The GD
library is only used in a few CGils that create dynamic images from the
service statistics. The application is still very useful without these
graphics. You can aways go back and reinstall the application when
you're more comfortable with GD and Nagios.

Now it's timeto actually compile the software. Thisis done as follows (if
you're not logged in as "root,” you need to switch to the "root" user at
this point):

root@ducati: ~/tmp/nagios/nagios-1.0b5# make all

This step will take a while to complete, especially on a slower machine.
If there were no problems during the compilation, you will receive a
"Compile finished" notification. Right now, all of our software is
compiled and ready to be installed to the directories that we have
specified in configure.

We will run three install commands to install various components in
place. First we need to install the main program files and directories in
lusr/local/nagios. This step isrequired.
root@ducati:~/tmp/nagios/nagios-1.0b5# make install

Now, optionally, we can install the startup script so that Nagios starts
automatically at boot time. This script will aso alow us to start, stop,
restart, and reload Nagios conveniently. Thisis accomplished as follows:
root@ducati:~/tmp/nagios/nagios-1.0b5# make install-init

Step by Step™ Linux Guide. Page 382

http://www.boutell.com

On my system (which is running Slackware 8.0), this installs a nagios
script in /etc/rc.d. Depending on your distribution, this file might also be
installed in /etc/re.d/init.d/. The configurator should take care of this. On
my system, | have renamed this file to rc.nagios, which conforms better
to the naming structure for Slackware. On FreeBSD, the file would need
to live in /usr/local/etc/rc.d and be renamed nagios.sh for it to work
properly.

If you take alook into the /usr/local/nagios directory right now, you will
see that there are four directories.
root@ducati:~/tmp/nagios/nagios-1.0b5# |s /usr/local /nagios/

bin sbin share var

The bin directory contains a single file, nagios, that is the core of the
package. This application does the actual monitoring. The shin directory
contains the CGI scripts that will be used in the Web-based interface.
Inside of the share directory, you can find the HTML files and
documentation. Finally, the var directory is where Nagios will be storing
its information, once it starts running.

In order to be able to use Nagios, we need a couple of configuration files.
These files go into the etc directory, which will be created when you run
the following:

root@ducati:~/tmp/nagios/nagios-1.0b5# make install-config

This command also creates a sample copy of each required configuration
file and puts them into the etc directory.

Plugins I nstallation

At this point the Nagios installation is complete. However, it is not very
useful at its current state, because it lacks the actual monitoring
applications. These applications, the duty of which is to check whether a
particular monotired service is functioning properly, are called plugins.
Nagios comes with a default set of such plugins, but they have to be
downloaded and installed seperately. (Please visit the Nagios Web site
<http://www.nagios.org> for the latest download URL.)

Download the latest Nagios Plugins package and decompressiit. Y ou will
need to run the configure script that is provided in order to prepare the
package for compilation on your system. You will find that that the
plugins are installed in a fashion similar to the actual Nagios program.

Step by Step™ Linux Guide. Page 383

http://www.nagios.org

Once again, you can just run configure if you are OK with the default
settings for the username, group, and directory where Nagiosisinstalled.

Type the following script on asingle line:

root@ducati: ~/tmp/nagios/nagiosplug-1.3-betal# ./configure
--prefix=/usr/local/nagios --with-nagios-user=nagios --with-nagios-
group=nagios

Y ou might get notifications about missing programs or Perl modules
while configure is running. These are mostly OK, unless you specifically
need the mentioned application to monitor a service.

Once configure is complete, compile all of the plugins.
root@ducati:~/tmp/nagios/nagiosplug-1.3-betal# make all

If no errors were reported, you are ready to install the plugins.
root@ducati:~/tmp/nagios/nagiosplug-1.3-betal# make install

The pluginswill beinstalled in the libexec directory of your Nagios base
directory (/usr/local/nagiog/libexec, in my case).

root@ducati: ~/tmp/nagios/nagiosplug-1.3-betal# cd
/usr/local/nagiog/libexec/

There are afew rules that all Nagios plugins should implement, making
them suitable for use by Nagios. All plugins provide a --help option that
displays information about the plugin and how it works. This feature
helps alot when you're trying to monitor a new service using a plugin
you haven't used before.

For instance, to learn how the check ssh plugin works, run the following
command.

root@ducati:/usr/local/nagiog/libexect ./check_ssh -h

check _ssh (nagios-plugins 1.3.0-alphal) 1.1.1.1

The nagios plugins come with ABSOLUTELY NO WARRANTY. You
may redistribute

copies of the plugins under the terms of the GNU Genera Public
License.

For more information about these matters, see the file named COPY ING.
Copyright (c) 1999 Remi Paulmier (remi@sinfomic.fr)

Usage:

check_ssh -t [timeout] -p [port] <host> check ssh -V prints version info
check_ssh -h prints more detailed help

by default, port is 22

root@ducati:/usr/local/nagiog/libexect#

This shows us that the check _ssh plugin accepts one required parameter
host, and two optional paramters, timeout and port.

Step by Step™ Linux Guide. Page 384

mailto:remi@sinfomic.fr

There's nothing especially complicated about the plugins. In fact, you
can run the plugins manually to check services on the console.
root@ducati:/usr/local/nagiog/libexect ./check ssh www.freelinuxcd.org
SSH ok - protocol version 1.99- - server version

Nagios Post-I nstall Configuration

Now that both Nagios and the plugins are installed, we are amost ready
to start monitoring our servers. However, Nagios will not even start
before we configure it properly.

Let's start by taking a look the sample configuration files.

root @ucati: ~/tnp/ nagi os# cd /usr/local / nagi os/etc
root @ucati:/usr/local/nagios/etc# |s -1
cgi.cfg-sanple

checkconmands. cf g- sanmpl e

cont act gr oups. cf g- sanmpl e

contacts. cfg-sanpl e
dependenci es. cf g-sanpl e

escal ati ons. cf g- sanpl e

host gr oups. cf g- sanpl e

hosts. cf g- sanpl e

m scconmmands. cf g- sanpl e

nagi os. cf g- sanpl e

resource. cf g- sanpl e

services. cfg-sanpl e

ti meperi ods. cfg-sanpl e

Since these are sample files, the Nagios authors added a .cfg-sample
suffix to each file. First, we need to copy or rename each one to *.cfg, so
that the software can use them properly. (If you don't change the
configuration filenames, Nagios will still try to access them with the .cgi
extension, and not be able to find them. The authors must have wanted to
ensure that everyone create their own custom configuration files.)

Before renaming the samplefiles, | like to take a backup of them, just in
case | need to refer to them later.

root @lucati:/usr/local/nagi os/etc# nkdir sanple
root @ucati:/usr/local /nagi os/etc# cp *.cfg-sanple sanpl e/

You can either rename each file manually, or use the following
command to take care of them all at once.

Type the following script on asingle line:

Step by Step™ Linux Guide. Page 385

http://www.freelinuxcd.org

root @ucati:/usr/local/nagios/etc# for i in *cfg-sanple;
do nv $i “echo $i | sed -e s/cfg-sanple/cfg/ ; done;

The following is what you should end up with in the et ¢ directory.

root @ucati:/usr/local/nagios/etc# |s -1
cgi.cfg
checkconmmands. cf g
cont act groups. cfg
contacts. cfg
dependenci es. cf g
escal ati ons. cfg
host groups. cfg
hosts. cfg

nm sccommands. cf g
nagi os. cf g
resource. cfg
sanpl e/
services. cfg

ti meperiods. cfg

First we will start with the main configuration file, nagi os. cf g. You can
pretty much leave everything as is, becasue the Nagios installation
process will make sure the file paths used in the configuration file are
correct. There's one option, however, that you might want to change. The
check_ext ernal _commands is set to 0 by default. If you would like to
be able to change the way Nagios works, or directly run commands
through the Web interface, you might want to set thisto 1. There are still
some other options you need to set in cgi.cfg to configure which
usernames are allowed to run external commands.

In order to get Nagios running, you will need to modify all but a few of
the sample configuration files. Configuring Nagios to monitor your
serversis not as difficult as it looks; | have found that the best approach
to configuring Nagios properly the first time is to use the debugging
mode of the Nagios binary. Y ou can run Nagios in this mode by running:

root @lucati:/usr/local /nagi os/ et c#../bin/nagi os-v
nagi os. cf g

This command will go through the configuration files and report any
errors that were found. Start fixing the errors one by one, and run the
command again to find the next error. For our purposes, | will disable all

Step by Step™ Linux Guide. Page 386

hosts and services definitions that come with the sample configuration
files and merely use the files as templates for our own hosts and services.
We will keep most of the files asis, and remove the following (we will
create them from scratch):

hosts. cfg
services. cfg
contacts. cfg

cont act groups. cfg
host gr oups. cfg
dependenci es. cf g
escal ati ons. cfg

We will not be going into the more advanced configuration that requires
using dependenci es. cf g and escal ati ons. cfg, SO just remove these
two files so that the sample configuration in these do not stop Nagios
from starting up. Still, Nagios requires that these files are present in the
etc directory, so create two empty files and name them
dependenci es. cf g and escal ati ons. cf g by running the following as
root.

root @ucati:/usr/local/nagi os/etc# touch dependencies. cfg
root @lucati:/usr/local/nagi os/etc# touch escal ati ons.cfg

We now have all of the configuration files we need and are ready to start
configuring them to suit our monitoring needs. In_my next article
</pub/a/onlamp/2002/09/26/nagios.html>, 1 will cover the configuration
file basics, how to define services to be monitored, how to configure
Nagios to notify people when a service is down, and how to configure
and use the Web interface that comes with Nagios.

Until then, Happy Hacking.

Now we will take a look at each configuration file one by one and
configure one host ‘freelinuxcd.org’ and two services on it ‘http' and
'ping' to be monitored. If something goes wrong with these services, two
users 'oktay' and ‘verty' will be notified.

Step by Step™ Linux Guide. Page 387

Configuring Monitoring

We first need to add our host definition and configure some options for
that host. You can add as many hosts as you like, but we will stick with
one host for simplicity.

Contents of hosts.cfg

Ceneric host definition tenplate
def i ne host {
The nanme of this host tenplate - referenced
name generi c- host
n other host definitions, used for tenplate
recursion/resol ution
Host notifications are enabl ed

notificati ons_enabl ed 1

Host event handler is enabled

event handl er _enabl ed 1

Flap detection is enabled

flap_det ecti on_enabl ed 1

Process performance data

process_perf _data 1

Retain status informati on across programrestarts
retain_status_information 1

Retain non-status information across programrestarts
retai n_nonstatus_infornation 1

DONT REG STER THI' S DEFINITION - I TS NOT A REAL HOST,
JUST A TEMPLATE!
register 0

}
Host Definition

def i ne host {
Name of host tenplate to use

use generi c- host

host _nane freel i nuxcd. org

alias Free Linux CD Project Server
addr ess wwv. freel i nuxcd. org

Step by Step™ Linux Guide. Page 388

http://www.freelinuxcd.org

check_command check-host-alive

max_check attenpts 10
notification_interval 120
notification_period 24x7
notification_options d,u,r

}

The first host defined is not areal host but atemplate which other host
definitions are derived from. This mechanism can be seen in other
configuration files also and makes configuration based on a predefined
set of defaults a breeze.

With this setup we are monitoring only one host ,

‘. f r eel i nuxcd. org'to seeif itisalive. The'host _nane' parameter
isimportant because this server will be referred to by this name from the
other configuration files.

Now we need to add this host to a hostgroup. Even though we will keep
the configuration simple by defining a single host, we still have to
associate it with a group so that the application knows which contact
group (see below) to send notifications to.

Contents of hostgroups.cfg

def i ne host group{
host group_nanme fl cd-servers

alias The Free Linux CD Project Servers
contact _groups flcd-adnins
menber s freel i nuxcd. org

}
Above, we have defined anew host gr oup and associate the 'f | cd-

admi ns' contact group with it. Now let's look into the cont act gr oup
settings.

Contents of contactgroups.cfg

def i ne cont act gr oup{
cont act gr oup_narne flcd-adm ns

Step by Step™ Linux Guide. Page 389

http://www.freelinuxcd.org

alias Fr eeLi nuxCD. org Admi ns
nmenber s oktay, verty

}

We have defined the contact group 'f | cd- adni ns' and added two
members ‘okt ay' and 'ver t y' to this group. This configuration ensures
that both users will be notified when something goes wrong with a server
that 'f | cd- adni ns' isresponsible for. (Individual notification
preferences can override this). The next step is to set the contact
information and notification preferences for these users.

Contents of contacts.cfg

defi ne contact{

cont act _nane okt ay

alias Oktay Altunergil
service_notification_period 24x7

host _notification_period 24x7
service_notification_options W, u,c,r

host _notification_options d,u,r

service_notification_commands notify-by-email, notify-
by- epager

host _notificati on_commands host - noti fy- by-
emai | , host-notify-by-epager

emai | oktay@r eel i nuxcd. org

pager dunmmypagenagi 0s-
adm n@ ocal host . | ocal dorai n

}
defi ne contact{

cont act _nane Verty

alias David 'Verty' Ky

service_notification_period 24x7

host _notification_period 24x7

service_notification_options w,u,c,r

host _notification_options d,u,r

service_notification_commands notify-by-emil, notify-
by- epager

host _notificati on_conmmands host - noti fy-by-enai |
emai | verty@I cd. org
}

In addition to providing contact details for a particular user, the
‘contact_name' in the contacts.cfg is also used by the cgi scripts (i.e the
Web interface) to determine whether a particular user is alowed to

Step by Step™ Linux Guide. Page 390

mailto:oktay@freelinuxcd.org
mailto:verty@flcd.org

access a particular resource. Although you will need to configure
.htaccess based basic http authentication in order to be able to use the
Web interface, you still need to define those same usernames as seen
above, before the users can access any of the resources even after they
are logged in with their username and passwords. Now that we have our
hosts and contacts configured, we can start configuring individual
services on our server to be monitored.

Contents of services.cfg

Ceneric service definition tenplate
define service{

The 'nane' of this service tenplate, referenced in
ot her service definitions

name generi c-service

Active service checks are enabl ed

active _checks_enabled 1

Passive service checks are enabl ed/ accept ed

passi ve_checks_enabled 1

Active service checks should be parallelized

(disabling this can lead to major performance problens)
parallelize_check 1

W shoul d obsess over this service (if necessary)
obsess _over _service 1

Default is to NOT check service 'freshness
check_freshness 0

Service notifications are enabl ed
notifications_enabled 1

Service event handler is enabled

event handl er _enabled 1

Flap detection is enabled

flap_detection_enabled 1

Process performance data

process _perf _data 1

Retain status information across programrestarts
retain_status_ information 1

Retain non-status information across programrestarts
retain_nonstatus_information 1

DONT REQ STER THI'S DEFINITION - | TS NOT A REAL SERVI CE
JUST A TEMPLATE!

register 0

}
Service definition

define service{
Name of service tenplate to use

Step by Step™ Linux Guide. Page 391

use generi c-service

host _nane freelinuxcd. org
service_description HITP
is_volatile 0

check_period 24x7
max_check attenpts 3

normal check interval 5
retry check_interval 1

cont act _groups flcd-adm ns
notification_ interval 120
notification period 24x7
notification_options wu,c,r
check_command check_http

}

Service definition
define service{

Name of service tenplate to use
use generi c-service

host _nane freelinuxcd. org
service_description PING
is volatile 0

check_period 24x7
max_check attenpts 3

normal check interval 5
retry check_interval 1

cont act _groups flcd-adm ns
notification_interval 120
notification period 24x7
notification_options c,r
check_command check_pi ng! 100. 0, 209 500. 0, 60%

}

Using the above setup, we are configuring two services to be monitored.
The first service definition, which we have caled HTTP, will be
monitoring whether the Web server is up and notifies us if there's a
problem. The second definition monitors the ping statistics from the
server and notifies us if the response time increases too much and if
there's too much packet loss which is a sign of network trouble. The
commands we use to accomplish this are ‘check_http' and ‘check_ping'
which were installed into the ‘libexec' directory when we installed the
plugins. Please take your time to get familiar with all other plugins that
are available and configure them similarly to the above definitions. You
can also write your own plugins to do custom monitoring. For instance,

Step by Step™ Linux Guide. Page 392

there's no plugin to check if Tomcat <http://jakarta.apache.org> is up or
down. You could simply write a script that loads a default jsp page on a
remote Tomcat server and returns a success or failure status based on the
presence or lack of a predefined text value (i.e "Tomcat is up") on the
page. (In such a case you would need to add a definition for this custom
command in your checkcommand.cfg file which we have not touched)

Starting Nagios

Now that we have configured the hosts and the services to monitor, we
are ready to fire up Nagios and start monitoring. We will start Nagios
using the init script that we had installed earlier.

root @ucati:/usr/local /nagios/etc# /etc/rc.d/rc.nagi os start
Starting network nonitor: nagios
/ bin/bash: -1: unrecogni zed option

[...]

If you receive the above error message, it means the 'su’" command
installed on your server does not support the -l option. To fix it, open up
/etc/re.d/rc.nagios (or its equivalent on your system) and remove the 'I'
where it says 'su -I'. You will end up with 'su -" which means the same
thing. After making the change, run the above startup command again. If
you receive 'permission denied’ errors. Just reset the ownership
information on your Nagios installation directory and it will be resolved.

root @ucati:/usr/local /nagi os# chown -R nagi os
/usr/ 1 ocal / nagi os
root @ucati:/usr/local /nagi os# chgrp -R nagi os
/usr/ 1 ocal / nagi os

If everything went smoothly, Nagios should now be running. The
following command will show you whether Nagios is up and running
and the process ID associated with it, if it isindeed running.

root @ucati:/usr/local/nagios# /etc/rc.d/rc. nagi os status
PID TTY TI ME CVD
22645 ? 00: 00: 00 nagi os

Step by Step™ Linux Guide. Page 393

http://jakarta.apache.org

The same command will stop Nagios when called with the 'stop'
paramter instead of 'start' or 'status’.

TheWeb Interface

Although Nagios has already started monitoring and is going to send us
the natifications if and when something goes wrong, we need to set up
the Web interface to be able to interactively monitor services and hosts
in rea time. The Web interface also gives a view of the big picture by
making use of graphics and statistical information.

Sure enough, we need to have a Web server already set up in order to be
able to access the Nagios Web interface. For this article we will assume
that we are running the Apache Web server. | will use the exact same
configuration that is included in the official Nagios documentation
because it works fine.

Addition to httpd.conf

ScriptAlias /nagios/cgi-bin/ /usr/local/nagios/sbin/
<Directory "/usr/local /nagi os/sbin/">

Al l owOverri de AuthConfig

Opti ons ExecCd

Order al |l ow, deny

Al'low from all
</Directory>

Alias /nagios/ /usr/local/nagios/share/
<Directory "/usr/local /nagi os/ share">
Opti ons None
Al l owOverri de AuthConfig
Order al |l ow, deny
Al'l ow from all
</Directory>

This configuration creates a Web adlias '/nagios/cgi-bin/' and directs it to
the cgi scripts in your Nagios 'shin’ directory. Assuming your main Web
Site is set up at http://127.0.0.1, you will be able to access the Nagios
Web interface at http://127.0.0.1/nagios . At this point, the Nagios Web
interface should come up properly, but you will notice that you cannot

Step by Step™ Linux Guide. Page 394

http://127.0.0.1
http://127.0.0.1/nagios/

access any of the pages. You will get an error message that looks like the
following.

It appears as though you do not have permission to view information for
any of the hosts you requested... If you believe thisis an error, check the
HTTP server authentication requirements for accessing this CGI and
check the authorization optionsin your CGI configuration file.

This is a security precaution that is designed to only allow authorized
people to be able to access the monitoring interface. The authentication
is handled by your Web server using Basic HTTP Authentication (i.e.
.htaccess). Nagios then uses the credentias for the user who has logged
in and matches it with the contacts.cfg contact_name entries to determine
which sections of the Web interface the current user can access.

Configuring .htaccess based authentication is easy provided that your
Web server is aready configured to use it. Please refer to the
documentation for your Web server if it's not configured. We will
assume that our Apache server is configured to look at the .htaccess file
and apply the directives found in it.

First, create afile called .htaccess in the /usr/local/nagios/sbin directory.
If you would like to lock up your Nagios Web interface completely, you
can also put a copy of the samefilein the /usr/local/nagios/share
directory.

Put the following in this. ht access file.

Aut hNane " Nagi os Access"

Aut hType Basi c

Aut hUser Fil e /usr/1 ocal / nagi os/ et c/ ht passwd. users
require valid-user

When you're adding your first user, the password file that .htaccess refers
to will not be present. You need to run the 'htpasswd' command with the
-Cc option to create the file.

ht passwd -c /usr/local /nagi os/ et c/ ht passwd. users oktay
New password; **x**x

Re-type new password: *****x*

Addi ng password for user oktay

Step by Step™ Linux Guide. Page 395

For the rest of your users, use the 'htpasswd' command without the '-c'
option so as not to overwrite the existing one. After you add all of your
users, you can go back to the Web interface which will now pop up an
authentication dialog. Upon successful authentication, you can start
using the Web interface. | will not go into detail about using the Web
interface since it's pretty self explanatory. Notice that your users will
only be able to access information for servers that they are associated
with in the Nagios configuration files. Also, some sections of the Web
interface will be disabled for everyone by default. If you would like to
enable those, take a look at 'etc/cgi.cfg’. For instance, in order to alow
the user 'oktay' to access the 'Process Info' section, uncomment the
‘authorized_for_system_information' line and add 'oktay' to the list of
names delimited by commas.

This is al you need to install and configure Nagios to do basic
monitoring of your servers and individual services on these servers. You
can then fine tune your monitoring system by going through all of the
configuration files and modifying them to match your needs and
requirements. Going through al pluginsin the libexec directory will also
give you a lot of ideas about what local and remote services you can
monitor. Nagios a'so comes with software that can be used to monitor a
server's disk and load status remotely. Finally, Nagios comes with so
many features that no single article could explain all of it. Please refer to
the official documentation for more advanced topics that aren't covered
here.

Step by Step™ Linux Guide. Page 396

